در پست قبل در مورد بالانس تئوری یا نظریه توازن صحبت کردیم و نشون دادیم که به کمک یک مدل ساده و ابتدایی میتونیم به جوامع، متناسب با نوع رابطهی اعضا با همدیگه، انرژی نسبت بدیم و مقدار این انرژی به ما میگه که جامعه مد نظر در چه وضعیتی از توازن قرار داره.
بنابر بهنجارش، اگر انرژی جامعه ۱- بهدست بیاد، جامعه کاملا متوازن یا بالانس هست که این در صورتی رخ میده که همه اعضای جامعه دوست همدیگه باشند و یا اینکه جامعه دو قطبی بشه، یعنی جامعه به دو زیر مجموعه تقسیم بشه به نحوی که درون زیرمجوعهها اعضا دوست باشند اما هر عضوی از این زیرمجوعه با اعضای زیرمجوعهی مقابل دشمن باشه. همینطور اگر انرژی جامعه بیشتر از ۱- بهدست بیاد یعنی جامعه نامتوازن هست و هر چقدر که انرژی به ۱+ (کران بالای انرژی بنابر بهنجارش) نزدیکتر باشه جامعه نامتوازنتر هست که به معنی وجود امکان نزاع و درگیری در بین اعضاست.
طی این پست میخوایم ببینیم اگر به یک جامعه با شرایط اولیه مشخص (جمعیت و انرژی اولیه)، عضو جدیدی وارد بشه چه اتفاقی میافته. اما قبل از اون اجازه بدید که مدل باراباشی-آلبرت رو معرفی کنیم.
توزیع قانونتوانی، قسمت سبز رنگ ۸۰٪ از شبکه را شامل میشود و دمدراز زرد رنگ۲۰٪ باقیمانده را.
به عنوان مثال در بین تمام سایتها گوگل، ویکیپدیا و فیسبوک بیشترین بازدیدکنندهها و پیوندها رو دارند یا مثلا در جامعهی ما، محمدرضا شجریان، حسین علیزاده و کیهان کلهر جزو برجستهترین هنرمندان موسیقی سنتی هستند، در مقایسه با جمعیت هنرمندان موسیقی، این افراد تعدادشون کمه. با اینوجود شهرت و محبوبیشون از همه هنرمندان بیشتره. این شبکهها، شبکههای بیمقیاس (scale-free) هستند به این معنی که توزیع درجه در این شبکهها با تقریب خوبی از یک الگوی قانونتوانی(power law) پیروی میکنه. این چندتا جملهی سخت که گفتم یعنی اینکه وقتی ما این شبکهها رو با یک گراف نمایش میدیم، درجه رئوس متناسب با وارون فراوانی(تعداد) اون رئوس هست . یعنی هرچی راسی درجهش بیشتر باشه (تعداد یالهای بیشتری بهش متصل بشند) فراوانیش کمتره و هر چقدر درجه راسی کمتر باشه فراوانیش بیشتره! همونجوری که تعداد سایتهایی مثل گوگل تعدادشون خیلی کمه، چون درجهشون زیاده.
رشد یک شبکه مطابق با مدل باراباشی-آلبرت که در هر مرحله راس جدید به ۲ راس قبلی وصل میشود.
کار آلبرت باراباشی و رکا آلبرت معرفی الگوریتمی بود که قادره چنین شبکههایی رو مدلسازی کنه. این الگوریتم صرفنظر از تصادفی بودن باید گرافی رو تولید کنه که توزیع درجه رئوسش قانونتوانی باشه. برای همین اساس این مدل دو چیزه:
۱) رشد: در طی زمان رئوس جدیدی به شبکه اضافه میشند.
۲) اتصال ترجیحی:رئوس جدید ترجیح میدند به رئوسی وصل بشند که درجهی بالاتری دارند.
برای همین این الگوریتم ابتدا یک شبکه متصل (همبند) با راس ایجاد میکنه. بعد از اون، در هر مرحله، راسی اضافه میشه و به راس قبلی وصل میشه. این m راس بر اساس درجهشون انتخاب میشند: یعنی احتمال اینکه راس جدید به iامین راس موجود درگراف وصل بشه برابره با نسبت درجه راس iام به مجموع درجات کل رئوس. این سبب میشه که «هاب» در شبکه بهوجود بیاد. هابها رئوسی هستند که درجه شون از بقیه رئوس شبکه بیشتره. (صفحه شجریان در اینستاگرام یک هاب به حساب میاد در بین خوانندهها همونجوری که گوگل یک هابه در بین سایتها!). يادتون باشه که در مدل باراباشی-آلبرت وزن هر یال ۱ است!
قبلا کتابها و دورههایی که دانشجوهای سال اول و دوم کارشناسی فیزیک بهشون نیازدارند رو معرفی کرده بودم. همین طور بحث مفصلی در مورد دورهها (کورسها) اینجا و اینجا کرده بودم. معمولا بچهها سال دوم و سوم دروس الکترومغناطیس و مکانیککوانتومی رو میگیرند و شاید بشه گفت اصلیترین درسهای دورهی کارشناسی فیزیک همین دوتا درس باشه. برای همین من سعی میکنم طی این پست کمی از تجربیاتم بگم:
۱) الکترومغناطیس:
چیزی که لازمه تا این درس رو راحت شروع کنید و در حین ترم کمتر اذیت بشید مرور مفاهیم اصلی فیزیک پایه۲ و آنالیزبرداری هست که احتمالا آخرای ریاضی پایه۲ و ریاضیفیزیک باهاش مواجه شدید. الکترومغناطیس از لحاظ مفهومی زیاد سخت نیست ولی از لحاظ تکنیکی سختترین درس کارشناسی به نظر میرسه چون که کار کردن با آنالیز برداری زیاد خوشایند ملت نیست!
«آشنایی با الکترودینامیک، دیوید گریفیث»
اگر دنبال یک کتاب آموزشی خوب میگردید که به خوبی درس رو توضیح داده باشه، مثالهای خوبی زده باشه و در نهایت تمرینهای مناسبی رو در اختیارتون بذاره بدون هیچ شکی سراغ کتاب «آشنایی با الکترودینامیک، دیوید گریفیث» برید. نسخه ۴ام این کتاب تفاوت چندانی با نسخهی قبلی نداره با این وجود مسئلههای به شدت جالب و قابل تفکری بهش اضافه شده. در ضمن گریفیث از جمله کسانی هست که خودش برای کتابهاش حلالمسائل مینویسه پس شما میتونید به راحتی پاسخ صحیح همه پرسشها و تمرینهای کتاب رو داشته باشید. بعد از گریفیث به شما کتاب «الکترودینامیک کلاسیک، والتر گراینر» رو پیشنهاد میکنم و بعد از اون کتاب «الکتریسیته و مغناطیس، پرسل و مورین». این دو کتابهای خیلی خوبی هستند به ویژه اینکه مثالهای متنوعی دارند. به نظر من این سه کتاب بهترین کتابهایی هستند که دانشجوهای سال دوم و سوم کارشناسی میتونند ازشون برای یادگیری الکترومغناطیس استفاده کنند. با این وجود کتابهای دیگهای هم هستند از جمله:
اگر دنبال این هستید که کتابی داشته باشید که مطالب رو با ریاضیات استوارتری بررسی کرده باشه و به موضوع الکترودینامیک بیشتر ریاضیاتی نگاه کرده باشه کتاب «الکترودینامیک جکسون» رو بخونید. این کتاب معمولا مرجع درس الکترودینامیک برای مقطع کارشناسی ارشد هست. اگر هم دنبال این هستید که مطالب رو عمیقا بهفمید و فوقالعاده لذت ببرید و از فرط هیجان نتونید روی صندلی بندشید به این کتابها (Lecture Notes) مراجعه کنید:
در نهایت یادتون باشه که بهترین کتاب، پرمسئلهترین کتابه برای شما و اینکه انتخاب کتاب کاملا سلیقهای هست، شاید سلیقهی شما با سلیقهی من یا استادتون سازگار نباشه و شما کتاب دیگهای رو در اولویت قرار بدید! به هر حال صلاح مملکت خویش خسروان دانند!
این اولین پستیه که قراره در مورد چیزایی حرف بزنم که کسی در موردش زیاد نشنیده و نخونده. یک موضوع جدید و در حال توسعه که به نظرم به شدت جذابه. خب یک سری مشکلات هست توی این پست از جمله اینکه خیلی از عبارتها رو «من» ترجمه کردم و هنوز ترجمهی رسمی براشون ارائه نشده و یا اینکه لااقل هنوز عرف نشدند. ممکنه یک سری ایراد علمی هم وارد بشه که در آینده تصحیحشون میکنم. موضوع این پست Balance Theory هست، اما از اونجایی که اگر «نظریه تعادل» ترجمه بشه خیلیها ممکنه در نگاه اول یاد تعادل نش یا نظریه تعادل عمومی بیفتند من به جای واژهی «تعادل» از واژهی «توازن» استفاده میکنم تا اطلاع ثانوی! درضمن مدلی که در ادامه مطرح میشه یک مدل ساده و ابتدایی هست، بنابراین احتمالا بعضی از سوالهای شما رو در حوزهی علوم اجتماعی و/یا علوم سیاسی بیجواب میذاره!
خیلی خب، سه نفر رو فرض کنید که میتونند دوست یا دشمن همدیگه باشند. همینطور دوستی و دشمنی رو متقابل فرض کنید، یعنی اگر کسی رو دوست دارید، اونم شما رو دوست داره. حالا اگر این سه نفر دوست هم باشند، اون موقع همه چیز خوبه و تنشی پیش نمیاد؛ دوست دوست شما، دوست شماست! اصطلاحا میگیم این مجموعه سه نفری در توازن قرار داره و یا اینکه متوازن -balanced- هست. اما اگر از بین این سه نفر دو نفر رابطهی خوبی با همدیگه نداشته باشند اونموقع ممکنه تنش پیش بیاد. به عنوان مثال فرض کنید که شما، همسرتون و مادرتون رو دوست دارید با این وجود، متاسفانه، مادرتون و همسرتون رابطهی خوبی با همدیگه ندارند.
یک شبکه نامتوازن بین آلیس، باب و کرول.دوستی با خط و دشمنی با خطچین مشخص شده است.
اجازه بدید ،از این به بعد، به خاطر راحتی بیشتر از واژههای دقیق «دوست» و «دشمن» برای نوع روابط استفاده کنیم و دوستی رو کاملا ۱+ و یا ۱- فرض کنیم. بنابراین شما و همسرتون دوست، شما و مادرتون دوست ولی همسر شما و مادر شما دشمن همدیگه هستند. اینجا توازن از بین میره، به عنوان مثال کافیه شما هدیهای برای مادرتون بخرید، در این صورت همسرتون شاکی میشه و مجبورید شب رو توی کوچه بخوابید! حالا فرض کنید که شما و آرش، همزمان از یکی از همکار/همکلاسیهاتون به اسم احسان متنفرید. خب طبق یه قاعدهی قدیمی، داشتن دشمن مشترک دوستی میاره و یا اینکه دشمن دشمن شما، دوست شماست. آرش دشمن احسان و احسان دشمن شماست پس طبق این قاعده شما و آرش دوست هستید. این مجموعه هم متوازنه. حالت دیگه که ممکنه پیش بیاد این هست که شما، میثم و سهیل هر سه دشمن همدیگه باشید، خب به وضوح مشخصه که این مجموعه نامتوازن هست؛ هر لحظه ممکنه کسی علیه کسی شورش کنه!
تا اینجا چارچوب بحث ما در مورد توازن مشخص شد. جذابیت این موضوع برای ما دانشمندان (!) زمانی شروع میشه که به فکر مدلسازی این چارچوب باشیم. ایدهی اصلی این کار توسط هایدر (۱۹۵۸) مطرح شد. مثلثی فرض کنید که هر راسش یکی از سه نفر بالا باشه و ضلعی که هر دو راس رو بهم متصل میکنه رو به عنوان رابطه اون دو راس(نفر) در نظر بگیرید. اگر دو نفر دوست هم باشند، به ضلعی که دو راس متناظر با اون دو نفر رو متصل میکنه، ۱+ نسبت میدیم و اگر دو نفر دشمن هم باشند به ضلع متصل کننده ۱-.
اجازه بدید از نظریهی گراف کمک بگیریم. مطابق شکل ما یک گراف کامل با ۳ راس و ۳ یال داریم که رئوس، نمایندهی اعضای مجموعه و یالها تعیین کننده نوع رابطه (دوستی یا دشمنی) بین رئوس هستند. با توجه به چارچوب بالا اگر تعداد یالهای منفی که با خط چین توی شکل زیر مشخص شدهند فرد باشند (یکی یا سهتا) اونموقع گراف ما و یا شبکه ما نامتوازن -unbalanced- خواهد شد.
شبکههای متوازن و نامتوازن و نوع آرایش آنها
بنابراین مدلی که به عنوان یک «شبکه اجتماعی» برای توصیف روابط بین انسانها و متوازن بودنشون مطرح میکنیم این جوری ساخته میشه:
با توجه به افراد،سازمانها، کشورها و هرچیزی که روابط دوستی یا دشمنی دارند ما یک گراف کامل از مرتبه تعداد اعضا مشخص میکنیم. گراف کامل هست چون که فرض بر اینه که همهی اعضا همدیگه رو میشناسند و رابطه دارند. به عنوان مثال به کشورهای عضو سازمان ملل فکر کنید که یا از هم خوششون میاد یا از هم بدشون میاد!
هر یال یا مثبته و یا منفی. هیچ حالت بینابینی وجود نداره.
یک مثلث متوازن (balanced) است اگر و تنها اگر حاصلضرب علامت یالهای آن مثبت باشه. (اگر تعداد یالهای منفی فرد باشه: (-,-,- یا -,+,+) اونموقع گراف ما و یا شبکه ما نامتوازن خواهد شد.) شیوهی قطبیده شدن جهان به دو بلوک شرق و غرب قبل از جنگجهانی اول
خب حالا فرض کنید که ما یک شبکهی مشخص از اعضا و روابطشون داریم:
آیا میتونیم بگیم که اوضاع این شبکه چقدر متوزانه؟
آیا میتونیم با در نظر گرفتن شبکهی کشورهای دنیا و روابطشون بگیم آیا ممکنه بین دو کشور صلح برقرار بشه؟ یا اگه بین دو کشور صلح برقرار شد، اون موقع این صلح موضعی (منطقهای) چه اثراتی روی صلح جهانی داره؟ به عبارت دیگه اگه علامت یالی رو در یک شبکه عوض کنیم (رابطهی دو نفر رو از دوستی به دشمنی و یا عکس تبدیل کنیم) اون موقع میشه فهمید برای کل شبکه چه اتفاقی میافته؟
آیا میتونیم پیشبینی کنیم در چه شرایطی ممکنه بین هوادارهای دو تیم ورزشی توی ورزشگاه آزادی درگیری و نزاع پیش میاد؟
بله، با تقریب خوبی میتونیم همه اینکارها رو به لطف نظریهی توازن و یا بالانس تئوری انجام بدیم.
اجازه بدید کمی عمیقتر بشیم. خیلی راحت اثبات میشه که فقط دو راه برای یک شبکه بزرگ وجود داره که متوازن بشه، یا همه دوست هم بشند (جامعه بهشت بشه!) و یا اینکه شبکه قطبیده بشه، به این معنی که شبکه به دو بلوک تقسیم بشه جوری که داخل هر بلوک اعضا، دوست همدیگه حساب میشند و اعضای بلوک مقابل دشمن! درست مثل زمانی که دنیا به دو بلوک شرق و غرب تقسیم شده بود؛ یه سری این ور دوست هم بودند، یه سری هم اونور، بعد اینوریها نمیخواستند سر به تن اونوریها باشه!
خب پس وقتی ما یک شبکه داریم که در یکی از این دو حالت نیست یعنی متوازن یا بالانس نیست. سوال مهم اینه که خب اگر بخواهیم که شبکه رو بالانس یا متوازن کنیم چه کار باید انجام بدیم؟ یک راه پیشنهادی این هست که یک یال رو به صورت تصادفی انتخاب کنیم و علامتش رو عوض کنیم و بعدش ببینیم برای سیستم چه اتفاقی میافته. به عبارت دیگه اگر بعد از عوض کردن اون یال، تعداد مثلثهای متوازن در کل شبکه زیاد بشه یعنی اینکه ما تونستیم شبکه رو به یک حالت متوازنتر هدایت کنیم، ولی اگر با عوض کردن علامت یالی تعداد مثلثهای متوازن شبکه کم بشه یعنی عدمتوازن رو توی شبکه بالا بردیم.
از اونجایی که ما فیزیکپیشه هستیم، اجازه بدید با رویکرد انرژی به قضیه نگاه کنیم؛ با توجه به پیشفرضهای ما، انرژی شبکه باید متناسب باشه با تعداد مثلثهای نامتوازن منهای تعداد مثلثهای متوازن موجود درشبکه:
معادله انرژی برای یک شبکه اجتماعی
اگر دو راس دوست باشند به یال بین آن دو ۱+ نسبت میدهیم و اگر دشمن باشند ۱-
نمودار انرژی برای شبکههایی با (A) سه راس و (B) چهار راس
n تعداد کل رئوس است و به خاطر بهنجارش (Normalization) تفاضل انرژیها رو بر تعداد کل مثلثهای شبکه تقسیم کردیم تا انرژی هنجار به واحد بشه! بنابراین بیشترین مقدار انرژی ۱ و کمترین مقدار ۱- خواهد شد. وجود منفی هم به این خاطر هست که هرچی انرژی کمتر باشه (منفیتر) سیستم متوازنتره. خب بیاید با استفاده از این رابطه نمودار انرژی رو برای دو تا شبکهی کوچیک، یکی با ۳ راس و دیگری با ۴ راس بکشیم:
نمودار A انرژی یک شبکه یا ۳ راس رو نشون میده که سادهترین شبکه برای بررسی هست. بنابراین انرژی شبکه یا ۱ (نامتوزان) و یا ۱- (متوازن) هست. عددی که بالای هر مثلث نوشته شده فراوانی هر کدوم هست (مثلا اینکه یک یال خطچین باشه سه حالت داره، بدیهیه!)
نمودار B انرژی یک شبکهی با ۴ راس رو نشون میده. خب توی این شبکه علاوه بر حالات قبل، انرژی صفر هم مشاهده میشه. طبیعیه که ما توی این شبکه میتونیم از بالا به پایین بیایم و شبکه رو متوازن کنیم. برای این کار کافیه علامت یکی از یالها رو عوض کنیم و به وضعیت پایدارتر برسیم. خب این سوال مطرح میشه که:
آیا توی هر شبکهای ممکنه با عوض کردن علامت یک یال، به یک شبکهی متوازنتر رسید؟
وجود حالتهای مسدود (jammed state)
متاسفانه در مورد شبکههای بزرگ(تعداد راس بیشتر) حالتهایی در سیستم وجود داره که به Jammed States و یا به قول استیون استروگاتز Strict Jammed States معروف هستند. این حالتها چیزی نیستند جزو کمینههای نسبی انرژی. به این معنی که انرژی اینحالتها از تمام حالتهای ممکن که با تغییر علامت یک یال در دسترس هستند، کمتر هست. بنابراین در حالتهای jammed یا مسدود، امکان اینکه تنها با تعویض علامت یک یال به یک حالت متوازنتر رفت، وجود نداره. به عبارت دیگه انرژی حالتهای مسدود کوچکتر یا مساوی انرژی حالتهای مجاور هست.
نکتهای که وجود داره اینه که حالتهای مسدود نمیتونند هر مقدار انرژی اختیار کنند. در حقیقت اینحالتها حداکثر میتونند انرژی صفر داشته باشند (کران بالای انرژی حالتهای مسدود صفر است). اثبات این موضوع خیلی سرراسته: هر یالی در یک حالت مسدود متعلق به مثلثهای متوازنی هست که تعدادشون برابر با تعداد مثلثهای نامتوازنه، چون در غیر این صورت علامت اون یال باید عوض بشه که این در تناقض با تعریف حالت مسدوده! بنابراین در شبکههای نسبتا بزرگ حالتهای مسدودی وجود که انرژی این حالتها حداکثر صفر هست.
یک گراف Paley با ۱۳ راس، به شیوهی اتصال رئوس دقت کنید.
ویژگی جالبی در مورد حالتهای مسدود با انرژی صفر وجود داره؛ یالهای مثبت در این حالتها عضو یالهای گراف Paley هستند. گراف Paley گرافی هست که تعداد رئوسش (q) یک عدد اول به شکل q=4k+1 هست. هر دو راس در این گراف درصورتی وصل هستند که تفاضل شماره اون دو راس یک عدد مربع کامل باشه به پیمانهی q. این گرافها خیلی خوشگل هستند و قیافهی متقارنی دارند. میتونید تعدادی از این گرافها رو اینجا ببینید.
اگر دوست دارید به یک حالت مسدود با انرژی U=0 برسید:
به یالهایی از شبکه که عضو گراف Paley هستند «+» نسبت دهید.به سایر یالها (یالهایی که عضو شبکه (گراف کامل) هستند ولی عضو گراف Paley نیستند) «-» نسبت دهید.
یک راس جدید به شبکه اضافه کنید (وسط شبکه!). هم اکنون شبکه شما q+1 راس دارد.
راس جدید را به q راس قبلی وصل کنید و به یالهای بین این راس و سایر رئوس «-» نسبت دهید.
با این روش شما میتونید یک حالت مسدود با انرژی صفر بسازید که q+1 راس داره.
یادمه زمانی بچههایی که میخواستند برند رشتهی هنر (دوم دبیرستان زمان ما، نظام یکمی قدیم!) معمولا از طرف خانواده نهی میشدند، چون که رشته ریاضی-فیزیک و علوم تجربی گزینههای نزدیکتری هستند برای «یه چیزی شدن» تا هنر. خونوادهها و مدارس کاملا مزدورانه سعی میکردند دانشآموز بیچاره رو متقاعد کنند که وارد رشتههای ریاضی و تجربی بشه چون که آینده بهتری در انتظارش خواهد بود! توجیه اکثر خونوادهها هم این بود: «درسته که به موسیقی علاقهداری ولی برای اینکه بتونی کار گیر بیاری بهتره بری درس مهندسی بخونی (مثلا!) و اینکه تو میتونی در کنار ریاضی و فیزیک خوندن (توی مدرسه و بعد دانشگاه) ، موسیقی هم یاد بگیری ولی نمیتونی بری رشتهی هنر و بعد در کنارش ریاضی یا فیزیک یاد بگیری که!» مسئله این بود که انگار با رفتن به موسسهای که موسیقی تدریس میکرد، یادگیری موسیقی امکانپذیر بود در حالی که خارج از محیط مدرسه و دانشگاه یادگیری ریاضی و فیزیک خیر. به نظر من این توجیهها یکی از بدترین انتقامهایی بود که نظام آموزشی بیمار ما از علم گرفت. امیدوارم این طرز تفکر امروز از بین رفته باشه چون که امروز واقعا میشه دانشگاه نرفت ولی ریاضی و فیزیک یادگرفت!
توی این پست قصد دارم نشون بدم که تمام دروسی که یک دانشجوی کارشناسی فیزیک میگذرونه رو بدون رفتن به دانشگاه میشه گذروند، حتی با کیفیت بالاتر! امروز با وجودآموزش آنلایناین امکان هست که شما توی خونتون، زیر کولر و با بیژامه بشیند و مکانیک کوانتومی یا الکترومغناطیس یادبگیرید، اون هم از بهترین اساتید بهترین دانشگاههای دنیا!
دانشگاههای معتبر جهان که کلاسهای درس خود را رایگان از طریق وب منتشر میکنند.
دروس دانشجوهای فیزیک به سه دستهی: ۱) دروس پایه ۲) دروس تخصصی ۳) دروس انتخابی تقسیم میشند که من سعی میکنم تا اونجایی که یادم هست لینک کورس(دوره)هایی که مرتبط با هر درس هست رو بذارم.
در ضمن، ممکنه من یکسری از درسها و کورسها رو از قلم انداخته باشم. شما به راحتی میتونید با جستجو(سرچ) هر چیزی رو که بخواید پیدا کنید. راستی ;کورسهای آموزشی موسسه پریمیتر رو از دست ندید! همینطور به لینکهای پیشنهادی سر بزنید.
سوالی که ممکنه براتون مطرح بشه اینه که: پس واقعا دانشگاه رفتن وقت آدم رو تلف میکنه؟ یا مثلا نریم دانشگاه دیگه؟ یا دانشگاه رفتنمون اشتباه بود؟
جواب این سوال منفیه! دانشگاه فقط محل ارائهی یک سری درس نیست! دانشگاهها پایه و اساس پژوهش هستند و نه صرفا محل برگزاری یکسری کلاس! دانشگاه محل اجتماعات علمی و تحقیقاتی هست و به هیچ وجه نباید در دانشگاه رو بست! در ضمن شما توی دانشگاه با انسانهای متفاوتی تعامل میکنید، انسانهایی که در بین وفور و پراکندگی منابع و راههای موجود برای رسیدن به سطح خوبی از علم میتونند شما رو راهنمایی و هدایت کنند. در حقیقت اینکه شما فقط انسان باهوشی باشید و یا اینکه مطالعهی زیادی داشته باشید، کافی نیست. شاید در مقاطع اولیه تحصیل این قضیه زیاد خودش رو نشون نده ولی زمانی که پای پژوهش به میون بیاد اون موقع هدایت علمی مناسب خودش رو به خوبی نشون میده. مهمترین تفاوت دانشگاهها و موسسات علمی تراز اول جهان با بقیه جاها در نوع کلاسهاشون و ساختمونهاشون نیست، بلکه وجود افراد به معنی واقعی متخصص هست که وظیفهی هدایت علمی رو درست ایفا میکنند. این بحث خیلی مفصلیه، امیدوارم بشه طی چندتا پادکست توی رادیوفیزیکبهش پرداخت.
در پایان، از همهی دوستانم توی سایر رشتهها درخواست میکنم که این لیست رو در مورد رشتهی خودشون منتشر کنند.
لطفا قبل از شروع این پست، پست «ترجمه بهترین آثار کوتاه فاینمن!» را بخوانید. ترجمه این مقاله کاری از گروه ترجمه دانشجویان فیزیک امیرکبیر است. شما میتواند این مقاله به صورت فایل pdf دانلود کنید.
ویدیوی لذت درک امور:
زیبایی یک گل
زیبایی یک گل (برای بزرگنمایی کلیک کنید)
من دوست هنرمندی دارم، او بعضی اوقات دیدگاه هایی دارد که من زیاد با آن ها موافق نیستم. مثلا گلی را به دستش می گیرد و می گوید: « ببین چقدر زیباست » و من هم با او موافقم، در ادامه می گوید « می بینی، من به عنوان یک هنرمند زیبایی گل را می بینم. اما تو به عنوان یک دانشمند، آن را تکه تکه می کنی و از بین می بری». به نظر من او یک جور دیوانه است. اولا من معتقدم آن زیبایی را که او می گوید همه می توانند ببینند، از جمله من، شاید زیبایی شناسی من به اندازه او قوی نباشد ولی برای من هم زیبایی گل تحسین برانگیز است. و این در حالی است که من در مورد گل چیزهای بیشتری میبینم. من سلول ها و واکنش ها پیچیدهای که درون آنها اتفاق می افتد را می توانم تصور کنم و آنها هم به نوبه خود دارای زیبایی هستند. منظورم اینست که زیبایی فقط در ابعاد سانتی متری نیست و در ابعاد کوچکتر و در ساختارهای داخلی نیز زیبایی وجود دارد. همچنین در فرآیندهای داخلی این گل رنگ ها طوری آمیخته شده اند که حشرات را برای گرده افشانی جذب کنند. و این فرآیند جالبست چون این را نشان می دهد که حشره ها هم رنگ را می بینند. یک سوال پیش می آید: آیا این حس زیبایی شناسی در ساختارهای ریزتر هم وجود دارد؟ چرا زیباست؟ تمامی این سوالات گوناگون و جالب نشان می دهد که دانسته های علمی به هیجان، رموز و هیبت یک گل اضافه می کند؛ نمی توانم بفهمم که چگونه کاهش می دهد.
اجتناب از دروس علوم انسانی
من همواره آدمی تک بعدی بوده ام و فقط در جهت علمی تلاش می نمودم و در زمان جوانی تمام تمرکزم بر روی این یک بعد بود. وقت و حوصله زیادی برای یاد گرفتن چیزی که علوم انسانی نامیده می شود نداشتم، اگرچه در دانشگاه، دانشجو ناچار است تعدادی دروس علوم انسانی اخذ کند. من تمام تلاشم را می کردم که از یاد گرفتن هر چیز در این مورد و کار کردن روی آن دوری نمایم. بعد از آن، وقتی سنم بیشتر شد قدری سخت گیری من در این زمینه کاهش یافت و یاد گرفتم که در این مورد مطالعه کنم. اما راستش هنوز آدمی بیشتر یک بعدی هستم و در موارد دیگری غیر از این یک بعد (بعد علمی) چیز زیادی نمی دانم. هوش من محدود است و از آن در یک جهت خاص استفاده می کنم.
تیراناسوروس در پنجره
وقتی پسر بچه بودم در خانه مان یک دایره المعارف بریتانیکا داشتیم و پدرم عادت داشت مرا روی پایش بنشاند و برایم از دایره المعارف بخواند. ما با هم درباره دایناسورها حرف می زدیم . شاید هم در مورد برونتوزوروس یا تیراناسوروس رِکس صحبت می کردیم، به عنوان مثال چنین می خواند: « این موجود 25 فوت قد دارد و عرض سر آن 6 فوت است » و همین جا صحبتش را قطع می کرد و می گفت «ببینم مفهوم آن چیست. یعنی اگر آن در همین حیاط روبروی ما می ایستاد، قدش آن قدر بلند بود که می توانست سرش را از پنجره داخل کند. اما نه کاملا، چون سر او کمی عریض تر از پنجره بود و پنجره را می شکست».
هر چیزی را که با هم می خواندیم، به بهترین نحوی که بتواند به ذهنیت ما نزدیک تر باشد تصور می کردیم. این کار باعث شد یاد بگیرم که عمل کنم و هر چیزی را که می خوانم سعی کنم مفهوم و معنای آن را بفهمم. (با خنده) من عادت داشتم دایره المعارف را وقتی یک پسر بچه بودم بخوانم و آن را تعبیر کنم، خیلی هیجان انگیز و جالب بود که تصور گردد حیواناتی با این ابعاد وجود دارند. من از این که یکی از آنها از پنجره داخل شود نمی ترسیدم اما فکر کردم خیلی خیلی جالب بود که همه آنها منقرض شدند و در آن زمان هیچ کس نمی دانست چرا.
ما در نیویورک زندگی می کردیم، و معمولا تابستان ها به کوه های کَتسکیل می رفتیم. کوه های کتسکیل جایی بود که مردم در تابستان به آن جا می رفتند. آنجا مردم زیادی بودند لیکن پدرها در طول هفته برای کار کردن به نیویورك باز می گشتند و فقط آخر هفته ها دوباره به کوه می رفتند. وقتی پدرم از نیویورك می آمد مرا به میان جنگل می برد و برای من از چیزهای مختلف و جالبی که لابهلای جنگل اتفاق می افتاد صحبت می کرد – که بعد برایتان تعریف می کنم – اما مادرهای دیگر که این رفتار پدرم را می دیدند قطعا فکر می کردند که این کار خیلی خوبست و پدرهای دیگر هم باید پسرهایشان را برای قدم زندن به جنگل ببرند. آنها روی این موضوع کار کردند ولی در ابتدا به نتیجهای نرسیدند. برای همین از پدر من خواستند که همهی بچه ها را با خودش به جنگل ببرد، اما او قبول نکرد زیرا او با من یک ارتباط بخصوصی داشت و ما با هم یک امر شخصی در بین داشتیم. بالاخره بقیه پدرها مجبور شدند بچه هایشان را از هفته آینده برای قدم زدن به جنگل ببرند. دوشنبهی بعد وقتی همهی [پدرها] به سر کار برگشتند، بچه ها داشتند در مزرعه بازی می کردند که یکی از بچه ها به من گفت این پرنده را ببین، آیا می دانی از چه نوعی است و من گفتم: « کوچکترین نظری راجع به نوع این پرنده ندارم ». او ادامه داد «یک پرنده آوازه خوان گلو قهوهای است. پدرت چیزی راجع به اون بهت نگفته؟ ». ولی اینطور نبود: پدرم به من مطالبی یاد داده بود. او در حالی که به پرنده نگاه می کرد گفت: « می دونی که این چه پرندهای است؟ یک پرندهی آواز خوان گلو قهوهایست؛ اما به پرتقالی به آن … می گویند، به ایتالیایی …، به چینی …، به ژاپنی …، و غیره. و حالا تو در هر زبانی که بخواهی اسم آن پرنده را می دانی اما مطلقا هیچ چیز در مورد این پرنده نمی دانی. تو فقط فهمیدی که آدم ها در مکانهای مختلف آن را چه نامیده اند». و سپس از من خواست که با هم به تماشای پرنده ها بنشینیم.
او به من یاد داده بود که به هر چیزی توجه کنم. یک روز وقتی که داشتم با قطار اسباب بازیم بازی می کردم، (از همان قطارهایی که بچه ها آن را روی ریل می کشند.) یادم می آید که داخل واگن یک توپ بود، وقتی که واگن را می کشیدم چیزی در مورد حرکت توپ فهمیدم، به پیش پدرم رفتم و به او گفتم: « نگاه کن بابا من یه چیزی رو فهمیدم. وقتی که واگنرا می کشم توپ به عقب واگن حرکت می کند و وقتی ناگهان آن را متوقف می کنم توپ به سمت جلو حرکت می کند.» از او پرسیدم که چرا این اتفاق می افتد او پاسخ داد که دلیلش را هیچکس نمی داند. و ادامه داد: « قانون کلی اینه که چیزهایی که در حال حرکت اند سعی می کنند به حرکت خودشان ادامه بدهند و چیزهایی که ساکن اند تمایل دارند که ساکن باقی بمانند مگر اینکه شما آنها را هل بدهید که این تمایل اینرسی نام دارد و هیچکس نمی داند که چرا وجود دارد ». حالا من به درك عمیقی رسیده بودم چون پدرم فقط یک اسم به من یاد نداد، او تفاوت بین دانستن اسم یک چیز و خود آن را می دانست. چیزی که من هم خیلی زود یاد گرفتم. پدرم ادامه داد: « اگر دقیق نگاه کنی می فهمی که این توپ نیست که به عقب واگن می رود بلکه این عقب واگن است که تو داری بر خلاف حرکت توپ می کشی. یعنی توپ می ایستد یا حتی به خاطر اصطکاك به جلو حرکت می کند و به عقب نمی رود ». من به طرف واگن کوچکم دویدم و دوباره توپ را روی واگن گذاشتم و آن را از زیرش کشیدم در حالی که از کنار به آن نگاه می کردم دیدم که پدرم درست گفته است. وقتی که واگن را به جلو می کشیدم توپ اصلا به عقب نمی رفت. توپ نسبت به واگن به عقب می رفت ولی نسبت به بیننده کمی به جلو می رفت و در واقع عقب واگن بود که به آن می رسید. با این روش بود که من توسط پدرم تعلیم دیدم، با این نوع مثالها و فقط با بحث های جالب و دوست داشتنی، بدون هرگونه فشار و اجباری من مورد آموزش پدرم قرار گرفتم.
پادکست شماره ۱/۰،«فیزیک پایه – سهل ممتنع»، گفتوگوی صمیمی بینعباس کریمی و امید مومنزاده در مورد مفاهیم ابتدایی فیزیک پایه است . مفاهیمی که به وفور از آنها استفاده میکنیم و ظاهرا بسیار بدیهی به نظر میرسند؛ در صورتی که اینگونه نیست! مفاهیمی مثل جرم لختی، انرژی، فضا، بینهایت و … . همچنین در این پادکستعباس کریمیبه این پرسش پاسخ میدهد که آیا قوانین فیزیک کشف و یا اختراع شدهاند و پس از آنامید مومنزاده به این سوال در مورد ریاضیات میپردازد.
برای کمی سرگرمی بیشتر، از این به بعد شمارهی پادکستها به این صورت خواهد بود که ارقام ثابت کاهش یافته پلانک ،با افزایش دقت، شماره برنامه میشوند. در هر پادکست جدید یک رقم بامعنی به رقم قبلی اضافه خواهد شد. این شماره ۱/۰ ، شماره بعد ۱/۰۵، شماره بعد از آن ۱/۰۵۴ و …
دانلود مستقیم از سایت رادیو فیزیک (ترجیحا از گزینههای بالا استفاده کنید): دانلود
این پادکست یک برداشت کاملا آزاد از یکی از برنامههای World Science U است. آهنگ پخش شده در ابتدا و انتهای این پادکست برگفته شده از وب سایت symphonyofscience.com هستند. شما میتوانیدسایر موزیکهای پخش شده در این پادکست را از سایت jamendo.com رایگان و آزاد تهیه کنید.
با تشکر از همهی شما. امیدواریم که از شنیدن این پادکست لذت ببرید 🙂
درصورت تمایل این کتاب را دانلود کنید و عنوان مطلبی که علاقمند به ترجمه آن هستید را در قسمت نظرات بنویسید و یا به نشانی abbascarimi در gmail ایمیل کنید!