رفتن به نوشته‌ها

برچسب: Emergence

ویدیو ۲۵امین گردهمایی انجمن علمی ژرفا با موضوع سیستم‌های پیچیده

۲۵امین گردهمایی انجمن علمی ژرفا با موضوع سیستم‌های پیچیده با همکاری انجمن‌های علمی فیزیک، همبند، شناسا از دانشگاه صنعتی شریف و مرکز شبکه‌های پیچیده و علم دادهٔ اجتماعی دانشگاه شهید بهشتی در تاریخ ۲۴ام اردیبهشت ماه سال ۱۳۹۸ برگزار شد.

💰 اقتصاد و فیزیک سیستم‌های پیچیده – دکتر سامان مقیمی

🧠 مغز از پیچیده تا بغرنج – دکتر عبدالحسین عباسیان

🧬 پیچیدگی زیستی: در جستجوی تصویری واقع‌بینانه از ژنوتیپ و شایستگی – دکتر عطا کالیراد

میز گفت‌وگو درباره‌ی سیستم‌های پیچیده

حکایت «سیستم‌های پیچیده» چیست؟!

این نوشته رو به مناسبت بیست و پنجمین گردهمایی ژرفا با موضوع سیستم‌های پیچیده برای شماره ۸۱۸ روزنامه دانشگاه صنعتی شریف نوشتم.


برای دیدن نگاره با کیفیت بیشتر کلیک کنید. حق نشر متعلق به شماره ۸۱۸ روزنامه دانشگاه صنعتی شریف.

انسان به دنبال قدرت پیش‌بینی

از قرن ۱۷ میلادی ما انسان‌ها به امید پیدا کردن الگوهایی در طبیعت، با جدیت خاصی شروع به مطالعه دنیای اطرافمان به صورت کمی کردیم. رفته‌رفته عددها مهم‌تر شدند و همه هم‌ و غم‌مان تبدیل به این شد که بعد از به دست آوردن یک‌سری عدد، پیش‌بینی کنیم که عدد بعدی چیست! گاهی این پیش‌بینی در مورد مکان یک سیاره در آسمان بود بعد از چند ماه رصد یا دمای یک پیستون پر از گاز و مایع بعد از طی کردن یک فرایند ترمودینامیکی. گاهی هم آن عدد مطلوب، زاویه‌ی پرتاب یک توپ بود به لشکر دشمن! الگوهای حاکم بین اعداد همیشه موضوع هیجان‌انگیز و سودآوری برای مردم بود چرا که قدرت «پیش‌بینی» را در پی داشت.

قدرت پیش‌بینی، مزیت رقابتی علم بر فلسفه بود که از دل مدل‌سازی‌های عددمحور به دست می‌آمد. قرن ۱۹ و ۲۰ میلادی طی شد و نوبت به هزاره سوم رسید. انسان قرن ۲۱ام که به گمانش همه علوم را خوب می‌شناخت، با پرسش‌های جدیدی روبه‌رو شد. پرسش‌هایی که این بار مرز بین علوم را نشانه گرفته بودند. پرسش‌هایی از این جنس که حالا که فیزیک را به‌خوبی می‌شناسیم‌، آیا می‌توانیم یک ترکیب آلی را به خوبی توصیف کنیم یا مثلا شیوه تاشدگی یک پروتئین را با دقت خوبی پیش‌بینی کنیم؟! یا اگر متخصص زیست‌شناسی باشیم پیش‌بینی رفتار جامعه انسان‌ها در شرایط بحران اقتصادی برایمان ممکن است؟! در مورد رفتار بازار بورس چه؟ اکنون که سلول‌های عصبی را می‌شناسیم آیا کارکرد مغز را می‌توانیم توصیف کنیم؟ آیا می‌توانیم بگوییم که برای سلول‌های عصبی چه اتفاقی می‌افتد که فردی دچار بیماری‌هایی مانند صرع یا پارکینسون می‌شود؟ یا پرسش‌هایی از این قبیل که چرا هنوز مدیریت ترافیک و جلوگیری از مسدود شدن جاده‌ها برایمان دشوار است؛ مگر ما همان بشری نیستیم که به ماه سفر کرده‌ایم و با توسعه مکانیک کوانتومی بمب اتم ساخته‌ایم؟! چرا بعد از حل کردن این همه مسئله بغرنج، نمی‌توانیم زمان بحرانی برای همه‌گیری یک شایعه یا بیماری جدید در دنیا را محاسبه کنیم و برنامه دقیقی برای چگونگی واکسیناسیون مردم را تدوین کنیم؟ علی‌رغم این همه پیشرفت در علوم مختلف، چرا در حل این قبیل مسائل ناتوان مانده‌ایم؟!

چرا شناخت دنیای اتم‌ها برای شناخت دنیای شیمی کافی نیست؟! یا چرا «بیشتر، متفاوت است»؟

همه این‌ها پرسش‌هایی بود که به‌خاطر ظاهر ساده‌شان انسان قرن بیست‌ و یکمی نخست فکر می‌کرد که «علی‌الاصول» باید بشود جوابشان را دانست. بالاخره طی سه قرن گذشته، ریاضیات بسیار گسترش یافته بود و فیزیک – علم اتم‌ها و کهکشان‌ها – را به خوبی توسعه داده‌ بودیم. فیزیک هم که مادر شیمی است و شیمی مادر زیست‌شناسی و زیست‌شناسی توصیف‌کننده موجودات زنده و انسان‌ هم یک موجود زنده است. رفتار بازار بورس یا اقتصاد جهانی یا همه‌گیری یک بیماری هم بر اساس عملکرد همین موجودات زنده است. خب پس لابد با مقداری محاسبه می‌توان به این پرسش‌ها پاسخ داد. با این وجود، رفته رفته متوجه شدیم که فهم ما از سیستم‌هایی مانند مغز انسان یا اقتصاد جهانی دچار نواقص جدی است و پیش‌بینی و کنترل رفتار آن‌ها برای ما بسیار دشوار است. گویا این سیستم‌ها دارای پیچیدگی عجیبی هستند. به عبارتی، این سیستم‌ها، پیچیده هستند از آن‌جا که ما با آن‌که اجزایشان را می‌شناسیم و رفتار تک‌تک ‌آن‌ها را به خوبی می‌توانیم پیش‌بینی کنیم، ولی «رفتار جمعی» آن‌ها تحت یک ساختار جدید را نمی‌توانیم به خوبی توصیف کنیم! می‌دانیم که عملکرد سلول‌های عصبی سازنده مغز چگونه‌ است، اما عملکرد مغز را نمی‌توانیم توصیف کنیم. مثلا نمی‌دانیم تکلیف حافظه چیست! می‌دانیم که در سلول‌های عصبی حافظه وجود ندارد ولی با این حال، در مجموعه‌ای از همین سلول‌ها وجود دارد! همین مجموعه کارهای عجیب و غریب‌تری هم می‌کند. مثلا سلول‌های عصبی مغز به طور جمعی از خود، آگاهی نشان می‌دهند. در حالی که آگاهی در هیچ کجای سلول عصبی بیچاره وجود ندارد. تلاش برای حل این قبیل تناقض‌ها که در مقیاس ریز اگر همه چیز آشنا باشد، لزومی ندارد در مقیاس درشت‌تر رفتار سیستم را بتوانیم توصیف کنیم آغازگر انگاره‌ای جدید در علم بود؛ انگاره پیچیدگی.

پدیدارگی (Emergence) و لزوم تحول انگاره در علم

اگر به دنبال کتاب مناسبی برای یادگیری سیستم‌های پیچیده هستید، این کتاب پیشنهاد جدی ما است 🙂

بشر قرن ۲۱، به دنبال شناخت سیستم‌های پیچیده است. سیستم‌هایی که از تعداد زیادی اجزا تشکیل شده‌اند و نوعی نظم خودبه‌خودی بر آن‌ها حاکم است. در این سیستم‌ها در مقیاس ریز، اجزایشان برهم‌کنش‌های موضعی دارند ولی در مقیاس درشت، رفتارهای «پدیداره» از خود نشان می‌دهند که شبیه به رفتار اجزای آن در مقیاس ریز نیست. راستش، ما ناچار به درک سیستم‌های پیچیده هستیم. برای ما که همیشه مجذوب قدرت پیش‌بینی علم شده‌ایم مهم است که بدانیم اگر آنفولانزا در آفریقا شایع شد با چه احتمالی یک آلمانی در چه روزی بیمار می‌شود و با چه احتمالی یک ایرانی در چند روز بعد. برای ما مهم است، چرا که شبکه واگیری بیماری از لحاظ ریاضیاتی موجود ساده‌ای نیست و مطالعه یک فرایند دینامیکی روی چنین شبکه‌ای بدون کمک گرفتن از کامپیوترها غیرممکن است. برای ما حل هم‌زمان تعداد زیادی معادله دیفرانسیل غیرخطی که به‌ همدیگر وابسته هستند با قلم و کاغذ اصلا راحت نیست. حداقل تجربه سال اول و دوم زندگی دانشگاهیمان این را به ما گوش‌زد می‌کند!

سیستم‌های پیچیده مهم هستند، چرا که انگاره پیچیدگی عینک جدیدی برای مطالعه طبیعت به ما می‌دهد. انگاره پیچیدگی به ما می‌گوید مستقل از این‌که مسئله‌ای تا پیش از این در کدام حوزه‌ خاص از علم بررسی می‌شده، باید با نگاهی از پایین‌ به بالا به دنبال حل آن مسئله باشیم و همزمان از همه امکانات فنی و تحلیلیمان برای حل آن استفاده کنیم. برای مثال، مسئله مغز، یک مسئله در فیزیک یا شیمی یا زیست‌شناسی یا علوم کامپیوتر نیست. در مکتب/نگاه/انگاره پیچیدگی، مسئله مغز سوالی است که متخصصان حوزه‌های مختلف با ابزارهایی که دارند سعی می‌کنند در یک محیط مشارکتی راهی برای حل آن پیدا کنند.

انگاره پیچیدگی به ما می‌گوید با تبدیل کردن یک سیستم به اجزا سازنده آن و شناخت اجزا نمی‌توانیم به درک درستی از آن سیستم برسیم. مکتب پیچیدگی در برابر مکتب تقلیل‌گرایی (reductionism) قرار دارد.

(این نوشته از دکتر محمد خرمی در مورد تقلیل‌گرایی را بخوانید.)


نوشته‌های مرتبط

فرکتال‌ها، مفاهیم مقیاسی و بازبهنجارش

تصمیم گرفتم تا جایی که می‌توانم، مسیر یادگیری سیستم‌های پیچیده را برای علاقمندانی که جرات یادگرفتن و شهامت حرکت کردن بیرون از مرزهای تعریف شده علوم را دارند را هموار کنم. برای شروع قصد دارم چند جلسه کلاس/سمینار در دانشگاه شهید بهشتی (تهران) برگزار کنم. ایده اصلی این جلسات لکچرهایی پیرامون مفاهیم اصلی سیستم‌های پیچیده است بی‌آن‌که وارد جزئیات ریز آن شوم. می‌خواهم طی این جلسات افراد با پیش‌زمینه‌های مختلف با ایده‌های اصلی آشنا شوند.

فیزیک نیوتون و موضوعات مربوط به حساب دیفرانسیل و انتگرال که غالب تفکر علمی سه سده گذشته را تشکیل داده‌اند بر این ایده استوار هستند که هر چه مقیاس فضایی یا زمانی یک سیستم فیزیکی را ریزتر و ریزتر کنیم، با سیستمی ساده‌تر، هموارتر و با جزئیات کمتری روبه‌رو می‌شویم. ملاحظات دقیق‌تری نشان می‌دهد که ساختار ریزمقیاس سیارات، مواد و اتم‌ها بدون جزئیات نیست. با این وجود، برای بسیاری از مسائل، چنین جزئیاتی در مقیاس‌های بزرگ‌تر نامرتبط به حساب می‌آیند. از آن‌جا که این جزئیات مهم نیستند، فرموله کردن نظریه‌ها به شیوه‌ای که اصلا جزئیاتی وجود نداشته باشد منجر به همان نتایجی می‌شود که با در نظر گرفتن توصیف دقیقی از سیستم می‌توان به آن‌ها رسید.

برف دانه کخ – یک فرکتال کاملا خودمتشابه. نگاره از ویکی‌پدیا


می‌دانیم در رویارویی با سیستم‌های پیچیده، هموار کردن پی‌در‌پی سیستم در مقیاس‌های ریزتر معمولا نقطه شروع مناسبی برای مطالعه سیستم به طور ریاضیاتی نیست. درک این موضوع، تغییر چشم‌گیری را در بنیادهای فکری ما به همراه داشته است.

در این سخنرانی ابتدا فرکتال‌ها، به عنوان موجوداتی که در مقیاس‌ ریزتر جزئیاتشان را از دست نمی‌دهند را معرفی می‌کنیم. سپس بی‌آنکه سراغ جعبه ابزار نظریه میدان‌های کوانتومی رویم، ایده بازبهنجارش را به عنوان چارچوب جامع‌تری برای مطالعه رفتار سیستم‌ها در مقیاس‌های مختلف و چگونگی ارتباط این رفتارها مطرح می‌کنیم.

ویدیو:

اسلایدها (کلیک کنید!)

منابع:

یادگیری «سیستم‌های پیچیده» رو از کجا و چه‌طور آغاز کنیم؟!

خیلی وقته که از من پرسیده میشه که اگر بخوایم یادگیری سیستم‌های پیچیده رو شروع کنیم باید چیکار کنیم؟! آیا میشه بیرون از دانشگاه این کار رو انجام داد؟ یا اگر من رشته‌م مثلا کیهان‌شناسی، آمار یا ریاضی هست برام مقدوره که یادبگیرم؟ خب جواب اینه: چرا که نه! اما اینکه یک راه خیلی خاص وجود داشته باشه، راستش وجود نداره. در حقیقت آدم‌های مختلفی به این سوال طی سال‌های گذشته جواب‌های متنوعی دادن؛ مثلا  مارک نیومن یک‌بار در مورد موضوعات مطرح و منابع موجود در Complex Systems: A Survey نوشته. با این حال سعی می‌کنم طرحی برای شروع یادگیری سیستم‌های پیچیده در ادامه ترسیم کنم. از هرگونه نظر، انتقاد یا پیشنهاد از صمیم قلب استقبال می‌کنم، به‌ویژه از طرف متخصصان. راستی  قبل‌تر نوشته‌ای با عنوان «چگونه یک‌ فیزیک‌دان نظری خوب شویم؟» از خِراردوس توفت، نوبلیست، ترجمه کرده بودم.

اخیرا کتابی منتشر شده به اسم «مقدمه‌ای بر نظریه سیستم‌های پیچیده» که کتاب بسیار خوبی برای شروع سیستم‌های پیچیده به‌طور حرفه‌ایه!

کتاب مقدمه‌ای بر نظریه سیستم‌های پیچیده

پیش‌فرض این نوشته اینه که خواننده به حساب دیفرانسیل و انتگرال، معادلات دیفرانسیل و فیزیک پایه مسلط هست و علاقه شدیدی به ورود به حوزه بین‌رشته‌ای داره! اصلی‌ترین پیش‌نیاز برای یادگیری سیستم‌های پیچیده شهامت و حوصله کافی برای ورود به دنیایی تازه و هیجان‌انگیزه! اگر به دنبال کتابی هستین که حس کلی از «سیستم‌های پیچیده» به شما بده نگاه کنید به کتاب «سیری در نظریه پیچیدگی» نوشته ملانی میچل با ترجمه رضا امیر رحیمی.  همین‌طور کورس مقدماتی در Complexity Explorer وجود داره برای این که یک آشنایی کلی از سیستم‌های پیچیده پیدا کنید.

لیستی که در ادامه اومده، بسته به هر موضوع، از ابتدایی به پیشرفته مرتب شده و تقریبا سعی کردم ترتیب معنی‌داری برقرار کنم. به این معنی که شما می‌تونید به‌ترتیب موضوعات مطرح شده یادگیری اون‌ها رو شروع کنید و بسته به زمانی که دارین توی هر کدوم عمیق و عمیق‌تر بشین!

۱) جبر خطی و ماتریس‌ها

برای شروع نیاز به مفاهیم‌ و تکنیک‌های جبرخطی دارین. باید بتونید با ماتریس‌ها خوب کار کنید.

  1. کورس جبر خطی Vector and Matrix Algebra by Anthony D. Rhodes
  2. ویدیوهای Essence of linear algebra
  3. کورس و کتاب جبرخطی Gilbert Strang

این کتاب با نگاهی جدید به مکانیک کلاسیک، به موضوعات مورد نیاز برای سیستم‌های پیچیده می‌پردازد.

۲) مکانیک کلاسیک

بخش زیادی از سیستم‌های پیچیده توسط فیزیک‌دانان توسعه داده شده، پس باید با ادبیات ابتدایی فیزیک آشنا بشید!

  1. کورس مکانیک کلاسیک لنرد ساسکیند
  2. کتاب Introduction to Modern Dynamics – Chaos, Networks, Space and Time – David D. Nolte

۳) آمار، احتمال و فرایندهای تصادفی

ایده‌های اصلی آمار و احتمال رو باید بدونید. یعنی هرکسی که در دنیای امروز زندگی می‌‌کنه باید بدونه!

  1. کتاب An Introduction to Random Vibrations, Spectral & Wavelet Analysis by D. E. Newland
  2. کتاب Probability Theory: The Logic of Science by E. T. Jaynes
  3. جزوه فرایندهای تصادفی دکتر کریمی‌پور

۴) فرکتال‌ها و مفاهیم مقیاسی

  1. مقدمه‌ای بر هندسه فرکتالی: ویدیو
  2. کتاب Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies by Geoffrey West
  3. کورس Fractals and Scaling by David Feldman
  4. این ویدیو رو ببینید:

۵) فیزیک آماری و پدیده‌های بحرانی

مکانیک آماری رو خیلی خوب باید بدونید! از ایده‌های ابتدایی تا مباحث پیشرفته. مدل آیزینگ رو خیلی جدی بگیرین!

  1. کورس مکانیک آماری لنرد ساسکیند
  2. کورس و کتاب فیزیک آماری ذرات، مهران کاردر
  3. کتاب Statistical Mechanics Entropy, Order Parameters, and Complexity by James P. Sethna
  4. کورس کوتاه  Introduction to Renormalization by Simon DeDeo
  5. کتاب Lectures On Phase Transitions And The Renormalization Group by Nigel Goldenfeld
  6. کتاب David Tong: Lectures on Kinetic Theory

    کتاب دینامیک غیرخطی و آشوب استیون استروگتز به همراه ویدیوهای کلاس درسش یکی از بهترین منابع یادگیری دینامیک غیرخطی است.

۶) دینامیک غیرخطی و آشوب

  1. کورس Introduction to Dynamical Systems and Chaos by David Feldman
  2. کورس و کتاب Nonlinear Dynamics and Chaos by Steven H. Strogatz
  3. کورس Nonlinear Dynamics: Mathematical and Computational Approaches by Liz Bradley

۷) شبکه‌ها (علم شبکه)

  1. ویدیو «ظهور علم شبکه»
  2. مقاله مروری The shortest path to complex networks by S. N. Dorogovtsev and J. F. F. Mendes
  3. این ۴ ویدیو رو ببینند.
  4. کتاب علم شبکه باراباشی
  5. کتاب Networks: An Introduction by Mark Newman
  6. این ویدیو رو ببینید:

۸) روش‌ها و تکنیک‌های محاسباتی و شبیه‌سازی

  1. کورس پایتون برای همه
  2. کورس پایتون برای پژوهش
  3. کتاب Monte Carlo Simulation in Statistical Physics: An Introduction by Kurt Binder, Dieter W. Heermann
  4. کتاب Complex Network Analysis in Python by Dmitry Zinoviev
  5. کورس Introduction to Agent-Based Modeling by William Rand

۹)  نظریه اطلاعات و محاسبه

Self-contained, precise. Numerous examples and exercises make it a valuable teaching book
Builds a bridge between physics of glasses and computer science problems

  1. کورس Introduction to Computation Theory by Josh Grochow
  2. مقاله مروری A Mini-Introduction To Information Theory by Edward Witten
  3. کتاب Information, Physics, and Computation by Marc Mézard and Andrea Montanari

۱۰) نظریه بازی‌‌ها

  1. کورس Game Theory I – Static Games by Justin Grana
  2. کورس Game Theory II- Dynamic Games by Justin Grana
  3. کتاب Strategy: An Introduction to Game Theory by Joel Watson

۱۱) یادگیری ماشین

  1. کورس Matrix Methods in Data Analysis, Signal Processing, and Machine Learning – Gilbert Strang
  2. کورس Fundamentals of Machine Learning by Brendan Tracey and Artemy Kolchinsky
  3. مقاله مروری A high-bias, low-variance introduction to Machine Learning for physicists
  4. ویدیو Bayesian Inference by Peter Green

به طور کلی، دوره‌های آموزشی Complexity Explorer رو دنبال کنید. موسسه سن‌تافه (سانتافه!)  یک کورس مقدماتی روی پیچیدگی داره. همین‌طور پیشنهاد می‌کنم عضو کانال Complex Systems Studies در تلگرام بشین. فراموش نکنید که اینترنت پره از منابع خوب برای یادگیری ولی چیزی که کمه، همت! در آخر دیدن این ویدیو رو با زیرنویس فارسی پیشنهاد می‌کنم:

سیستم‌های پیچیده: «ماهیت و ویژگی‌»

پیچیدگی چیست؟!

حدود۳۳۰ سال پیش، نیوتون با انتشار شاهکار خود، اصول ریاضی فلسفه طبیعی، نگاهی جدید نسبت به بررسی طبیعت  را معرفی کرد. نگاه نیوتون به علم به کمک نظریه الکترومغناطیس که توسط مکسول جمع بندی و در نهایت توسط آلبرت اینشتین کامل شد، شالوده فیزیک‌کلاسیک را بنا نهاد. انقلاب بعدی علم، توسط مکانیک کوانتومی رخ‌داد. ‌آن‌چه که مکانیک کوانتومی در قرن ۲۰ میلادی نشانه گرفت، مسئله موضعیت در فیزیک کلاسیک و نگاه احتمالاتی به طبیعت بود. نگاهی که سرانجام منجر به پارادایمی جدید در علم، به عنوان فیزیک مدرن شد. با این وجود، علی‌رغم پیشرفت‌های خارق‌العاده در فیزیک و سایر علوم، کماکان در توجیه بسیاری از پدیده‌ها ناتوان مانده‌ایم. پدیده‌هایی که همیشه اطرافمان حاضر بوده‌اند ولی هیچ‌موقع قادر به توجیه رفتار آن‌ها نبوده‌ایم. بنابراین، می‌توان به این فکر کرد که شاید در نگاه ما به طبیعت و مسائل علمی، نقصی وجود داشته باشد. به‌ دیگر سخن، بعید نیست که مجددا نیاز به بازنگری در نگاهمان به طبیعت (تغییر پارادایم) داشته باشیم؛ عده‌ی زیادی معتقدند آن‌چه که در قرن ۲۱ام نیاز است، نگاهی جدید به مبانی علم است؛ نگاه پیچیدگی!

سردمداران فیزیک مدرن – پنجمین کنفرانس سُلوی (۱۹۲۷).

گاهی گفته می‌شود که ایده پیچیدگی، بخشی از چهارچوب اتحاد بخشی برای علم و انقلابی در فهم ما از سیستم‌هایی مانند مغز انسان یا اقتصاد جهانی است که رفتار آن‌ها به‌سختی قابل پیش‌بینی و کنترل است. به همین خاطر، سوالی مطرح می‌شود؛ آیا چیزی به عنوان «علم پیچیدگی» وجود دارد یا اینکه پیچیدگی متناظر با هر شاخه‌ای از علم، دارای شیوه خاص خود است و مردم در رشته‌های مختلف مشغول سر و کله زدن با سیستم‌های پیچیده زمینه کاری خود هستند؟! به عبارت دیگر، آیا یک پدیده طبیعی مجرد به اسم پیچیدگی، به عنوان بخشی از یک نظریه خاص علمی در سیستم‌های متنوع فیزیکی (شامل موجودات زنده)  وجود دارد یا اینکه ممکن است سیستم‌های پیچده گوناگونی بدون هیچ وجه مشترک وجود داشته باشند؟! بنابراین، مهم‌ترین سوالی که در زمینه پیچیدگی می‌توانیم بپرسیم این است که، به‌ راستی پیچیدگی چیست؟ و در صورت وجود پاسخ مناسب به این پرسش، به دنبال این باشیم که آیا برای تمام علوم یک نوع پیچیدگی وجود دارد یا اینکه پیچیدگی وابسته به حوزه مورد مطالعه است!

در مورد تعریف پیچیدگی، هنوز اتفاق نظری بین متخصصان یک رشته خاص، مانند فیزیک، وجود ندارد، چه برسد به تعاریفی که در رشته‌های متنوع مطرح می‌شود. این تعاریف در ادامه نقد و بررسی می‌شوند. با این وجود، مشترکات زیادی در بین تعاریف موجود وجود دارد که برای شروع بحث، مرور آن‌ها خالی از لطف نیست:

  • برای ما، پیچیدگی به معنای وجود ساختار به همراه تغییرات است. (۱)
  • از یک جهت، سیستم‌پیچیده، سیستمی است که تحول آن شدیدا به شرایط اولیه و یا اختلال‌های کوچک حساس است. سیستمی شامل تعداد زیادی قسمتِ مستقلِ درحالِ برهمکنش با یکدیگر که می‌تواند مسیرهای مختلفی برای تحولش را بپیماید. توصیف تحلیلی چنین سیستمی قاعتدا نیاز به معادلات دیفرانسیل غیرخطی دارد. از جهت دیگر، می‌توانیم نگاهی غیررسمی داشته باشیم، به این معنا که اگر بخواهیم قضاوتی داشته باشیم، سیستم «بغرنج (complicated) » است و قابلیت اینکه دقیقا به طور تحلیلی یا نوع دیگری توصیف شود  وجود نداشته باشد.(۲)
  • به طور کلی، صفت «پیچیده»، سیستم و یا مولفه‌ای را توصیف می‌کند که فهم یا تغییر طراحی و/یا عملکرد آن دشوار باشد. پیچیدگی توسط عواملی چون تعداد مولفه‌های سازنده و روابط غیربدیهی بین‌ آن‌ها، تعداد و روابط غیربدیهی شاخه‌های شرطی، میزان تودرتو بودن و نوع ساختمان داده است. (۳)
  • نظریه پیچیدگی بیان می‌کند که جمعیت زیادی از اجزا، می‌توانند به سمت توده‌ها خودسازماندهی کنند و منجر به ایجاد الگو، ذخیره اطلاعات و مشارکت در تصمیم‌گیری جمعی شوند. (۴)
  • پیچیدگی در الگوهای طبیعی نمایانگر دو مشخصه کلیدی است؛ الگوهای طبیعی حاصل از پردازش‌های غیرخطی، آن‌هایی که ویژگی‌های محیطی که در آن عمل می‌کنند یا شدیدا جفت‌شده‌اند  را اصلاح می‌کنند و الگوهای طبیعی که در سیستم‌هایی شکل می‌گیرند که یا باز هستند یا توسط تبادل انرژی، تکانه، ماده یا اطلاعات توسط مرزها از تعادل خارج شده‌اند. (۵)
  • یک سیستم پیچیده، دقیقا سیستمی است که برهم‌کنش‌های چندگانه‌ای بین عناصر متفاوت آن وجود دارد. (۶)
  • سیستم‌های پیچیده، سیستم‌هایی با تعداد اعضای بالایی هستند که نسبت به الگوهایی که اعضای آن می‌سازند، سازگار می‌شوند یا واکنش نشان می‌دهند. (۷)
  • در سال‌های اخیر، جامعه علمی، عبارت کلیدی «سیستم‌ پیچیده‌»  را برای توصیف پدیده‌ها، ساختار، تجمع‌ها، موجودات زنده و مسائلی که چنین موضوع مشترکی دارند را مطرح کرده است: ۱) آن‌ها ذاتا بغرنج و تودرتو هستند. ۲) آن‌ها به ندرت کاملا تعینی هستند. ۳) مدل‌های ریاضی این گونه سیستم‌ها معمولا پیچیده و شامل رفتار غیرخطی، بدوضع (ill-posed) یا آشوبناک هستند. ۴) این سیستم‌ها متمایل به بروز رفتارهای غیرمنتظره (رفتارهاری ظهوریافته) هستند. (۸)
  • پیچیدگی زمانی آغاز می‌شود که علیت نقض می‌شود! (۹)

برای آشنایی بیشتر به این پروژه سر بزنید!

در مورد تعاریف فوق ابهاماتی وجود دارد؛ در (۱) باید ساختار و تغییرات را به درستی و دقت معنا کنیم. در (۲) باید به دنبال تلفیق سیستم‌های پیچده و مفاهیمی چون غیرخطی، آشوب‌ناک و بس‌ذره‌ای بودن باشیم و به درستی مشخص کنیم که آیا این‌ ویژگی‌ها شرط لازم / کافی برای یک سیستم پیچیده هستند یا نه. (۳) و (۴) مفاهیم محاسباتی و موضوعاتی از علم کامپیوتر را مطرح می‌کند که به خودی‌خود مسائل چالش‌برانگیزی هستند! (۵) ایده مرکزی غیرخطی بودن را مطرح می‌کند؛ در ادامه می‌بینیم با این که تعداد زیادی از سیستم‌های پیچیده از ویژگی غیرخطی بودن تبعیت می‌کنند، با این وجود غیرخطی بودن نه شرط لازم و نه شرط کافی برای پیچیدگی است. در مورد (۶) و (۷) نیز باید تاکید کنیم که بس‌ذره‌ای بودن و شامل اعضا/عناصر/مولفه/افراد زیادی بودن نیز شرط کافی برای پیچیدگی نیست.  در ادامه خواهیم دید، تعریف (۸) که ایده‌ی پدیدارگی (ظهوریافتگی یا برآمدگی: Emergence) را مطرح می‌کند می‌تواند مفهومی بسیار گیج‌کننده باشد برای اینکه به کمک آن بتوانیم سیستم‌های پیچیده را تمیز و تشخیص دهیم. در مورد تعریف (۹) باید بحث زیادی کنیم چرا که افراد زیادی در برابر نقص علیت ناراحت خواهند شد! به همین دلیل است که گاهی درک سیستم‌های پیچیده برای مردم دشوار است. بنابراین با توجه به ابهامات تعاریف افراد مختلف در حوزه‌های گوناگون علم، بهتر از است که مفاهیم وابسته به پیچیدگی را بررسی کنیم.