رفتن به نوشته‌ها

برچسب: ترویج علم

ماجرای کشف غول‌های یخیِ منظومۀ شمسی

آسمان شب همیشه موردِتوجه بشر بوده است و ازجملۀ اولین مواردی که انسان‌ها با رصد مداوم آسمان دریافتند وجود اجرامی در آسمان بود که در میان ستاره‌های بی‌شمارِ ثابت حرکت می‌کردند. این موضوع در میان نوشته‌های خطوط میخیِ نگارش‌شده توسط مردم تمدن میان‌رودان بر روی قدیمی‌ترین لوح‌های گلیِ کشف‌شده کاملاً نمایان است. به عقیدۀ میان‌رودانی‌های باستانی، در آسمان هفت سیاره حضور داشتند که به آن‌ها باهم «بیبو» به‌معنای لغوی «گوسفند سرگردان» گفته می‌شد: ماه، خورشید و پنج سیارۀ عُطارِد، زهره، مریخ، مشتری و زحل که همگی با چشم غیرمسلّح قابل‌رؤیت هستند. اما حدود پنج‌هزار سال طول کشید تا سیارۀ بعدی، یعنی اورانوس کشف شود. همچنین با فاصلۀ زمانی کوتاهی، از وجود نپتون پرده‌برداری شد تا درنتیجه، دو سیارۀ دیگر به شمار سیارات باستانی اضافه شود.

در این نوشته، به‌ بهانهٔ سالروز کشف سیارهٔ نپتون در ۲۳ سپتامبر۱۸۴۶، به ماجرای کشف جالب دو سیارۀ اورانوس و نپتون می‌پردازیم که امروزه آن‌ها را با عنوان غول‌های یخیِ منظومۀ شمسی می‌شناسیم.

اورانوس، سیاره‌ای که هیچ‌گاه به چشم نیامده بود

اورانوس، هفتمین سیارۀ منظومۀ شمسی، در آسمان شب ما با قدر ۵/۳۸ تا ۶/۰۳ ظاهر می‌شود و این یعنی این سیاره را در یک آسمان تاریک، حتی با چشم غیرمسلّح نیز — هرچند کمی نیاز به تیزبینی دارد — می‌توان دید. در واقع در تمام طول هزاران سال تمدن بشری، سیارۀ اورانوس در مقابل دیدگانمان بود، ولی هیچ‌گاه نتوانسته بودیم آن را کشف کنیم؛ تنها حدود ۲۵۰ سال است که اورانوس را رسماً به‌عنوان یکی از سیارات منظومۀ شمسی می‌شناسیم.

شاید مهم‌ترین دلیلِ این تأخیر در کشف اورانوس، جابه‌جایی بسیار کُند آن در پس‌زمینۀ ستارگان باشد. از آنجایی که فاصلۀ متوسط اورانوس تا خورشید حدود ۲۰ واحد نجومی است و حدود ۸۴ سال طول می‌کشد تا یک دور به‌دور خورشید بگردد، مقدار جابه‌جایی آن در پهنۀ آسمان بسیار ناچیز است (از مرتبۀ چند ثانیۀ قوسی در هر شب). همین موضوع باعث شده، علی‌رغم رصدهایی که قبل از کشف اورانوس از این سیاره ثبت شده است، ماهیت آن پنهان باقی بماند؛ کمااینکه در کاتالوگ‌های ستارگانی که توسط «جان فلمستید» در ۱۶۹۰ میلادی یا حتی توسط «ابرخُس» در زمان یونان باستان تهیه شده، همیشه به‌عنوان یکی از ستارگان (ثوابت) گزارش شده بود. اما زمان گذشت تا آنکه قرعۀ فال به‌نام «ویلیام هرشل» زده شد.

در این دو تصویر می‌توان حرکت سیارۀ اورانوس را در مقابل ستارگان صورت فلکی حمل مشاهده کرد. تصویر بالا در 22 نوامبر و تصویر پایین در 17 دسامبر 2022 گرفته شده است.

جناب هرشل اولین بار در ۱۳ مارس ۱۷۸۱ میلادی با کمک یک تلسکوپ در حیاط خانه‌اش اورانوس را رصد کرد. ابتدا تصور کرد چیزی که دیده، یک دنباله‌دار است؛ چون برخلاف ستارگان که با تغییر بزرگ‌نماییِ تلسکوپ اندازۀ ظاهری‌شان تغییری نمی‌کند، این جرم آسمانی اندازه‌اش تغییر می‌کرد. اما رفته‌رفته، با رصدهای بیشتر توسط منجمان دیگر، نتایج جالبی به‌دست آمد؛ مثلاً با محاسبۀ مدار آن، مشخص شد برخلاف دنباله‌دارها که در مدارهای بسیار کشیده به‌دور خورشید می‌گردند، مدار جرم جدید ورای مدار سیارۀ زحل و تقریباً به‌شکل دایره است. یا اینکه مثلاً هیچ ردّی از یک دنباله‌ در اطراف آن رصد نشد. این شواهد منجر به این شد که هرشل در سال ۱۷۸۳ میلادی رسماً اعلام کند ستاره‌ای که دو سال قبل دیده بود، درواقع یکی از سیارات اصلی منظومۀ شمسی است.

این کشف باعث شد تا جورج سوم، پادشاه وقتِ بریتانیا، حقوقی به‌صورت سالیانه به‌عنوان پاداش برای ویلیام هرشل در نظر بگیرد. هرشل نیز پیشنهاد داد نام سیارۀ جدید را «ستارۀ جورج» بگذارند؛ با این استدلال که اگر سیارات قبلی همه در زمان باستان کشف شده و نام اساطیر رومیان و یونیان باستان را بر آن‌ها گذاشته‌اند، پس این سیاره را نیز به‌نام پادشاه جورج بگذاریم تا آیندگان بدانند این سیاره در چه زمانی کشف شده است! البته نام‌های دیگری نیز ازجمله «نپتون» و حتی «هرشل» پیشنهاد شد؛ اما همان‌طور که مشخص است، این سیاره را امروزه به‌نام «اورانوس» می‌شناسیم. این نامی است که «یوهان بودی»، منجم آلمانی، آن را برای اولین‌بار در سال ۱۷۸۲ پیشنهاد داد و بعدها همه‌گیر شد.

سیاره‌ٔ اورانوس و حلقه‌هایش از دید تلسکوپ فضایی جیمز‌وِب.

غولی غول دیگر را صدا می‌زند

کشف اورانوس به‌عنوان یکی از بزرگ‌ترین دستاوردهای علمی قرن ۱۸ میلادی، در کانون توجه جامعۀ علمی قرار گرفت و در سال‌های بعد، رصدهای مختلفی برای مطالعۀ بیشتر آن انجام شد. «پیِر سیمون لاپلاس» — حل معادلاتی که امروزه به‌عنوان معادلات لاپلاس می‌شناسیم، ازجملۀ کارهای علمی ایشان است — در کتاب مکانیک سماوی خود معادلات ریاضیاتیِ مربوط به اختلالات گرانشی دوطرفه‌ای که سیارات به یکدیگر وارد می‌کنند را توسعه داده بود. بر همین اساس، می‌توان با استفاده از محاسبات عددی، جداولی از موقعیت سیارات در آسمان تنظیم کرد. لاپلاس وظیفۀ استخراج این جداول را که کار کمرشکنی هم بود، به چند نفر از همکارانش سپرد؛ ازجمله یکی از دانشجویان لاپلاس به‌نام «آلکسی بوار» که وظیفۀ محاسبۀ جداول موقعیت سه غول منظومۀ شمسی یعنی سیارۀ مشتری، زحل و اورانوس را بر‌ عهده گرفت.

مسئله درمورد مشتری و زحل تقریباً سرراست بود، اما درمورد سیارۀ اورانوس به نظر کار گره خورده بود؛ بوار، حتی با در نظر گرفتن اختلالات گرانشی ناشی از بقیۀ سیارات بر روی اورانوس، نمی‌توانست پارامترهای مداری‌ای که با رصدهای قبلیِ انجام‌شده مطابقت داشته باشد را برای آن پیدا کند. وقتی بوار جداول اورانوس را در سال ۱۸۲۱ منتشر کرد، در مقدمۀ آن نوشت که علت این عدم تطابق می‌تواند یا به‌دلیل دقت پایین رصدهای قبلی باشد، یا وجود یک جرمی که اثرات گرانشی آن بر روی اورانوس این اختلالات اضافی را ایجاد می‌کند.

رفته‌رفته منجمان با رصدهای بیشتر سیارۀ اورانوس، به ایدۀ وجود یک سیارۀ جدیدِ اخلالگر اقبال بیشتری نشان دادند. یکی از افرادی که به این مسئله علاقه‌مند شده بود «فردریش بسل» بزرگ — فردی که معمولاً با توابع بسل آن را می‌شناسیم — بود. او وظیفۀ جمع‌آوری و تحلیل رصدهای اورانوس را به دانشجویش فردریش فلمینگ سپرد؛ اما فلمینگ جوان‌مرگ شد. خودِ جناب بسل هم پس از تحمل یک دورۀ طولانی بیماری، در سال ۱۸۴۶ میلادی درگذشت و نتوانست در این زمینه اقدام مؤثری انجام دهد. اما درنهایت، دو دانشمند دیگر به‌نام‌های «جان آدامز» در انگلستان و «اوربن لو وریه» در فرانسه توانستند به‌طور مستقل و تقریباً هم‌زمان، پارامترهای مداری سیارۀ جدید را محاسبه و مکان آن را در آسمان پیش‌بینی کنند.

دست‌نوشته‌های جان آدامز درمورد محاسبات اختلالات مدار اورانوس.

آدامز در انگلستان توانست با استفاده از معادلات «پیتر هانسن» برای مدار سیارات، پارامترهای مداری سیارۀ اخلالگر را در اکتبر ۱۸۴۵ محاسبه کند؛ اما او در انتشار نتایجش تعلل کرد و همچنین «جیمز چلیس» که مسئول رصد این سیاره در رصدخانۀ کمبریج شده بود، با کمی سهل‌انگاری، علی‌رغم مشاهدۀ سیاره، نتوانست آن را تشخیص دهد. در عوض، لو وریه و همکارانش توانستند سیارۀ جدید یعنی «نپتون» را زودتر از تیم انگلیسی کشف کنند.

سیارۀ جدید آنجاست

در سال ۱۸۴۵ میلادی مسئلۀ پیدا کردن موقعیت سیارۀ ناشناخته به لو وریه، ریاضی‌دان فرانسوی، سپرده شد. او اولاً تمام رصدها تا آن سال، به‌خصوص نتایج رصدخانۀ پاریس و همچنین نتایج رصدخانۀ گرینویچ که به‌تازگی برایش ارسال کرده بودند را بررسی کرد. ثانیاً محاسباتی که بوار برای جداول اورانوس انجام داده بود را دوباره انجام داد و اشکالات کارش را تصحیح کرد. سپس سعی کرد با استفاده از معادلات لاپلاس مسئلۀ محاسبۀ پارامترهای مداری سیارۀ ناشناخته را کشف کند. این مسئله‌ای کاملاً جدید بود؛ چون تا پیش از آن، موقعیت سیارات با در نظر گرفتن اختلالات گرانشی از سوی سیارات دیگری که مکانشان از قبل مشخص بود تعیین می‌شد، اما در اینجا مسئله معکوس است؛ یعنی باید موقعیت یک سیاره‌ای را پیدا کنیم که در واقع هیچ چیزی جز اثر اختلالات گرانشی آن بر روی سیارۀ دیگر نمی‌دانیم. این مسئلۀ بسیار سختی است؛ چون پارامترهای مجهول زیادی وجود دارد. ضمناً در آن زمان، حتی درمورد سیارۀ اورانوس هم، به‌دلیل ناهم‌خوانی رصدها با محاسبات، پارامترهای مداری آن کاملاً مشخص نبود. بنابراین لو وریه باید درواقع این پارامترها را هم‌زمان برای اورانوس و سیارۀ جدید به دست می‌آورد؛ مسئله‌ای با ۱۲ مجهول!

معمولاً در فیزیک در هنگام مواجهۀ با چنین مسائلی سعی می‌کنیم با در نظر گرفتن فرض‌هایی معقول، مسئله را ساده‌تر کنیم. لو وریه با کمک رابطۀ تیتیوس-بوده فرض کرد که فاصلۀ سیارۀ جدید از خورشید حدود دو برابر فاصلۀ سیارۀ قبلی، یعنی اورانوس تا خورشید است. همچنین از آنجایی که مدار سه سیارۀ قبلی انحراف بسیار کمی نسبت به صفحۀ دایرة‌البروج دارند، فرض کرد که مدار سیارۀ جدید کاملاً منطبق بر صفحۀ دایرة‌البروج است (اصطلاحاً میل مداری آن صفر است). این دو فرض را برای سیارۀ اورانوس هم در نظر گرفت. بنابراین با در نظر گرفتن این ۴ فرض، تعداد مجهولات به ۸ عدد رسید که با احتساب جرم سیاره، تعداد کل مجهولات ۹ عدد شد.

جزئیات محاسبات لو وریه بسیار پیچیده و طولانی و از حوصلۀ بحث خارج است. یک فیزیک‌دان فرانسوی به‌نام «ژان-بتیست بیو» تلاش کرد طی سال‌های ۱۸۴۶ و ۱۸۴۷، روش‌های لو وریه را برای حل این مسئله شرح دهد. نتیجۀ کار او شش مقاله شد! او وقتی به مقالۀ سوم رسیده بود نوشت: «هرچقدر در وظیفه‌ای که متقبّل شده‌ام جلوتر می‌روم، ظاهراً سختی موضوع افزایش می‌یابد.»

لو وریه نتایج اولیۀ خود را در ۱ ژانویه ۱۸۴۶ به آکادمی علوم فرانسه ارائه کرد و ۹ ماه بعد، نتایج دقیق‌تر را طی مقاله‌ای منتشر کرد. او در این مقاله مکان سیاره را در حدود ۵ درجه‌ای سمت شرق ستارۀ دلتای صورت فلکی جَدی اعلام کرد و حتی تقریبی از اندازۀ ظاهری قرص آن و روشنایی‌اش در آسمان — احتمالاً برای ترغیب بیشتر رصدگران — ارائه داد. متأسفانه در آن زمان تلسکوپ رصدخانۀ پاریس در وضعیت مطلوبی نبود و همچنین نقشۀ دقیقی هم از آن قسمت موردِنظر آسمان در رصدخانه وجود نداشت تا بتوانند ستارگان در آسمان را با مشاهدۀ خود مقایسه کنند. بنابراین لو وریه بلافاصله شروع به نامه‌نگاری‌ با رصدخانه‌های مختلف در کشورهای دیگر کرد. او برخلاف آدامز که در انتشار نتایج محاسباتش دچار تردید بود، با قاطعیت فراوان به منجمان رصدگر اعلام کرد:

اوربن لو وریه

«به محلی که من تعیین کرده‌ام نگاه کنید تا در آنجا سیاره را ببینید.»

اوربن لو وریه

در ۱۸سپتامبر۱۸۴۶ لو وریه نامه‌‌ای به «یوهان گاله» در رصدخانۀ برلین فرستاد. این نامه پنج روز بعد، یعنی در ۲۳ سپتامبر به دست او رسید. گاله اجازه‌های لازم را از «یوهان اِنکه»، مدیر رصدخانه، دریافت و مقدمات لازم را با کمک یک دانشجوی ارشد از کوپنهاگ به‌نام «هنریش لوئیس دارست» مهیا کرد. خوشبختانه یک نقشۀ آسمان از دانشگاه برلین نیز در رصدخانه موجود بود که همۀ ستارگان تا قدر ظاهری ۱۰ را در مجدودۀ موردنظر در برداشت. این‌گونه بود که گاله دقیقاً در شب همان روزی که نامۀ لو وریه را دریافت کرد، توانست با تلسکوپ شکستیِ ۹/۵ اینچی رصدخانه، با اختلاف اندکی در حدود ۱ درجه از محل تعیین‌شده، سیارۀ نپتون را کشف کند! او این رصد را در شب بعد نیز تکرار کرد و از صحت‌و‌سقم آن مطمئن شد. روز بعد گاله و اِنکه نامه‌ای برای لو وریه نوشتند و ضمن شرح رصد سیارۀ مذکور، این کشف بزرگ را به او تبریک گفتند.

تصویر تلسکوپی که با آن سیارۀ نپتون کشف شد. امروزه این تلسکوپ در موزۀ آلمان نگهداری می‌شود.

بلافاصله بعد از اعلام کشف سیارۀ جدید، بسیاری از منجمان و دانشمندان دیگر ازجمله خودِ لو وریه آن را رصد کردند. لووریه که بسیار خوشحال از کشف انجام‌گرفته بود، در ۵ اکتبر نوشت: «این موفقیت این آرزو را در پی دارد که بعد از رصدهای سیارۀ جدید طی ۳۰-۴۰ سال آینده، امکانی فراهم شود تا با استفادۀ از آن، مدار سیارۀ بعدی — به ترتیبِ فاصلۀ از خورشید — کشف شود و همین‌طور این ماجرا ادامه پیدا کند.» البته بعدها اجرام دیگرِ دورتری مانند سیارۀ کوتولۀ پلوتو و اِریس کشف شدند، اما نه از طریق تأثیرات گرانشی‌شان بر روی مدار نپتون — این دو آن‌چنان کم‌جرم و دور هستند که عملاً هیچ اثر محسوسی بر روی مدار نپتون ندارند — بلکه از طریق پیمایش‌هایی که توسط حسگرهای تصویربرداری CCD انجام شد.

تصویری که به‌تازگی توسط تلسکوپ فضایی جیمزوِب از سیارۀ نپتون منتشر شده.
در این تصویر حلقه‌های نپتون به همراه اقمار آن دیده می‌شوند.

نحوۀ کشف دو سیارۀ اورانوس و نپتون، مانند هر ماجرای بزرگ دیگری در تاریخ علم، بسیار درس‌آموز است؛ گاهی پیشرفت در ساخت یک ابزار، کشف اتفاقیِ سیاره‌ای را رقم می‌زند‌ و گاهی قدرت پیش‌گویی مدل ریاضیاتی از وجود یک سیاره پرده‌برداری می‌کند؛ اما در همۀ این دستاوردهای علمی می‌توان ردّپای وجوه انسانی را مشاهده کرد؛ ما انسان‌ها تلاش می‌کنیم تا با وجود همۀ ضعف‌ها و ناتوانی‌ها، از همۀ ظرفیت‌ها و توانمندی‌هایمان استفاده کنیم تا بیشتر یاد بگیریم و بیشتر عالم پیرامونمان را درک کنیم.

کشف نپتون و مسائل وارون

برای بیشتر دانستن به این مقاله نگاه کنید:

Inverse statistical problems: from the inverse Ising problem to data science

پی‌نوشت:

نوشتهٔ بالا در نشریهٔ علمی کوارک (انجمن علمی دانشکده فیزیک دانشگاه شهید بهشتی) در شمارهٔ دوم – بهار ۱۴۰۲ منتشر شده است.

دیوید گریفیث: آموزش و پژوهش در فیزیک

اکثر کسایی که دوره لیسانس فیزیک رو پشت سر گذاشتن قریب به یقین اسم گریفیث رو شنیدن. در خیلی از دانشگاه‌های دنیا کتاب‌های الکترومغناطیس و کوانتوم گریفیث رو برای دو ترم متوالی تدریس می‌کنند. همین‌طور کتاب آشنایی با ذرات بنیادی گریفیث نه تنها یکی از بهترین‌ منابع برای دانشجوی کارشناسیه که جزو اولین کتاب‌های آموزشیه که برای اون مخاطب نوشته شده. خلاصه که گریفیث شخص نام‌آشنایی هست در آموزش فیزیک.

دو سال پیش، پروژه تاریخ شفاهی امریکا مصاحبه‌ای با گریفیث کرد که مثل اکثر مصاحبه‌هاشون خیلی خوندنیه. برای من که همیشه برام آموزش مهم بوده و در دانشگاه‌های مختلف از تدریس بد آدم‌ها رنج بردم، دیدن نظرگاه کسی مثل گریفیث خیلی مهمه. بخش‌هایی که از این مصاحبه برام خیلی جالب بود رو اینجا می‌ذارم. اصل این مصاحبه در این نشانی در دسترسه.

گریفیث، مثل خیلی از فیزیکدون‌های دیگه از یک خونواده‌ای میاد که پدر و مادر هر دو استاد دانشگاه بودن اما نه فیزیک. خودش می‌گه به فیزیک علاقه‌مند شد چون که حس رهایی داشته:

I found it very liberating, and history very stifling. So, that, I think, is what confirmed me in physics. … I knew I was going to be a scientist and a physicist from a very early age for no terribly good reason.

در کل آقای گریفیث نکات قابل توجهی در مورد آموزش و پژوهش در فیزیک رو گوش‌زد می‌کنه و در کنارش هم ماجراهای جالبی تعریف می‌کنه. از این که وقتی جولیان شویینگر توی هاروارد بوده نمی‌ذاشته کسی جز خودش نظریه میدان‌های کوانتومی درس بده برای همین اون لکچرهای معروف سیدنی کلمن که امروز هم در دسترسه در واقع به زمانی برمیگرده که شووینگر از هاروارد رفته بوده.

Schwinger insisted that only he could teach quantum field theory. So, it was not until Schwinger left Harvard that Coleman was able to teach this now-famous course.

[with Carl Bender] We were both in the field theory course together, and after every lecture we would get to either his apartment or mine, and rewrite our lecture notes from Schwinger’s lectures, because they were brilliant. They were also very difficult, and we wanted to have perfect lecture notes for this course.

گریفیث تعریف می‌کنه که وقتی نتایج ابتدایی شتاب‌دهنده کمبریج منتشر شد، اونا با پیش‌بینی‌های نظریه الکترودینامیک کوانتومی تفاوت داشت. اون موقع، سر کلاس نظریه میدان شووینگر، کسی در مورد این مغایرت می‌پرسه و شووینگر در جواب میگه لابد واسنجیشون مشکل داره. سه چهار ماه بعد، وقتی که در کمبریج نتایج رو بازبینی می‌کنن متوجه میشن که با درست کردن واسنجی شتاب‌دهنده، داده‌های تجربی با نظریه هم‌خونی داره!

“What do you make out of the latest results out of the Cambridge Electron Accelerator?” And Schwinger, who was always irritated when somebody asked a question, sort of looked at his watch and said, “Well, I think they have problems with their calibration.”

به هر تقدیر شویینگر هم فیزیکدون تراز اولی بوده. آقا، همراه فاینمن برنده جایزه نوبل به خاطر کارشون روی الکترودینامیک کوانتومی شد. درس‌گفتار الکترومغناطیس شویینگر یکی از عمیق‌ترین و متفاوت‌ترین کتاب‌هایی هست که آدم می‌تونه برای عمیق شدن روی موضوعات مختلف بخونه. اما خب شخصیت شووینگر، بر خلاف فاینمن، بسیار ساکت و کمی تا قسمتی نامهربون بوده.

برای زندگی‌نامه شووینگر به این کتاب نگاه کنید.

ما در دانشگاه بهشتی هم از این داستان‌ها داشتیم که تا فلانی هست نباید بهمانی درس بیسار رو بده. مثل این‌که این ماجرا در محیط‌های خیلی حرفه‌ای هم بوده و هست. ولی خب اونجا رقابت بین غول‌ها بوده و اینجا بین آدم‌های دوپا. این ماجرا خیلی جالبه چون کلاس کلمن در هاروارد تبدیل به یکی از بهترین کلاس‌های درس میدان‌های کوانتومی میشه جوری که هنوز هم که هنوزه آدم‌های زیادی ویدیوهاش رو می‌بینند و درس‌گفتارهاش رو می‌خونند. خود کلمن هم فیزیکدون درجه یکی بوده که با این که زیاد علاقه‌ای به تدریس نداشته اما وقتی این کارو می‌کرده، به خوبی از پسش بر می‌اومده و تجربه کلاس درس برای دانشجوها خیلی خوشایند از آب در می‌اومده.

Tony Zee had gone to Coleman and said, “I would like to work with you. What would you suggest as a research problem?” And Coleman said, “If I had a research problem, I would work on it myself,” and sent him away.

گریفیث در مورد شلدون گلشو (برنده نوبل فیزیک همراه با عبدالسلام) می‌گه که:

He is an amazing guy with an idea every minute. Most of them garbage, but every once in a while, one that’s fantastic. He and Coleman made a perfect combination, because Coleman was the opposite. He could demolish any idea. You’d tell him some new idea, and he would immediately see ten flaws in it.

گریفیث که الان استاد بازنشسته کالج ریده، فضای رید رو به خاطر اولویت آموزش بر پژوهش خیلی دوست داره. با این‌که هاروارد بوده و فرصت‌ بودن در محیط‌هایی که بیشتر تمرکزشون روی پژوهش بوده رو داشته انگار تلاش کرده خودش رو از فضای رقابتی چاپ مقاله دور نگه داره و تمرکزش رو بذاره روی یادگیری.

I like to publish. I flatter myself that I publish when I think I’ve got something useful to say that would actually benefit somebody else. I’ve never felt, at Reed, obliged to publish because that’s part of my job or something.

موقعی که از دوران تحصیلش توی هاروارد می‌گه، اصلا از کیفیت کلاس‌های درس راضی نبوده:

My first two years at Harvard were a wasteland in physics, as far as quality of teaching is concerned. I had a lot of teachers there who frankly would not have lasted a semester at Reed, but they were fine at Harvard because they were, or had been, significant researchers or whatever.

The instruction at Harvard was so terrible, especially in the first two years, but actually even in the third year. I remember courses that were really awful. I did then encounter Ramsey, and he was great, and my senior year, Purcell. But learning physics was not a happy experience at that point for me. I liked the subject itself once I understood it, but I remember going to lecture after lecture and not understanding a word that this turkey
was talking about.

نکته خیلی مهمی که گریفیث اشاره می‌کنه اینه که وقتی کلاس درس به خوبی برگزار نشه خیلی از دانشجوها ممکنه فکر کنند که مشکل از اون‌هاست و خودشون رو سرزنش کنند که توانایی یادگیری ندارند، در صورتی که بیچاره‌ها گناهی ندارن و مقصر استاد درسه:

Now I can look back on it and say, that was just lousy instruction. It was not my fault.

But the process of learning with lousy instructors is grossly inefficient and unpalatable. I sometimes think that I learned the subject better at Harvard than most of the students at Reed learn the subject, either because I taught myself or I learned it from hashing things out with fellow students, or whatever.

خلاصه هر چیزی که یادگرفته از صدقه سر تمرین زیاد و پیگیری‌های خودش بوده نه کلاس‌های هاروارد.

It was not because the teaching was good, but precisely because I had to fight for it, I think I learned it ultimately better. That’s a horrible thing to concede for someone who’s devoted his life to teaching, but I think somehow, if it works, the sort of bad teaching method probably is effective and beneficial.

به گفته گریفیث، توی هاروارد اگر کسی هم احیانا خوب درس می‌داده بر حسب اتفاق بوده! انگار که اصلا خوب درس دادن توی خونشون بوده نه اینکه تلاشی بکنن. مثلا کسایی مثل سیدنی کلمن، نورمن رمزی و ادوارد پورسل معلم‌های خارق‌العاده‌ای بودن اما بر حسب تصادف نه چون هاروارد اون‌ها رو به خاطر تدریسشون ارتقا می‌داده یا این جور چیزها. البته گریفیث میگه ممکنه در دوره‌های بعد بهتر شده باشه چون وقتی پسرش میره هاروارد مثل اون شکوه و گلایه نمی‌کنه از اوضاع تدریس. اما خب به وضوح خیلی چیزها در این مقایسه متفاوته، از جمله نگاه گریفیث به امر یادگیری و آموزش.

مصاحبه با کلمن
https://history.aip.org/phn/11503018.html
سیدنی کلمن
نورمن رمزی
ادوارد پورسل

قریب به یقین شما اسم کتاب‌های دوره فیزیک برکلی رو شنیده باشید. اد پورسل کتاب الکترومغناطیس اون مجموعه رو نوشته. گریفیث معتقده که پورسل یکی از بهترین معلم‌هایی بود که در هاروارد داشته. گوشه ذهن من اما همیشه یک سوال باز بود که کتاب‌ پورسل خیلی خوبه ولی نه برای شروع. ولی همیشه خودم رو این جوری توجیه می‌کردم که خب لابد بچه‌هایی که هاروارد یا برکلی هستن خیلی بهتر از منن برای همینه که من احساس راحتی نمی‌کنم با کتاب پورسل. به عبارت دیگه، مشاهده من در دوران تحصیلم این بود که زمانی که دانشجوی لیسانس برای اولین بار درس الکترومغناطیس بر می‌داره خیلی حس راحت‌تری داره وقت کتاب گریفیث رو برای شروع انتخاب کنه تا پورسل. نکته جالب اینه که گریفیث هم به این مسئله اشاره می‌کنه! تعریف می‌کنه زمانی که معلم حل تمرین درس الکترومغناطیس پورسل بوده مدام این نکته رو به پورسل گوشزد می‌کرده که سطح این کلاس بالاتر از لیسانسه. اما خب، با این که خود پورسل هم شکایت‌های مردم رو می‌شنیده اونا رو مزخرف می‌دونسته و توجه نمی‌کرده:

Purcell is the greatest ever, but that’s at a more elementary level. … He had been getting complaints from people. They said, “That’s a beautiful book. Maybe you can use it for honors students at Harvard, but you can’t use it for most students.” And Purcell always said, “That’s nonsense. This book was written for every physics student.”

مشکل این نبوده که کیفیت کلاس درس بد بوده، یا بار ریاضیات کلاس پورسل زیاد بوده. نه! دانشجوی لیسانس در اون مقطع هضم مفاهیم فیزیکی رو جوری که پورسل درس میداده براش سخت بوده:

I went to every single one of his lectures, which were spellbinding. They were brilliant lectures, and his demonstrations were fantastic. … It’s not that it’s so sophisticated. Mathematically, it’s not very sophisticated, but physically, it’s very sophisticated. It’s very demanding of a student. The kind of student who wants to solve the problems by paging back and finding the relevant-looking formula, but not actually reading the chapter, it’s a hopeless book for them. You have to read some chapters two or even three times.

اما سرانجام یک بار که پورسل به دانشجوهای غیرممتاز درس می‌داده و گریفیث معلم حل تمرینش بوده، اعتراف می‌کنه که بله، این کلاس برای همه دانشجوها نیست. سنگینه! خلاصه با این که به نظر گریفیث کتاب پورسل خیلی خوبه، اما صادقانه بخوایم بگیم برای دانشجوی تازه وارد نوشته نشده. علت محبوبیت کتاب الکترومغناطیس گریفیث هم اینه که محتوای استاندارد خوش هضمی رو برای دانشجوی سال دو یا سه فراهم می‌کنه. هر چند که موفقیت کتابش برای خودش کمی فرای انتظارش بوده!

… Purcell’s is the greatest textbook — maybe the greatest textbook ever written on any subject in physics. But mine is much more standard, junior level. Maybe a little bit clearer, maybe a little bit more user friendly, but basically, I’ve been astonished at how successful that book has been. I don’t understand it, frankly.

در مورد نوع درس دادن مکانیک کوانتومی هم گریفیث نظرات قابل توجهی داره. مسئله این‌جاست که چون نظریه الکترومغناطیس (حتی الکترودینامیک) کماکان جزو حوزه کلاسیک فیزیک حساب میشه چندان تفاوت نظری وجود نداره که از چه مباحثی شروع به تدریس کنیم و به چه رویه‌ای پیش بریم. اما مکانیک کوانتومی این جوری نیست. کتاب‌های مختلف کوانتوم گاهی با سیر تاریخی پیدایش نظریه مکانیک کوانتومی پیش میرن و گاهی رهیافتی خیلی مدرن دارن.

اجزای اصلی یک آزمایش اشترن-گرلاخ.
آزمایش اشترن-گرلاخ’ آزمایشی در فیزیک است که نشان‌دهنده انحراف کوانتومی ذرات در میدان مغناطیسی است
این آزمایش نشان می‌دهد که الکترون‌ها ذاتاً ویژگی‌های کوانتومی دارند، و این که چه طور اندازه‌گیری در مکانیک کوانتومی روی چیزی که اندازه‌اش می‌گیریم تأثیر می‌گذارد.

یادمه اولین بار که درس مکانیک کوانتومی در بهشتی داشتیم، استاد ما با یک کتاب جدید به اسم مکینتایر اومد سر کلاس و خیلی خوش‌حال بود که این کتاب خیلی مدرن نوشته شده و فوق‌العاده‌س برای تدریس. کتاب مکینتایر در واقع نسخه کتاب ساکورایی بود برای دانشجوی لیسانس. یعنی ب بسم‌الله کتاب، آزمایش اشترن- گرلاخ و مسئله اسپین بود. نتیجه کلاس برای من چیزی نبود جز اتلاف وقت چون اصلا احساس یادگیری نمی‌کردم. بخشیش به خاطر استاد و عدم تسلطش به موضوع بود و بخش دیگه‌ش به رهیافت کتاب مکینتایر برمی‌گشت. کتاب ساکورایی کتاب خیلی خوبیه و دانشجوی تحصیلات تکمیلی زمانی باهاش روبه‌رو میشه که اصول رو یک بار در لیسانس دیده و مسیر تحول فکریش خوب ساخته شده. برای همینه که ساکورایی به جای مسیر تاریخی، با یک رهیافت مدرن شروع می‌کنه و قصه رو کلا جور دیگه بیان می‌کنه. جوری که صفحات تاریخ رو جابه‌جا می‌کنه و یک روایت جدید تعریف می‌کنه. اما برای دانشجوی لیسانس، درک مسئله اسپین، به عنوان یک مفهوم کاملا مدرن ساده نیست. چه طور میشه به کسی که شهود روزمره‌ش درگیر مسئله چرخش زمینه، اسپین رو توضیح داد و بگی این همونه فقط نمی‌چرخه؟! خلاصه من اون کلاس رو نرفتم و کتاب گریفیث رو شروع به خوندن کردم و همه چیز برام روشن شد.

How do I go into class on the first day and say, imagine a system in which there are only two possible states, or linear combinations of those two states, and having students look at me as though I was the man on the moon, or something?

When you’re coming out of classical mechanics, unless you go to something like classical optics and talk about polarization — that’s a system that has two different linear polarizations, and you can have linear combinations of those – but what’s the connection between that and mechanics? It’s awkward.

I can’t stand popularizations of quantum mechanics that love to say, well, a particle is neither a wave nor a particle. The electron behaves sometimes like one and sometimes like the other, and there’s no coherent way to picture it. I don’t like that because if somebody has not studied quantum mechanics, I think that it’s mumbo jumbo.

البته توضیح هم می‌ده که چرا روشی که خودش برای نوشتن کتاب مکانیک کوانتومیش پیش گرفته رو ترجیح می‌ده:

In the case of quantum mechanics, there are radically different ways of presenting the subject, and mine is one take on how to present quantum mechanics, the one that I happen to feel pedagogically most comfortable with.

Mine is based on position space quantum mechanics, wave functions, starting with the Schrödinger equation. I was determined that the Schrödinger equation would appear on the first page of my book, and it does. But the wave function, psi, lives in Hilbert space. It is mathematically a subtle and tricky kind of object, which you sort of sweep under the rug, but eventually it’s going to come up and bite you. … I’ve never dared to teach it that way myself because the motivational problem strikes me as being very, very tricky.

روش گریفیث در درس دادن فیزیک تلاش برای واضح بودن و از ساده به سخت رفتنه:

There’s no reason not to be as clear and as accessible as you possibly can. So, I’ve always, in teaching, favored the simplest possible way of explaining something. … Let’s start out with [ … something] very concrete and non-abstract, and then ascend to the higher levels of abstraction later in the subject, not at the beginning.

David J. Griffiths | Techfest 2012, IIT Bombay

به طور کلی اما گریفیث نسخه‌ای نمی‌پیچه که بهترین روش تدریس فیزیک چیه:

I do agree that there are lousy ways of teaching. I have already confessed that I experienced a good deal of that. I have theories about what makes for lousy teaching. I don’t know what makes for great teaching. I’ve seen lots of different great teachers, and I would hate to have to give you a prescription for what makes good teaching of physics. I was in some respects ambivalent

I learned very quickly in my teaching career that a lot of my students could think a whole lot better than I could, or at least a whole lot faster than I could. What I was doing is, I knew something, understood something about the physical world that they didn’t, and that they wanted to know.

So, my business as a teacher was not to teach them how to think, although in some vague, indirect sense, maybe that’s true, but I was going to explain things so that they would come to understand basic principles of physics. I have a very un-exalted notion of what my role as a teacher is: to explain things in as efficient and as appetizing a way as I possibly can.

So, my parents, again, subscribed a little bit to the notion that a teacher is sort of like a drill sergeant or a gymnastics instructor. Your business is to make these students jump through a bunch of flaming hoops or something. I don’t know; that sort of rubs me the wrong way. I’m trying to liberate students from perhaps incorrect intuitions, or simply from ignorance.

توی مصاحبه یک جایی گریفیث اشاره می‌کنه که یک رسمی عجیبی وجود داره که هر سال معلم‌ها و اساتید اشاره می‌کنن که آره کیفیت دانشجوها اومده پایین و قبلا این جوری نبود و اصلا دیگه کسی براش مهم نیست و از این حرفا. این خیلی عجیبه چون از زمان سقراط و ارسطو هم این حرف و نقل‌ها بوده و اگر واقعا همیشه کیفیت دانشجوها رو به زوال بوده قاعدتا نباید دیگه چیزی به ما می‌رسید. توجیه این ماجرا هم چیزی نیست جز فراموشکاری آدم‌ها و خطاهای شناختیشون!

It’s a sort of weird psychological phenomenon. You remember the wonderful students, and you blissfully forget the not so wonderful students. So, your memory is always a rosier past than the present.

به نکته‌ای گریفیث اشاره می‌کنه که خیلی به دل من نشست. حقیقت اینه که از وقتی که من اومدم دانشکده علوم کامپیوتر دانشگاه آلتو، به این مسئله زیاد فکر می‌کنم که چرا آدم‌ها این جا اصلا علاقه‌ای به صحبت کردن در مورد علم ندارن. اکثر آدم‌ها در مقطع تحصیلات تکمیلی همه تلاششون رو می‌کنن که در زمان‌های استراحت یا ساعات به اصطلاح خودشون غیر کاری راجع به علم – کارشون – صحبت نکنن. دلیلشون کمی قابل قبوله چون بالاخره استرس و فشار کاری زیاده و آدم‌ها تلاش می‌کنن خارج از کار، مفری برای آسودگی خاطر پیدا کنن. اما از طرف دیگه، به نظر من مهم‌ترین رکن یک محیط علمی، شور و اشتیاق آدمای اون موسسه به پرداختن به علمه!

… All liberal arts colleges claim that their students are very studious and academically committed and all that, but Reed is the only place, including Harvard, where I’ve found this to be actually true. I remember one of my first experiences at Reed was down in the locker room, in the gym. I’m a swimmer, so I was down there to go swimming, and realized that the student conversation in the locker room was all about their Hegel lecture that morning.

At Trinity, it was considered absolutely rude to talk about your classwork outside of class. In the lunch hall, you’re supposed to talk about fraternities and the progress of the football team, you know? But at Reed, everybody’s focus and attention were their academics. It’s a little bit overly precious sometimes, but it’s so much more refreshing, especially for a teacher, than the opposite.

گریفیث معتقده تعادل بین تدریس و پژوهش خیلی مهمه و دلیلی نداره که این همه موسسه با این حجم از پژوهشگر فقط در زمینه چاپ مقاله پیش‌تازی کنند.

First of all, I think, in general, the world would be a better place if about 75% of all publications had never been published, because there’s this, to me, childish emphasis on publication — publish or perish, you know?

People feel compelled to publish garbage, and they do. Most publications in physics, we would be better off if they had not been published. You say, well, everybody’s making an incremental change and improvement, or something like that. Well, that’s not true. What they’re doing is clouding the works, by and large.

Nicholas Wheeler, who’s, second to Coleman, the most brilliant physicist I’ve ever known. He does not publish and will not publish. He writes these incredible monographs. In the old days, he would literally calligraph them himself. Beautiful — he’s a genius at taking some subject in the literature, writing it up in his own words, so that what had been this convoluted, complicated, murky subject, and it comes out as this beautiful, crystal-clear thing in his hands. Nowadays he types them all, and they’re actually available on the web.

But he will not publish anything. Is it original? No, in a certain sense, it’s not. He’s taking something that’s in the literature, and as I say, cleaning it up. Polishing it. I think it’s not research. It’s not, at least, original research, but it is a contribution of the highest order. But it wouldn’t satisfy a modern dean — he wouldn’t have survived a year at a research university because he refuses to publish this stuff.

In the physics department at Reed, at least, we like to think of the senior thesis project as a research project in which the student is 100% in charge. This is a myth, but it’s a good myth. … we like to pretend that the student has input and ownership of all aspects of it.

در ضمن، آقای گریفیث چندان علاقه‌ای به ترویج علم به زبان ساده و چیزهای این شکلی نداره! میونه‌ش با کتابایی مثل تاریخچه زمان هاوکینگ خوب نیست و به نظرش اگه کسی می‌خواد چیزیو یادبگیره باید اصولی یادبگیره. وظیفه خودش رو در توضیح دادن چیزها به بهترین شکل می‌دونه اما در قالب حرفه‌ای نه کتاب قصه:

I don’t like popularizations of physics. Things like Hawking’s [A] Brief History of Time, that talk about physics but don’t actually teach you to do it, and I think very often give you a very misleading — you know, because they want to use intriguing terms, and precisely want you to be amazed by the physics rather than understand the physics. That kind of rubs me the wrong way.

I wanted to write a book that would be for non-science people, but teach them actually, with a little bit of nuts and bolts, about what’s going on in the subject. Not the speculative supersymmetry, but real, established physics. But because I don’t believe you can understand that stuff without doing occasional problems, I sprinkled through the book problems, and I was told right at the beginning, you put problems in there with numbers and equations, nobody’s going to read it. But I wanted it to be an honest introduction to the subject.

در رد و تمنای مجلات دانشجویی

هر کسی که به جایی رسیده، حتما با تمرین و تلاش به اونجا رسیده. اگه کسی دانشمند خوبیه لابد ساعت‌ها وقتش رو توی این راه صرف کرده و دود چراغ (نور مانیتور) رو تحمل کرده! طبیعتا این در مورد نوشتن هم صادقه. اگه کسی قصد داره برای یا در مورد علم بنویسه باید تمرین کنه و مهارت‌هایی که لازمه رو یادبگیره. ممکنه تفاوت شاهکارها با آثار به نسبت خوب در هر زمینه، نوعی خلاقیت یا نبوغ خاص باشه اما قطعا تفاوت یک اثر بد با یک اثر خوب در تمرین نکردن و بی‌تجربگیه. برای همین، تلاش‌هایی که در گوشه و کنار دانشگاه‌ها میشه تا مطالبی در قالب مجله‌های دانشجویی گردآوری بشه واقعا ستودنیه. چون برای تازه‌کارها فرصتی پیدا میشه تا توی یک محیط محلی دست‌ورزی کنن و توانایی‌هاشون رو به منصه ظهور برسونن. به خاطر مخاطب محدود و یک‌دستی جامعه هدف هم معمولا نوشتن در این جور جراید، آسون‌تر از مثلا نوشتن برای یک روزنامه کثیرالانتشار یا مجله پرفروشه. خلاصه بی برو برگرد مجله‌هایی که در هر دانشکده یا دانشگاه منتشر میشه خوبه و این‌که بیش باد! دم همه کسایی که به هزار زحمت تلاش می‌کنن تا یدونه شماره دیگه هم چاپ کنن گرم واقعا!

اما یک مسئله که به طور مشخص در ایران وجود داره اینه که چون بستر اقتصادی یا حمایتی مناسبی برای تولید این جور آثار وجود نداره، مجلات دانشجویی، مثل اکثر فعالیت‌های دیگه اگه قائم به شخص نباشن حتما به صورت هیئتی اداره میشن. یعنی تا بوده این جوری بوده که یکی دو نفر آدم با صفا و با انگیزه پیدا میشدن و کاریو بدون چشم‌داشت خاصی جلو می‌بردن و در نهایت یکی هم بهشون نمی‌گفته دستتون دردنکنه! با رفتن اون‌ها هم معمولا کل پروژه می‌خوابه و بعد از مدتی هم فراموش میشه. انگار که نه شاهی اومده و نه شاهی رفته! مدل هیئتی‌ هم این شکلیه که به جای شخص، مثلا یک انجمن علمی دانشجویی سعی می‌کنه مجله‌ای رو با یک زمان‌بندی خاص منتشر کنه. این الگو هم – بدون تعارف – تا امروز محکوم به شکست بوده از نظر من. شاید این مدل در نگاه اول یک گام رو به جلو باشه نسبت به مدل قبل، اما کماکان به خاطر دلایل زیادی که یک سرش وصله به نبود تشکل‌های صنفی درست درمون و یک سرش هم به نابه‌سامانی‌های اداری/مالی/علمی دانشگاه‌ها، انجمن‌های دانشجویی در بیشتر اوقات تبدیل به سرگمی میشن تا یک چیز جدی. خلاصه که فعالیت‌هاشون پشت نداره؛ ابتر باقی می‌مونن و نمی‌تونن کیفیت ثابتی رو در درازمدت حفظ کنند.

همه حرف من اینه که هر سال تلاش‌های زیادی توسط آدم‌های مجرب و دلسوزی انجام میشه که در نهایت اثرشون در فضا و زمان محدودی از بین میره. زمانی که دانشجوی کارشناسی ارشد بودم، یه بار که به دنبال پایان‌نامه‌ای توی کتاب‌خونه استاد راهنمام بودم به یک سری مجله برخورد کردم. مجله‌هایی که روی جلدشون یک نماد یین و یانگ داشتن و برمی‌گشتن به سال‌هایی که من حتی به دنیا نیومده بودم؛ مجله فیزیک‌، صاحب امتياز مرکز نشر دانشگاهی و مدير مسئول دکتر رضا منصوری. هر شماره‌ای از این مجله‌ رو که ورق می‌زدم حظ می‌کردم! چه کیفیت محتوایی، چه دقت نظری در انتخاب موضوع و چه ترجمه‌های شیوایی! هیات تحریریه هم که عالی و درجه یک.

مجله فیزیك-۲۸
تاریخ انتشار: پاییز ۶۴

به وضوح مشخص بود که زمانی در این مملکت، مردمِ کاردرستِ فیزیک، ذوق و شوق تولید چنین آثار فاخری رو داشتن. چیزی که الان خبری ازش نیست. در این زمانه یا ذوقی دیگه برای اهل قلم نمونده – که حق دارند – یا ذوق و شوق‌دارهامون هنوز طفل راه هستن و بعضا متاسفانه جوگیر یا فقط به فکر معاش! قاعدتا راه‌هایی وجود داره که بعد از خوندن این نوشته شما بتونید به اون مجله‌ها دسترسی پیدا کنید. اما به چه قیمت و راحتی؟! شماره ۲۸ مجله فیزیک چقدر برای مردم ما در دسترسه؟! مثلا سایت نشر دانشگاهی که هیچ نسخه‌ای در انبار نداره برای فروش. ظاهرا هم نسخه تحت وب که هیچ، جایی فایل‌ اسکن شده‌‌ای از اون مجله‌ها هم وجود نداره. یا لااقل من نتونستم پیدا کنم که به نظرم خودش معیاری از عدم دسترس‌پذیریه! توجه کنید که مجله فیزیک یک مجله حرفه‌ای بود نه یک فعالیت دانشجویی! پس خدا به داد چیزهای کمتر مطرح برسه. راستی، منظور من دسترسی آسونه، نه لزوما دسترسی رایگان.

مثال دیگه مجله رشد آموزش ریاضیه. با این‌که از سال ۸۹ دیگه چیزی ازش منتشر نشده ولی دست‌کم نسخه پی‌دی‌اف اکثر شماره‌ها هنوز – به فضل خدا! – روی سایتشون وجود داره. سرتونو درد نیارم، رسما حجم زیادی از آثاری که می‌تونسته تا ابد در درسترس مردم باشه بعد از این‌که تجدید چاپ نشدن رفته رفته از دور خارج شدند و احتمالا چند نسخه‌ای ازشون هم گوشه یک سری کتاب‌خونه‌ داره خاک می‌خوره. هیچ کسی هم مثلا نمی‌دونه که دکتر کریمی‌پور در مورد فلان مطلب تو فلان شماره از اون مجله یک مطلب خوب به زبان فارسی نوشته. شخصا چند سال پیش که درس آموزش ریاضی داشتم، مرور شماره‌های مختلف مجله رشد آموزش ریاضی خیلی بهم کمک کرد. مطئمنم که اگه دانش‌آموزها و دانشجوهای خصوصا کارشناسی دسترسی معقولی به این محتواها داشته باشن روند یادگیریشون قطعا بهتر میشه. بد نیست بگم که توی این نوشته قصد من اصلا این نیست که بگم کسی مقصره. بنده برای همه عزیزانی که این سال‌ها این آثار رو تولید کردند کلاه از سر برمیدارم. اما وقتی می‌بینم که دست ما کوتاه و خرما بر نخیله احساس ناراحتی می‌کنم. ای کاش یک عزم جدی برای تبدیل نسخه‌های چاپی به نسخه‌های دیجیتال وجود داشت.

از طرف دیگه، ممکنه بگید خب بالاخره این‌ها آثار قدیمی هستن و نسل جدید این شکلی برخورد نمی‌کنه. متاسفانه ربطی نداره. اول این‌که دیوان حافظ هم یک اثر قدیمی حساب میشه که امروز روی وب راحت در دسترسه. کافیه شما یک مصرع رو جستجو کنید و به سادگی به شعر مورد نظر و حتی اجرای اون شعر توسط خواننده‌های مختلف دسترسی پیدا کنید. پس دلیلی نمیشه که ما آثار خوبی که در علم داشتیم رو روی وب نیاریم. دوم این‌که متاسفانه در نسل جوان، چندان علاقه، همت و انگیزه‌ای برای تولید این جور محتوا به زبان فارسی دیگه پیدا نمیشه، که خب – باز هم – حق دارن! زمانه خوبی نیست به هر حال. به این‌ها البته که باید اضافه کرد ولعی که برای رفتن به سمت تولید محتواهای بی‌عمق ولی مناسب بازار در کل دنیا حاکم شده.

یک مثال خوب برای اینکه بگم چه طور یک مجله جدید در یک فضا و زمان محدود داره از بین میره، مجله وزین تکانه است که مدیر مسئولش دکتر سامان مقیمیه. ارادت من به سامان و هیئت تحریریه این مجله به کسی پوشیده نیست اما این مجله هم کماکان در قالب یک نسخه فقط مناسب چاپ منتشر میشه و هیچ وبگاه استانداردی برای میزبانی این مجله وجود نداره. اگه شانس بیارین می‌تونین نسخه‌ پی‌دی‌افش رو در قالبی که اصلا مناسب صفحه‌های نمایش نیست در کانال تلگرام انجمن علمی فیزیک شریف پیدا کنید. تلگرام جای خوبی برای نگه‌داری این چیزها نیست. نه چون فقط دسترسی بهش محدود شده، به خاطر این که یک دانش‌آموز دبیرستانی یا دانشجوی سال دو فیزیک توی یاسوج نمی‌تونه با جستجوی چند تا کلمه توی یک موتور جست‌وجو به محتوای پی‌دی‌اف شده در یک کانال تلگرامی برسه!

وبگاه تکانه که در زمان انتشار این نوشته حتی در دسترس نیست!
پیامی در کانال تلگرام انجمن علمی فیزیک شریف

راستش من اصلا متوجه نمیشم که با وجود این همه ابزار آنلاین چرا ما هنوز اینقدر سنتی عمل می‌کنیم. من به طور مفصل در مورد روایتگری و وبلاگ‌نویسی در علم نوشتم، هدفم هم در این نوشته این نیست که بگم بالکل در مجلات رو تخته کنیم. نه! حرفم اینه که باید همگرا بشیم به شیوه‌های امروزی به یک دلیل خیلی مهم و ساده:

دسترسی به محتوای دیجیتالی که استاندارد منتشر شده برای همه آسون‌تره و این به خودی خود عدالتی آموزشی میاره و به پویایی زبان فارسی کمک می‌کنه.

من به عنوان سردبیر سیتپور باعث افتخارمه که همه دست به قلم‌های مجلات علمی رو به این وبلاگ دعوت کنم. دوست دارم که مثلا حسین که توی تکانه‌ مطلب می‌نویسه اینجا هم بنویسه. از این بیشتر دوست دارم که حسین به کمک دوستان و همکارانش رویه‌ای رو در دانشگاه شریف ایجاد کنند که محتواهای خوبی که تولید می‌کنند هدر نره و سال‌ها برای مردم در دسترس باشه.

فراموش نکنیم که نه تنها هزینه تحصیلات ما در دانشگاه‌های دولتی از جیب مردم اقصی نقاط این کشور عزیز میاد که ما اهل علم هم در برابر زبان فارسی و فرهنگ ایرانی مسئولیم.

شکل ساختارها و اجرام سماوی

چرا ستاره‌ها و سیارات کروی هستند و کهکشان‌ها معمولاً شکل دیسکی دارند؟

می‌خواهیم بدانیم شکل اجرام نجومی که در آسمان می‌بینیم به چه صورتی هستند؟ بگذارید ببینیم در آسمان بالای سرمان چه ‌چیزهایی می‌بینیم؟ در طول روز عمدتاً خورشید را می‌بینیم! ولی در شب می توانیم ستاره‌ها را هم مشاهده کنیم. در مناطق شهری تعداد خیلی کمی از آن‌ها و در مناطق خیلی تاریک و به‌دور از آلودگی نوری شهرها تا حدود پنج الی شش هزار ستاره! امروزه می‌دانیم که خورشید یک کره بزرگ گازی است که ‌به‌دلیل هم‌جوشی هسته‌ای در مرکز آن شعله‌ور و درخشان است. ستاره‌های آسمان شب هم همگی خورشیدهایی هستند کروی‌شکل؛ در اندازه‌ها و دماهای مختلف. دیگر چه‌چیزهایی می‌توانیم در آسمان شب ببینیم؟ ماه و گاهی، بعضی‌ از سیارات منظومه‌شمسی. ماه و سیارات منظومه‌شمسی هم همگی به‌شکل کروی هستند؛ سنگی، گازی یا یخی. هم‌چنین می‌بینیم که خورشید، ماه و سیارات در محدوده‌ای در آسمان که به ‌آن منطقه‌البروج گفته می‌شود، حرکت ‌می‌کنند و این موضوع یعنی تقریباً همگی در یک صفحه حول خورشید می‌گردند.‌ بنابراین اگر می‌توانستیم از بالا به منظومه‌شمسی نگاه کنیم می‌دیدیم که ساختاری شبیه به یک دیسک دارد. دیگر چه؟ اگر در مناطق تاریک و به‌دور از شهرها باشیم این شانس را خواهیم داشت که نوار مه‌آلود کهکشان راه‌شیری را هم ببینیم. چرا نوار مه‌آلود؟ چون ما در واقع از داخل دیسک کهکشان به مناطق مرکزی آن نگاه می‌کنیم؛ بنابراین آن را به‌صورت یک نوار می‌بینیم و گرد‌ و غباری که در راستای دید ما قرار گرفته باعث می‌شود این نوار به‌شکل مه‌آلود باشد. با کمک تلسکوپ می‌توانیم کهکشان‌های دیگر را هم ببینیم که عمدتاً ساختاری دیسکی‌شکل دارند. گه‌گاه در آسمان شب می‌توانیم دنباله‌دارها و شهاب‌ها را هم ببینیم. دنباله‌دارها را می‌توان از جمله اجرام سرگردان منظومه‌شمسی دانست که معمولاً شکل‌های نامنظم دارند. دنباله‌دارها حاوی مقادیر زیادی یخ (مواد فرار مثل آب، متان، آمونیاک و غیره) هستند و معمولاً در مدارهای کشیده‌ی باز یا بسته به‌دور خورشید می‌گردند. با نزدیک شدن به خورشید یخ‌ آن‌‌ها آب شده و فوران می‌کند و به‌همراه خود بخش‌هایی از این گلوله‌های برفی کثیف را در فضا بر جای باقی می‌گذارند که تشکیل دنباله را می‌دهند. این مواد بر‌جای‌مانده که به‌شکل گرد و غبار و تکه‌سنگ‌های بزرگ و کوچک هستند می‌توانند با عنوان شهواب‌وارها گاهی در مسیر حرکت زمین قرار گرفته، وارد جو شوند و به‌دلیل اصطکاک بالا با مولکول‌های داخل جو بسوزند و ردّی درخشان از خود به‌نمایش بگذارند. همان شهاب‌های جذاب آسمان!

با این توضیحات، اجرام و ساختارهای نجومی می‌توانند اشکال مختلفی داشته باشند، اما چرا این اشکال را دارند؟ چرا تمام ستاره‌ها و سیارات به‌شکل کروی هستند؟ چرا منظومه‌شمسی و هم‌چنین بیشتر کهکشان‌ها ساختاری دیسکی دارند؟ و چرا دنباله‌دارها و اجرام سرگردان در منظومه‌شمسی شکل‌های نامنظم دارند؟

در ویدیوی زیر که قسمت اول از سری لایوهای اینستاگرامی «علامت‌ سؤال» بوده درمورد پاسخ این سؤالات توضیح داده‌ام. 

«علامت سؤال» عنوان سری لایوهای اینستاگرامی‌ای است که در هر قسمت از آن به‌ یک سؤال نجومی پاسخ داده می‌شود. این سؤال می‌تواند ساده اما حاوی نکته‌ای مهم باشد! در علامت سؤال اول درمورد شکل‌ اجرام سماوی و دلیل آن توضیح داده شده است.

ویدیو در اینستاگرام

کتاب‌هایی برای مردم درباره پیچیدگی

پتّر دانشمند خوش فکر و خوش ذوقیه که به تازگی پیش ما اومده. خیلی خوشحالم از این بابت. ویژگی مهم پتر اینه که علاوه بر این‌که از لحاظ فنی در علم پیچیدگی فرد سرشناسیه، بسیار هم وبلاگ‌نویس خوبیه و ید طولایی در تولید محتوای با کیفیت از لحاظ نمایشی داره. بسیار می‌دونه و بسیار خوب بیان می‌کنه. توی این پست، پتر فهرستی از کتاب‌های اثرگذار در زمینه پیچیدگی رو فهرست کرده و لینک دسترسی بهشون رو هم گذاشته. این کتاب‌ها عموما برای مردم عادی نوشته شدند و تغییر قابل توجهی در نگاه مردم به انگاره پیچیدگی ایجاد کردند.

The golden age of complexity science books

– Petter Holme

عامه‌پسند خوب است ولی با احتیاط حمل شود!

فراموش نکنیم که همیشه کتاب‌های عامه‌پسند یک جایی کمیتشون لنگ می‌زنه و فقط متخصص‌های امر می‌تونن در دام کج‌فهمی‌هاش نیفتن. مهم هم نیست که چه کسی اون کتاب رو نوشته، هاوکینگ یا روولی. برای همین همیشه موقع مطالعه آثار عامه‌پسند باید گوشه چشمی به این نکته هم داشته باشیم. مثلا هرکسی می‌تونه کتاب «تاریخچه مختصر زمان» هاوکینگ یا «ترتیب زمان» روولی رو بخونه، لذت ببره و بعدش هم به ماهیت زمان، سیاه‌چاله‌ها و مِه‌بانگ فکر کنه. اما باید به خاطر بسپاره که برای نتیجه‌هایی که می‌گیره یا افکاری که برای خودش بسط می‌ده حتما باید با یک متخصص مشورت کنه. اگر هم واقعا به این موضوعات علاقه‌مند شد که خب شروع به تحصیل در این چیزها کنه!

پیدا شدن کج‌تابی‌ در عامه‌پسندها فقط به این برنمی‌گرده که در ساده کردن مفاهیم ممکنه بخش مهمی از اطلاعات از بین بره. یا اینکه راوی توانایی لازم در بیان مسئله به زبان مردم را نداشته باشه یا غرض‌ورزانه به یک موضوع بپردازه. بلکه به این خاطر که وقتی محتوایی به جای مطرح شدن در یک گروه محدود به متخصص‌ها، به سپهر عمومی میاد دو اتفاق مهم می‌افته:

اول این که هر شخص مستقل از دانش قبلی و توانایی تجزیه و تحلیل یک مطلب جدید با یک سری مفاهیم یا پرسش‌های جدید روبه‌رو میشه. به همین خاطر، افراد مختلف درک‌های مختلف یا کج‌فهمی‌های مخلتف می‌تونن پیدا کنن. شما به کسی که کوررنگی داره چه‌طور می‌تونید حالی کنید که فلان‌جا سبزه و کنارش قرمز؟! مضاف‌بر این‌که وقتی موضوعی در سپهر عمومی مثل تالارهای گفت‌وگو یا کلاب‌هاوس مطرح می‌شه به دنبالش بحث و حرف و حدیث هم پیدا میشه. اون موقع آدم‌های مختلف با درک‌های متفاوت و همراه با سوگیری‌های خاص خودشون بر سر موضوعاتی بحث می‌کنند که ممکنه اصلا ربطی به هم نداشته باشند.

در میانه این جور گفت‌وگوها اگر متخصص باشید باید خر بیارید و باقالی بار کنید و اگر عامی باشید باید دربه‌در به دنبال پرتقال فروش بگردید!

دوم این‌که اگر یک قدم برگردیم به عقب، قبل از رویارویی با یک اثر عامه پسند، باید به خاطر بسپاریم چیزی که امروز به عنوان یک یافته علمی در دسترس ما قرار گرفته وحی منزل نیست و می‌تونه نادرست یا ناکامل باشه یا فقط در شرایط خاصی درست باشه. به قول فاینمن، گزاره‌های علمی از این جنس نیستند که چه چیزی درست یا نادرسته، بلکه اونا گزاره‌هایی هستند با درجه‌های مختلفی از عدم قطعیت در مورد چیزهایی که می‌دونیم. به همین خاطر حتی متخصص‌ها که مسائل رو با جزئیات فنی بیشتری می‌دونند و درک عمیق‌تری از مسائل دارن هم همیشه با نگاه تردید به یافته‌ها نگاه می‌کنند. در عامه‌پسندنویسی ممکنه بسته به پیچیدگی‌های فنی، عامه‌پسند‌نویس از بیان یا شرح بعضی از جزئیات خودداری کنه. حالا شما حساب کنید موقع خوندن عامه‌پسندها که خیلی از جزئیات محو شده چه میزان باید به درکمون از طبیعت شک کنیم. شک البته لزوما چیز بدی نیست؛ علم فرهنگ شک و تردیده. ما با تشکیک، در علم بالغ میشم!

به همین خاطر علم، یک مسیر شناختی پویا است. یعنی با وجود عدم قطعیت‌های همیشگی‌‌، به مرور زمان، به واسطه یافته‌ها و نظریه‌های جدید درک ما از اتفاقات دچار تغییر و تحول میشه. بعضی از اوقات کتاب‌‌های عامه‌پسند قدیمی تا سال‌ها مثل تکه‌ای جواهر می‌درخشن چون خالق اثر درک عمیقی از موضوع و زبردستی خاصی در بیانش داشته و از همه مهم‌تر در انتخاب موضوع به قدری خوش‌شانس یا شاید آگاه بوده که در چشم‌انداز پیش رو درک ما از اون موضوع دچار تغییر اساسی نشده. به عنوان مثال، همون‌طور که پتر در نوشته‌ش توضیح داده ایده اساسی کتاب درخشان «طبیعت چگونه کار می‌کند؟» پیرامون بحرانیت خودسامان‌ده است. در حالی که امروز که حدود ۲۰ سال از نگارش اون کتاب می‌گذره می‌دونیم که بحرانیت خودسامان‌ده روشی نیست که طبیعت برای کار کردن انتخاب کرده باشد مگر در موارد بسیار نادری!

برای مطالعه بیشتر

شرح پیچیدگی
دفترچه‌ای برای توضیح مفهوم پیچیدگی بر اساس آرا صاحب‌نظران این حوزه

مروری بر سامانه‌های پیچیده
از مجموعه پیچیدگی برای همه

مصاحبه با ساسکیند

تاریخ شفاهی American Institute of Physics اخیرا با ساسکیند مصاحبه طولانی داشته که به نظرم خوندنش خالی از لطف نیست. من سعی می‌کنم بریده‌هایی از این گفت‌وگوی طولانی رو بدون ایجاد تغییر اینجا بذارم. متن کامل در اینجا در دسترس همگانه:

Interview of Leonard Susskind

By David Zierler on May 1 and 3, 2020

Niels Bohr Library & Archives

American Institute of Physics

منبع

ورود به فیزیک

توی این مصاحبه ساسکیند از ماجرای ورودش به فیزیک و مسیر فیزیکدان شدنش میگه. از وضعیت و عقبه خانواده‌ش و تاثیر پدرش بر زندگیش. از اینکه برای مدتی همراه پدرش به شغل لوله‌کشی مشغول بوده و در گفت‌وگو با همکارهای پدرش کم‌کم متوجه میشه که ناخواسته سراغ شبه علم می‌رن! ساسکیند تعریف می‌کنه که کجا مدرسه و دانشگاه رفته. چی خونده و چه طور متوجه شده که رشته‌ای که دوست داره فیزیکه و نه مهندسی!

Harold Rothbart came around, and he was watching me, and he said, “Susskind, this is not for you. This is the wrong subject for you.” He told me he would fail me in the class unless I dropped out of engineering. … By that time, I was married. I had a child. “What am I going to do? My father is waiting for me to go into business.” “I want you to drop out of engineering.” I thought, “Well, this guy really thinks I’m stupid.” And then he said something that really touched me. He said, “You’re very, very smart. You should be a scientist. You should go into one of the sciences.”

ساسکیند از این میگه که چه طوری به درس‌های پایه فیزیک علاقه‌مند شده. این که کتاب مکانیک کلاسیک گلدستین رو می‌خونه و خیلی کیف می‌کنه با وجود این‌که نویسنده این کتاب اصلا فیزیکدان نبوده! به نظر اون گلدستین هنوز هم کتاب خیلی استانداردی برای یادگرفتن مکانیک کلاسیکه چون خیلی خوب در مورد همیلتونی‌ها و لاگرانژین‌ها و کروشه‌های پواسون بحث کرده. یک بار هم سر کلاس مکانیک تحلیلی ساسکیند یکی ازش می‌پرسه که چه کتابیو پیشنهاد می‌کنی؟ میگه من نمی‌دونم چه کتابی خوبه، ترجیح می‌دم خودم بشینم یکی خودم بنویسم تا یکیو پیشنهاد کنم ولی یادمه وقتی اولین بار این چیزا رو خوندم از روی گلدستین خوندم و اون خیلی کتاب خوبی بود. در ادامه این مصاحبه می‌گه که بهترین کتابی که برای یادگرفتن کوانتوم خونده کتاب خود دیراکه. همین طور همیشه مقاله‌های نسبیت (خاص و عام) آینشتین روی میزشه و اونا رو می‌خونه ولذت می‌بره از سوال‌های خیلی ساده‌ای که آینشتین می‌پرسه و روشی که سعی می‌کنه به این سوال‌ها پاسخ بده.

He made this surprising conclusion that light, as well as everything else, gravitates, from something that a 12-year-old could understand. That to me was the way that I wanted to do physics. It wasn’t that I wanted to imitate Einstein. It just felt right. This is the way to think about physics. You start with very, very simple observations about the world, and from them, you draw far-reaching conclusions. Gedankenexperiments— I really, really fell in love with the idea of thinking about physics from a very simple starting point and building on that.

در ادامه به این می‌پردازه که رسما استاد راهنمای خاصی نداشته ولی بعضی‌ها توی این مسیر راهنماش بودن؛ به طور خاص به هانس بیته اشاره می‌کنه. اما می‌گه که هانس هیچ موقع نمی‌تونسته استاد راهنمای مناسبی برای اون باشه چون خیلی ذهن عملگرا و تجربی داشته و از نسبیت عام خوشش نمی‌اومده! بعدها فاینمن رو می‌بینه و شاید اون به معنی واقعی کلمه استاد راهنماش بوده ولی خب زمان زیادی می‌گذشته از این که مستقیما تحت نظارت فاینمن بخواد کاری کنه. فاینمن بیشتر دوستش بوده و ساسکیند مدل پرداختنش به فیزیک رو خیلی می‌پسندیده. به نظر ساسکیند،‌ آینشتین توی لیگ غول‌هایی مثل نیوتون، ارشمیدس و گالیله بوده در حالی که فاینمن آدمی بوده که فوق‌العاده بوده توی فیزیک. همیشه فاینمن رو به چشم یک انسان بامزه می‌دیده و نه خدایگان فیزیک! بعدها مری گل‌-من رو دیده و با این که همیشه اونو تحسین می‌کرده ولی آبش با اون توی یه جوی نمی‌رفته! برای همین گل-من هم چندان نقش راهنما براش نداشته. نکته جالب ولی اینه که میگه این روزها من راهنما دارم و اتفاقا اونا خیلی از من جوون‌تر هستن!

What did I—I did see something in Feynman’s physics. He also had a certain simplicity of thinking. The two examples that stand out, and I’ve talked about these publicly on occasion—well, there were three. The first was his ability to cut through the great difficulties of quantum field theory and just draw diagrams. How the hell did he figure that out? And he didn’t figure it out; he just made it up! People who tried to figure out what Feynman was doing could not get him to explain what he was doing. He just said, “Here it is. This is what it is.” … It was always, “Close your eyes, and see if you can see what the thing looks like.” In that sense, I think Feynman was a mentor. But it came a bit late for it to have really affected my own style. That already existed. I also admired Murray Gell-Mann enormously, but very different. Murray and I did not get along. In fact, I think we really disliked each other. But I could see his incredible ability to see patterns.

ساسکیند می‌گه افراد مختلف به شیوه های متفاوتی به فیزیک می‌پردازن. مدل انجام دادن اون این جوریه که به جاهایی که اصول با هم در تضاد هستن عمیقا فکر می‌کنه:

My friend Steve Shenker, for example, is a master of using output of calculation as data to generate new ideas or brilliant ideas. I never did a lot of calculation like that, or at least not for a long time. I did at one time, but not for a lot of time now. … My approach to physics—this was not done by design. My natural inclination is to focus on clashes of principle, on paradoxes, on Gedankenexperiments through which we view clashes of principle, and then eventually debug and understand what resolves the clashes of principle. So that’s a way of thinking that—I think it’s fairly rare. I don’t think any of my colleagues tend to do that.

علم و دین

از ساسکیند پرسیده میشه که زمانی که دانشگاه یشیوا بوده آیا محیط اونجا تحت تاثیر اندیشه‌های یهودی بوده یا نه.

I was at the Belfer Graduate School of Science. Which was a part of Yeshiva University, but it was separate. It was a graduate school of science. It was a very funny, idiosyncratic place. It was a marvelous place. It had some extraordinary scientists. Yakir Aharonov, Dave Finkelstein, Joel Lebowitz, Elliott Lieb. Freeman Dyson was on the faculty for a while. I was there for ten years. Wonderful mathematicians—Leon Ehrenpreis. And they were not all Jewish. Al Cameron, the great astrophysicist. James Truran, another astrophysicist. They were definitely not all Jewish. There was no religiosity there. In fact, most of the graduate students were not religious. A good fraction of them—most of the graduate students I interacted with were South American, and only a few of them were Jewish, Most not Jewish. I think there was a certain idealistic view to physics—the Aharonov view, the David Finkelstein view, the Joel Lebowitz way of approaching physics—a certain idealism about physics. I don’t mean political idealism. I mean—what should we call it? Love of Einstein, for a better word, although it wasn’t restricted to Einstein. And that may well have had to do with the origins of the Belfer Graduate School— from Rabbi Belkin. Rabbi Belkin was the president of the university at that time. Marvelous man. And he was the one who had the vision to create a graduate school of science. And I think maybe that sort of rabbinical tendency, whatever the right word is, may very well have influenced who the early faculty were. It was not a religious faculty, but it was idealistic in a certain way—depth of understanding is what counted. Is that a Jewish thing? I don’t know. Maybe—I don’t know.

توی این گفت‌و گو در مورد دین و دیندار بودن هم بحث‌هایی میشه. این‌که آیا فیزیک می‌تونه به سوال‌هایی مثل وجود خالق و دخالت اون درعالم مادی حرفی بزنه یا نه. عموما جواب ساسکیند اینه که من نمی‌دونم! در پاسخ به این که آیا فیزیکدون‌ها جایگاه خاصی دارن در مورد حرف زدن در مورد وجود خدا، ساسکیند میگه:

[laugh] Oh, boy. Wow. Yeah, I don’t think he does have any privileged position. Yeah. He, she. I think I would subscribe to that view. That doesn’t mean I don’t have my own view about it. … I don’t think any scientist can answer the question of whether there was an intelligence that was at the root of the creation of the universe. That would also be getting ahead of ourselves. But still, scientists do understand the thing that we have to understand. They know what the questions are. I know when I think about the question of creation, I’m very influenced by my own scientific background. If somebody says to me, “Is there a god?” I say, “Well, I don’t really know, but you know, I’m very puzzled. If there was a god, and god did create the universe, is god susceptible to the same rules as ordinary matter? Does god satisfy the laws of quantum mechanics? Is he made out of particles?” And so forth. That’s the way my head works. I can’t help thinking that way.

 I’m not an observant Jew. I didn’t have that background at all. I do not dismiss the possibility that there was –let’s call it an intelligence—that was involved in the creation of the laws of physics and the universe and all that. I do not dismiss that. But then I get myself into a logical paradox. Who created it? I don’t think this is the right way to think about it, but it’s the only way that I have available to me to think about it. So my own mental makeup is to be curious. I am a very curious person. I would like to know how the uni…and I would especially like to know, was there an intelligence? But I don’t see a way of getting at the answer.

ساسکیند به این هم اشاره می‌کنه که وقتی در مورد وجود خدا حرف می‌زنیم منظورمون وجود یک خالقه که جهان رو ایجاد کرده و دیگه هم باهاش کاری نداشته. ما با این تعریف بسیار ابتدایی (در مقایسه با تعریف و ویژگی خدا در ادیان مختلف) هم چندان حرفی برای زدن نداریم به عنوان فیزیکدان. چه برسه به اینکه بخوایم خدا رو نه تنها خالق که «موثر» در دنیای کنونی هم بدونیم:

 I once had this conversation with a Vatican advisor, a Jesuit. We agreed about absolutely everything, and in particular I asked him, “When you speak of god, do you speak of god the creator, or of god the intervener?” And he said, “I only mean god the creator.” And I had to admit, then, that I had no particular reason to believe that there was no god the creator. But then we started talking about god the intervener. And once god can intervene with the world and affect the world, then if we believe in science, we have to give it a set of rules, and those rules have to conform to what—well, they both have to conform to what the reality is, and they have to conform to what we call science. So does god have to satisfy a set of physical rules? Not if he doesn’t intervene. If all he did was create—OK, he created. But if he’s also allowed to poke his finger into it and change things and stir them up, then we have to have rules for that. If there are no rules for it, it means the world has just an element of random, incomprehensible randomness. And even randomness is a rule. Even randomness is a rule. 

جایزه چرخ برای بهترین وبسایت علمی

سیتپـــــور برنده جایزه چرخ برای بهترین وبسایت علمی سال ۱۴۰۰ شد. جایزۀ چرخ، جایزه‌ای برای بزرگداشت و سپاسگزاری از چهره‌های علم و فناوری در ایران هست. این جایزه تقدیم می‌شود به تیم نویسندگان سیتپور برای سال‌ها تلاش برای روایتگری در علم.

برای جزئیات بیشتر این ویدیو رو ببینید:

در مورد جایزه چرخ، زبان فارسی و وبلاگ‌نویسی علمی

در مورد روایتگری در علم و وبلاگ‌نویسی بیشتر بخوانید: