رفتن به نوشته‌ها

سیتپـــــور مطالب

لیسانس فیزیک با بیژامه!

یادمه زمانی بچه‌هایی که می‌خواستند برند رشته‌ی هنر (دوم دبیرستان زمان ما، نظام یکمی قدیم!) معمولا از طرف خانواده نهی می‌شدند، چون که رشته ریاضی‌-فیزیک و علوم تجربی گزینه‌های نزدیک‌تری هستند برای «یه چیزی شدن» تا هنر. خونواده‌ها و مدارس کاملا مزدورانه سعی می‌کردند دانش‌آموز بیچاره رو متقاعد کنند که وارد رشته‌های ریاضی و تجربی بشه چون که آینده بهتری در انتظارش خواهد بود! توجیه اکثر خونواده‌ها هم این بود: «درسته که به موسیقی علاقه‌داری ولی برای اینکه بتونی کار گیر بیاری بهتره بری درس مهندسی بخونی (مثلا!) و اینکه تو می‌تونی در کنار ریاضی و فیزیک خوندن (توی مدرسه و بعد دانشگاه) ، موسیقی هم یاد بگیری ولی نمی‌تونی بری رشته‌ی هنر و بعد در کنارش ریاضی یا فیزیک یاد بگیری که!» مسئله این بود که انگار با رفتن به موسسه‌ای که موسیقی تدریس می‌کرد، یادگیری موسیقی امکان‌پذیر بود در حالی که خارج از محیط مدرسه و دانشگاه یادگیری ریاضی و فیزیک خیر. به نظر من این توجیه‌ها یکی از بدترین انتقام‌هایی بود که نظام آموزشی بیمار ما از علم گرفت. امیدوارم این طرز تفکر امروز از بین‌ رفته باشه چون که امروز واقعا میشه دانشگاه نرفت ولی ریاضی و فیزیک یادگرفت!

توی این پست قصد دارم نشون بدم که تمام دروسی که یک دانشجوی کارشناسی فیزیک میگذرونه رو بدون رفتن به دانشگاه میشه گذروند، حتی با کیفیت بالاتر! امروز با وجود آموزش آنلاین این امکان هست که شما توی خونتون، زیر کولر و با بیژامه بشیند و مکانیک کوانتومی یا الکترومغناطیس یادبگیرید، اون هم از بهترین اساتید بهترین دانشگاه‌های دنیا!

دانشگاه‌های معتبر جهان که کلاس‌های درس خود را رایگان از طریق وب منتشر می‌کنند.
دانشگاه‌های معتبر جهان که کلاس‌های درس خود را رایگان از طریق وب منتشر می‌کنند.

دروس دانشجوهای فیزیک به سه دسته‌ی: ۱) دروس پایه ۲) دروس تخصصی ۳) دروس انتخابی تقسیم می‌شند که من سعی می‌کنم تا اونجایی که یادم هست لینک کورس‌‌(دوره)‌هایی که مرتبط با هر درس هست رو بذارم.

۱) دروس پایه:

نام درس

ارائه کننده

ریاضی‌پایه۱

Coursera , MIT OCW , مکتب‌‌خونه

ریاضی‌پایه ۲‍

  Coursera , MIT OCW , مکتب‌‌خونه، Khan Academy

فیزیک‌پایه۱

Coursera , edX, MIT OCW, مکتب‌‌خونه (۱) و (۲) ,  Yale University

فیزیک‌پایه۲

 edX, MIT OCW , مکتب‌‌خونه,  Yale University

فیزیک‌پایه۳

 edX, MIT OCW 

شیمی عمومی

UC Berkeley , The Ohio State University, MIT OCWKhan Academy

معادلات دیفرانسیل

 (1) , (2) edX, MIT OCW, مکتب‌‌خونه ، دانشگاه تهران ،  Khan AcademyUCLA

مبانی کامپیوتر

Python, Matlab، مکتب‌خونهPerimeter

۲) دروس تخصصی:

نام درس

ارائه کننده

فیزیک جدید

edX

مکانیک تحلیلی

Susskind (آپارات), Stanford , edX

اپتیک

Arizona State University , edX, MIT OCW

ترمودینامیک

 edX(1) (2), MIT OCW, مکتب‌خونه

مکانیک آماری

John Preskill CaltechStanford ,(2) (1)  Coursera (1) (2) , MIT OCW, مکتب‌خونه, Perimeter 

ریاضی‌فیزیک

MIT OCW(1)((2), Perimeter, مکتب‌خونه

الکترومغناطیس

,Arizona State University , مکتب‌خونه (1) (2), Stanford

مکانیک کوانتومی

مکتب‌خونه، (2)(1) Coursera, Stanford, UC Berkeley (1) (2), OxfordUC DavisPerimeter ,edX(1) (2), MIT

الکترونیک

مکتب‌خونه,  MIT OCW

فیزیک حالت‌جامد

OxfordPerimeter

۳) دروس انتخابی:

نام درس

ارائه کننده

ذرات بنیادی

Cern , Perimeter

پلاسما

edX

آب‌و‌هواشناسی

Coursera

اخترفیزیک

PerimeterCoursera , edX

کیهانشناسی

Coursera ,StanfordedX, MIT OCWPerimeter، مکتب‌خونه (۱) (۲)

نجوم مقدماتی

Coursera(1)(2) , edX, مکتب‌خونه

مبانی فلسفی مکانیک کوانتومی

مکتب‌خونه

میدان‌های کوانتومی

مکتب‌خونه(۱)(۲)(۳) , Perimeter

مکانیک سیالات/ایرودینامیک

UC Berkeley , edX, MIT OCW, مکتب‌خونه(۱)(۲)

بیوفیزیک

مکتب‌خونه

نسبیت خاص

WorldScienceU, ,StanfordedXPerimeter، مکتب‌خونه 

نسبیت عام

 ,StanfordPerimeter، مکتب‌خونه (1)(2)

دینامیک غیر خطی و‌ آشوب

 Cornell University, مکتب‌خونه

فیزیک اتمی و اپتیک

 MIT OCW (1) (2

نظریه ریسمان

 Stanford, Harvard
  • سوالی که ممکنه براتون مطرح بشه اینه که: پس واقعا دانشگاه رفتن وقت آدم رو تلف می‌کنه؟ یا مثلا نریم دانشگاه دیگه؟ یا دانشگاه رفتنمون اشتباه بود؟

جواب این سوال منفیه! دانشگاه فقط محل ارائه‌ی یک سری درس نیست! دانشگاه‌ها پایه و اساس پژوهش هستند و نه صرفا محل برگزاری یک‌سری کلاس! دانشگاه محل اجتماعات علمی و تحقیقاتی هست و به هیچ وجه نباید در دانشگاه رو بست! در ضمن شما توی دانشگاه با انسان‌های متفاوتی تعامل می‌کنید، انسان‌هایی که در بین وفور و پراکندگی منابع و راه‌های موجود برای رسیدن به سطح خوبی از علم می‌تونند شما رو راهنمایی و هدایت کنند. در حقیقت این‌که شما فقط انسان باهوشی باشید و یا اینکه مطالعه‌ی زیادی داشته باشید، کافی نیست. شاید در مقاطع اولیه تحصیل این قضیه‌ زیاد خودش رو نشون نده ولی زمانی که پای پژوهش به میون بیاد اون موقع هدایت علمی مناسب خودش رو به خوبی نشون میده.  مهم‌ترین تفاوت دانشگاه‌ها و موسسات‌ علمی تراز اول جهان با بقیه جاها در نوع کلاس‌هاشون و ساختمون‌هاشون نیست، بلکه وجود افراد به معنی واقعی متخصص هست که وظیفه‌ی هدایت علمی رو درست ایفا می‌کنند. این بحث خیلی مفصلیه، امیدوارم بشه طی چندتا پادکست توی رادیوفیزیک بهش پرداخت.

در پایان، از  همه‌ی دوستانم توی سایر رشته‌ها درخواست می‌کنم که این لیست رو در مورد رشته‌ی خودشون منتشر کنند.

  • مطالب مرتبط:
  1. آموزش آنلاین چه چیزی برای ما دارد؟!
  2. چگونه یک فیزیکدان خوب شویم؟!
  3. دانشگاه یک کتابخانه بزرگ نیست / دکتر فیروز آرش
  4. شرح دفاع «جان هنری نيومن» از ارزش بنيادي آموزش دانشگاهی: واكاوی ماموريت دانشگاه / دکتر فیروز آرش

جدید:

برسام این کار رو برای رشته «علوم کامپیوتر» انجام داده: لیسانس علوم کامپیوتر بدون پیژامه

لیست کتاب‌هایی که به شما در در زمینه آمار، احتمال و یادگیری ماشین کمک می‌کنه.

این خانم این کار رو برای ریاضی انجام داده، البته بالاتر از لیسانس: https://www.math3ma.com/blog/resources-for-intro-level-graduate-courses

«لذت درک امور» – ریچارد فاینمن

  لطفا قبل از شروع این پست، پست «ترجمه بهترین‌ آثار کوتاه‌ فاینمن!» را  بخوانید. ترجمه این مقاله کاری از گروه ترجمه دانشجویان فیزیک امیرکبیر است. شما می‌تواند این مقاله به صورت فایل pdf دانلود کنید.

ویدیوی لذت درک امور:

  • زیبایی یک گل

    زیبایی یک گل
    زیبایی یک گل (برای بزرگ‌نمایی کلیک کنید)

من دوست هنرمندی دارم، او بعضی اوقات دیدگاه هایی دارد که من زیاد با آن ها موافق نیستم. مثلا گلی را به دستش می گیرد و می گوید: « ببین چقدر زیباست » و من هم با او موافقم، در ادامه می گوید « می بینی، من به عنوان یک هنرمند زیبایی گل را می بینم. اما تو به عنوان یک دانشمند، آن را تکه تکه می کنی و از بین می بری». به نظر من او یک جور دیوانه است. اولا من معتقدم آن زیبایی را که او می گوید همه می توانند ببینند، از جمله من، شاید زیبایی شناسی من به اندازه او قوی نباشد ولی برای من هم زیبایی گل تحسین برانگیز است. و این در حالی است که من در مورد گل چیزهای بیشتری می‌بینم. من سلول ها و واکنش ها پیچیده‌ای که درون آنها اتفاق می افتد را می توانم تصور کنم و آنها هم به نوبه خود دارای زیبایی هستند. منظورم اینست که زیبایی فقط در ابعاد سانتی متری نیست و در ابعاد کوچکتر و در ساختارهای داخلی نیز زیبایی وجود دارد. همچنین در فرآیندهای داخلی این گل رنگ ها طوری آمیخته شده اند که حشرات را برای گرده افشانی جذب کنند. و این فرآیند جالبست چون این را نشان می دهد که حشره ها هم رنگ را می بینند. یک سوال پیش می آید: آیا این حس زیبایی شناسی در ساختارهای ریزتر هم وجود دارد؟ چرا زیباست؟ تمامی این سوالات گوناگون و جالب نشان می دهد که دانسته های علمی به هیجان، رموز و هیبت یک گل اضافه می کند؛ نمی توانم بفهمم که چگونه کاهش می دهد.

اجتناب از دروس علوم انسانی

من همواره آدمی تک بعدی بوده ام و فقط در جهت علمی تلاش می نمودم و در زمان جوانی تمام تمرکزم بر روی این یک بعد بود. وقت و حوصله زیادی برای یاد گرفتن چیزی که علوم انسانی نامیده می شود نداشتم، اگرچه در دانشگاه، دانشجو ناچار است تعدادی دروس علوم انسانی اخذ کند. من تمام تلاشم را می کردم که از یاد گرفتن هر چیز در این مورد و کار کردن روی آن دوری نمایم. بعد از آن، وقتی سنم بیشتر شد قدری سخت گیری من در این زمینه کاهش یافت و یاد گرفتم که در این مورد مطالعه کنم. اما راستش هنوز آدمی بیشتر یک بعدی هستم و در موارد دیگری غیر از این یک بعد (بعد علمی) چیز زیادی نمی دانم. هوش من محدود است و از آن در یک جهت خاص استفاده می کنم.

  • تیراناسوروس در پنجره

وقتی پسر بچه بودم در خانه مان یک دایره المعارف بریتانیکا داشتیم و پدرم عادت داشت مرا روی پایش بنشاند و برایم از دایره المعارف بخواند. ما با هم درباره دایناسورها حرف می زدیم . شاید هم در مورد برونتوزوروس یا تیراناسوروس رِکس صحبت می کردیم، به عنوان مثال چنین می خواند: « این موجود 25 فوت قد دارد و عرض سر آن 6 فوت است » و همین جا صحبتش را قطع می کرد و می گفت «ببینم مفهوم آن چیست. یعنی اگر آن در همین حیاط روبروی ما می ایستاد، قدش آن قدر بلند بود که می توانست سرش را از پنجره داخل کند. اما نه کاملا، چون سر او کمی عریض تر از پنجره بود و پنجره را می شکست».

هر چیزی را که با هم می خواندیم، به بهترین نحوی که بتواند به ذهنیت ما نزدیک تر باشد تصور می کردیم. این کار باعث شد یاد بگیرم که عمل کنم و هر چیزی را که می خوانم سعی کنم مفهوم و معنای آن را بفهمم. (با خنده) من عادت داشتم دایره المعارف را وقتی یک پسر بچه بودم بخوانم و آن را تعبیر کنم، خیلی هیجان انگیز و جالب بود که تصور گردد حیواناتی با این ابعاد وجود دارند. من از این که یکی از آنها از پنجره داخل شود نمی ترسیدم اما فکر کردم خیلی خیلی جالب بود که همه آنها منقرض شدند و در آن زمان هیچ کس نمی دانست چرا.

ما در نیویورک زندگی می کردیم، و معمولا تابستان ها به کوه های کَتسکیل می رفتیم. کوه های کتسکیل جایی بود که مردم در تابستان به آن جا می رفتند. آنجا مردم زیادی بودند لیکن پدرها در طول هفته برای کار کردن به نیویورك باز می گشتند و فقط آخر هفته ها دوباره به کوه می رفتند. وقتی پدرم از نیویورك می آمد مرا به میان جنگل می برد و برای من از چیزهای مختلف و جالبی که لابه‌لای جنگل اتفاق می افتاد صحبت می کرد – که بعد برایتان تعریف می کنم – اما مادرهای دیگر که این رفتار پدرم را می دیدند قطعا فکر می کردند که این کار خیلی خوبست و پدرهای دیگر هم باید پسرهایشان را برای قدم زندن به جنگل ببرند. آنها روی این موضوع کار کردند ولی در ابتدا به نتیجه‌ای نرسیدند. برای همین از پدر من خواستند که همه‌ی بچه ها را با خودش به جنگل ببرد، اما او قبول نکرد زیرا او با من یک ارتباط بخصوصی داشت و ما با هم یک امر شخصی در بین داشتیم. بالاخره بقیه پدرها مجبور شدند بچه هایشان را از هفته آینده برای قدم زدن به جنگل ببرند. دوشنبه‌ی بعد وقتی همه‌ی [پدرها] به سر کار برگشتند، بچه ها داشتند در مزرعه بازی می کردند که یکی از بچه ها به من گفت این پرنده را ببین، آیا می دانی از چه نوعی است و من گفتم: « کوچکترین نظری راجع به نوع این پرنده ندارم ». او ادامه داد «یک پرنده آوازه خوان گلو قهوه‌ای است. پدرت چیزی راجع به اون بهت نگفته؟ ». ولی اینطور نبود: پدرم به من مطالبی یاد داده بود. او در حالی که به پرنده نگاه می کرد گفت: « می دونی که این چه پرنده‌ای است؟ یک پرنده‌ی آواز خوان گلو قهوه‌ایست؛ اما به پرتقالی به آن … می گویند، به ایتالیایی …، به چینی …، به ژاپنی …، و غیره. و حالا تو در هر زبانی که بخواهی اسم آن پرنده را می دانی اما مطلقا هیچ چیز در مورد این پرنده نمی دانی. تو فقط فهمیدی که آدم ها در مکان‌های مختلف آن را چه نامیده اند». و سپس از من خواست که با هم به تماشای پرنده ها بنشینیم.

او به من یاد داده بود که به هر چیزی توجه کنم. یک روز وقتی که داشتم با قطار اسباب بازیم بازی می کردم، (از همان قطارهایی که بچه ها آن را روی ریل می کشند.) یادم می آید که داخل واگن یک توپ بود، وقتی که واگن را می کشیدم چیزی در مورد حرکت توپ فهمیدم، به پیش پدرم رفتم و به او گفتم: « نگاه کن بابا من یه چیزی رو فهمیدم. وقتی که واگنرا می کشم توپ به عقب واگن حرکت می کند و وقتی ناگهان آن را متوقف می کنم توپ به سمت جلو حرکت می کند.» از او پرسیدم که چرا این اتفاق می افتد او پاسخ داد که دلیلش را هیچکس نمی داند. و ادامه داد: « قانون کلی اینه که چیزهایی که در حال حرکت اند سعی می کنند به حرکت خودشان ادامه بدهند و چیزهایی که ساکن اند تمایل دارند که ساکن باقی بمانند مگر اینکه شما آنها را هل بدهید که این تمایل اینرسی نام دارد و هیچکس نمی داند که چرا وجود دارد ». حالا من به درك عمیقی رسیده بودم چون پدرم فقط یک اسم به من یاد نداد، او تفاوت بین دانستن اسم یک چیز و خود آن را می دانست. چیزی که من هم خیلی زود یاد گرفتم. پدرم ادامه داد: « اگر دقیق نگاه کنی می فهمی که این توپ نیست که به عقب واگن می رود بلکه این عقب واگن است که تو داری بر خلاف حرکت توپ می کشی. یعنی توپ می ایستد یا حتی به خاطر اصطکاك به جلو حرکت می کند و به عقب نمی رود ». من به طرف واگن کوچکم دویدم و دوباره توپ را روی واگن گذاشتم و آن را از زیرش کشیدم در حالی که از کنار به آن نگاه می کردم دیدم که پدرم درست گفته است. وقتی که واگن را به جلو می کشیدم توپ اصلا به عقب نمی رفت. توپ نسبت به واگن به عقب می رفت ولی نسبت به بیننده کمی به جلو می رفت و در واقع عقب واگن بود که به آن می رسید. با این روش بود که من توسط پدرم تعلیم دیدم، با این نوع مثال‌ها و فقط با بحث های جالب و دوست داشتنی، بدون هرگونه فشار و اجباری من مورد آموزش پدرم قرار گرفتم.

چگونه‌ازكامپيوتردرفيزيک‌استفاده‌كنيم؟ این قسمت: حل عددی!

سال‌ها بود که بشر به بسیاری از معادلات سخت ریاضی و ارتباط تنگاتنگشان با علومی مانند فیزیک رسیده بود. اما نکته‌ خیلی مهمی وجود داشت و آن انجام این محاسبات و کشف و بررسی پدیده‌های طبیعی مرتبط با آن‌ها بود. در بسیاری از موارد، انجام یک عملیات ساده ریاضیاتی ساعت‌ها و حتی روزها از دانشمندان وقت میگرفت و زمان مهمترین مساله به حساب می‌آ‌مد. انسان آن روزها به این فکر افتاد که چگونه می‌تواند این حجم وسیع از محاسبات را در زمان کمتر انجام دهد! و از همان روزها، اولین جرقه براي ساخت وسیله‌ای که بعدا به آن کامپیوتر گفتند زده شد. در سال 1937 میلادي اولین نسل از رایانه‌ها ساخته شد. البته قبل از این سال هم تلاش‌های موفقی در زمینه‌ی ساخت دستگاه‌های محاسباتی انجام شده بود. شاید کسی در آن زمان فکرش را نمی‌کرد رایانه‌ها تا حد امروزی بتوانند پیشرفت کنند. طوری که امروزه نمی‌توانیم نقش اساسی آن را در زندگی در نظر نگیریم. اما اگر از آن دوران بگذریم و برسیم به زمان خودمان،  می‌بینیم به‌طور تخصصی در زمینه فیزیک، کامپیوترها نقش و جایگاه ویژه‌ای پیدا کرده‌اند که روز به روز در حال پررنگ‌تر شدن می‌باشد. شبیه سازی‌های گسترده‌ای که در فیزیک انجام میشود، محاسبات فیزیکی، طراحی آزمایشهای متنوع فیزیکی و . . . نمونه‌های کوچکی از کاربردهای کامپیوتر در فیزیک به حساب می‌آید. 

رایانه کلوسوس به هدف شکستن کدهاي پنهانی آلمانیان در طول جنگ جهانی دوم ساخته شد
رایانه کلوسوس به هدف شکستن کدهاي پنهانی آلمانیان در طول جنگ جهانی دوم ساخته شد

قصد دارم طی چند پست از کاربردهای مختلف کامپیوتر در فیزیک صحبت کنم و نمونه‌هایی از شبیه سازی‌ها، تحلیل داده‌ها و کمی هم پردازش تصویرهای انجام شده در فیزیک را مورد بررسی قرار دهم.

براي برنامه‌نویسی چه‌کار کنیم؟

خب با زبان‌های مختلفی می‌توانیم برنامه‌مان را بنویسیم. در اینجا براي نمونه از دو زبان برنامه نویسی استفاده میکنیم : ++C و Python و برنامه‌هایمان را با هر دو زبان می‌نویسیم. البته هرجا که نیاز باشد از نرم‌افزارهای دیگر هم حتما استفاده میکنیم تا با طیف گسترده‌تری از برنامه‌های کاربردی آشنا شویم.  درواقع ++c که پیشرفته شده زبان c هست، یک زبان همه منظوره است که امکان برنامه نویسی شئ‌گرا جزو ویژگی‌های اصلی آن به حساب می‌آید و یک زبان برنامه نویسی با سطح میانی به حساب می‌آید. براي نوشتن کدها به زبان ++C میتوان از نرم افزار هاي مختلفی استفاده کرد. در سیستم عامل ویندوز نرم افزارهایی مثل ++Code Blocks، Dev C  و Visual studio را شاید بتوان به عنوان ساده ترین و پرکاربردترین نرم‌افزارهای برنامه نویسی به زبان سی پلاس پلاس معرفی کرد. در توزیع‌های گنو/لینوکس به سادگی میتوان کدهای مورد نظر را در هر نرم‌افزار ویرایش‌گر متنی مانند gedit (در دسکتاپ گنوم) نوشت و در ترمینال اجرا کرد. (یا مثلا اینکه از نرم افزار geany  استفاده کرد). اما در مورد پایتون باید گفت یکی از ساده ترین، پرکاربردترین و محبوب‌ترین زبان‌های برنامه‌نویسی به حساب می‌آید. دارای محیطی بسیار ساده و دلنشین است که ارتباط برقرار کردن با آن بسیار راحت می‌باشد. برای اطلاعات بیشتر به وب‌سایت پایتون رجوع بفرمایید.

برویم سراغ یکی از ساده‌ترین و تقریبا مهم‌ترین مباحث موجود در فیزیک: حل معادله دیفرانسیل. در بسیاری از مسائل فیزیکی(کلاسیک و غیرکلاسیک)، به یک معادله دیفرانسیل برخورد می‌کنیم. اگر سري به کتاب‌های آموزشی معادلات دیفرانسیل بزنید، راه‌های تحلیلی زیادی براي حل این معادلات پیدا خواهید کرد. از راه حل‌های ساده گرفته تا راه‌های پیچیده و دشوار. در اینجا می‌خواهیم به معرفی روش‌هایی که بتوان به‌سادگی بسیاری از معادلات دیفرانسیل را به صورت عددی (با کامپیوتر و برنامه نویسی) حل کرد، بپردازیم. در ضمن نکته بسیار مهمی که باید ذکر کنیم این است که بسیاری از معادله‌های دیفرانسیل جواب تحلیلی ندارند! و استفاده از روش‌های عددی تنها راه حل به حساب میآید.

ابزار برنامه‌نویسی!

 

روش حل عددی چیست!؟

در روش‌های عددی مساله را بجای اینکه پیوسته در نظر بگیریم(مانند حل تحلیلی)، گسسته فرض می‌کنیم سپس در بازه‌های زمانی کوچک جواب مساله را به دست می‌آوریم و مساله را با تقریب زدن ساده ترش می‌کنیم. اینکار را بارها تکرار میکنیم تا به جواب مورد نظرمان برسیم. براي انواع معادلات دیفرانسیل، انواع روش‌های عددی وجود دارد مثل : روش اویلر ، روش اویلر-کرامر، روش هون ، روش تیلور، روش رانگ-کوتا ، روش آدامز-بشفورت-مولتون و … .

با یک مثال ساده فیزیکی شروع کنیم:

می خواهیم نیمه عمر یک ماده رادیواکتیو را بررسی کنیم. نیمه عمر به مدت زمانی می‌گویند که ماده پرتوزا به نصف مقدار اولیه‌ی خود بر اثر واکنش‌های پرتوزایی تقلیل پیدا می‌کند. معادله دیفرانسیل مربوط به نیمه‌عمر رادیو اکتیو را میتوان بصورت زیر نوشت:

$$ \frac{\mathrm{d}N(t) }{\mathrm{d} t}=-\frac{N(t)}{\tau}  $$

در این معادله ${N(t)}$ تعداد ذرات ماده برحسب زمان و τ طول عمر متوسط ماده‌ی پرتوزا است.${N(0)}$ مقدار اولیه ماده‌است و τ برای اورانیوم ۲۳۵ برابر با ۷۰۰میلیون سال است. حل تحلیلی این معادله به صورت زیر می‌باشد:

 $$N(t)=N_0 e^{-t/\tau }$$

 حالا میخواهیم این معادله را گسسته کنیم و در بازه‌های زمانی کوچک حلش کنیم و در نهایت حل عددی آن را با جواب تحلیلی مقایسه کنیم. ابتدا بسط تیلور تابع${N(t)}$ را می نویسیم:

$$N_{(t)}=N_0 +\frac{\mathrm{d}N_{(t)} }{\mathrm{d} t}\Delta t+ \frac{1}{2}\frac{\mathrm{d^2}N_{(t)}  }{\mathrm{d} t^2}\Delta t^2+…$$

خب در بسط تیلور، هرچقدر t∆ کوچکتر باشد تقریب دقیق‌تری داریم (زیرا گسستگی کمتر میشود) و حتی می‌توانیم جملات از مرتبه 2 به بعد را هم نادیده بگیریم.زیرا هرچقدر t∆ کوچکتر باشد، در عمل وقتی به توان میرسد قابل چشم پوشی است. در نتیجه به معادله زیر میرسیم:

$$N_{(t)}\approx N_0 +\frac{\mathrm{d}N_{(t)} }{\mathrm{d} t}\Delta t $$ $$  \frac{N_{(t)}-N_0}{\Delta t}\approx \frac{\mathrm{d}N_{(t)} }{\mathrm{d} t}$$

$$\frac{\mathrm{d}N_{(t)} }{\mathrm{d} t}=\lim_{\Delta t\to 0}{\frac{N_{(t+\Delta t)}-N_{(t)}}{\Delta t}}$$

پس میتوانیم به راحتی نتیجه بگیریم :

 $$N_{(t+\Delta t)}\approx
N_{(t)}+\frac{\mathrm{d}N_{(t)} }{\mathrm{d} t}{\Delta t}$$

این معادله در واقع مقدار تابع مورد نظر را در هر مرحله نسبت به مرحله قبل به ما میدهد (به اندیس ها توجه کنید).طبق معادله دیفرانسیل مربوط به نیمه عمر رادیواکتیو هم میدانیم${ \frac{\mathrm{d}N(t) }{\mathrm{d} t}=-\frac{N(t)}{\tau}  }$ و در نهایت میرسیم به یک معادله تر و تمیز برای برنامه نویسی و محاسبه عددی:

$$N_{i+1}\approx
N_{i}-\frac{N_{i} }{\tau }{\Delta t}$$ 

به این روش گسسته‌سازی معادله دیفرانسیل، روش اویلرمی‌گویند.

خب تنها کاري که باید براي نوشتن برنامه انجام دهیم پیاده کردن الگوریتم اویلر است . خب اطلاعاتی که در اختیار داریم چیست؟ مقدار اولیه ماده (شرایط اولیه)، معادله دیفرانسیل مربوطه و گام گسسته‌سازی یا همان t∆ . کاري که باید بکنیم این است که${N_{i+1}}$ را نسبت به مرحله قبل حساب و مقدار آن را در هر مرحله ذخیره کنیم. پس در واقع ما به یک ساختار تکرار نیازمندیم که در هر مرحله زمان و ${N_{i+1}}$ را برایمان حساب و ذخیره کند. یک سری کارهای جانبی هم می‌ماند مثل تعریف متغیرها ، اضافه کردن کتابخانه ها‌ (در زبان ++c) و … که کارهای ساده‌ا‌ی هستند.

در ++c:

#include <iostream>
#include <fstream>
using namespace std; 
int main()
{
double N, dt = 0.01, T = 700, t = 0;
N = 100;
 ofstream o;
 o.open("Radioactive Decay.txt", ios::out);
 o<<"Time"<<"\t"<<"Numerical"<<endl;
 while(t <= 20)
 {
 o<<t<<"\t"<<N<<endl;
 N = N - (N / T) * dt;
 t = t + dt;
 }
 o.close();
}

و در پایتون:

t = 0
T = 700
N = 100 
dt = 0.01 
f = open("Radioactive Decay.txt", "w") 
f.write("Time" + "\t" + "Numerical" + "\n") 
while t <= 20 : 
‌               N = N - ( N / T ) * dt
               t = t + dt
               f.write(str(t) + "\t" + str(N) + "\n")
f.close()

سعی کردیم برنامه‌ها را در نهایت سادگی بنویسیم! در قسمت اول برنامه، متغیرهای مورد نیاز را تعریف کردیم و مقدارهاي اولیه را به آن‌ها نسبت دادیم. سپس یک فایل ایجاد کردیم تا اعداد محاسبه شده را در آن ذخیره کنیم. قسمت بعد با استفاده از یک دستور تکرار، الگوریتم اویلر را پیاده و اعداد را در فایلی که قبلا ایجاد کرده بودیم، ذخیره کردیم . حالا ما از این اعداد استفاده می‌کنیم و نمودارهاي مساله مورد نظرمان را رسم می‌کنیم.

در نمودارهای زیر حل تحلیلی و عددی را با هم مقایسه و درصد اختلاف آنها را با توجه گام گسسته‌سازی مقایسه کرده‌ام. به این نکته هم باید توجه کرد که شرایط اولیه مساله کاملا دلخواه است و می‌توان مساله را به ازای شرایط اولیه مختلف حل و جواب‌ها را مقایسه کرد. 

نمودار 1
حل عددی معادله دیفرانسل با ثابت زمانی 1 ثانیه و بازه های زمانی 0.05 ثانیه

حل تحلیلی معادله دیفرانسیل با ثابت زمانی 1 ثانیه
حل تحلیلی معادله دیفرانسیل با ثابت زمانی 1 ثانیه

مقایسه حل تحلیلی و حل عددی با بازه­های زمانی 1 ثانیه
مقایسه حل تحلیلی و حل عددی با بازه­های زمانی 1 ثانیه

قایسه حل تحلیلی و حل عددی با بازه­های زمانی 0.5 ثانیه
مقایسه حل تحلیلی و حل عددی با بازه­های زمانی 0.5 ثانیه

می‌بینیم که طبق انتظارمان حل تحلیلی و حل عددی بسیار به هم نزدیک هستند و با کاهش گام گسسته سازی جواب تحلیلی و عددی بسیار بهم نزدیک می‌شوند. معادله‌های دیفرانسیل زیادي را میتوان به همین سادگی حل کرد. می‌توان از بخش گرافیکی خود محیط برنامه‌نویسی هم استفاده کرد و نمودارها را در همان محیط برنامه‌نویسی رسم کرد (به زودی در مورد آن‌ها هم می‌نویسم). همچنین میتوان خروجی برنامه را برای تحلیل‌های دقیق‌تر و کارهای جالب و هیجان انگیز دیگر، به نرم‌افزارهای ریاضیاتی پیشرفته مثل Methematica داد.

چند سوال باقی می ماند: آیا همه معادلات دیفرانسیل را می‌توان با این روش حل کرد؟ اگر معادله دیفرانسیل مرتبه یک نباشد حل عددی آن چگونه می‌شود؟ حل‌های عددی برای هر مقدار اولیه و هر گام گسسته سازی دارای جواب قابل قبول هستند؟ به امید خدا در پستهای بعدي این سوالات را بررسی خواهیم کرد.

  • منابع
  • http://en.wikipedia.org/wiki/History_of_computing_hardware http://en.wikipedia.org/wiki/Python_(programming_language)
  • http://en.wikipedia.org/wiki/C%2B%2B Nicholas J Giordano_ Hisao Nakanishi-Computational physics-Pearson_Prentice Hall (2006)

انتشار پادکست۱/۰ «فیزیک پایه: سهل ممتنع»

بی‌نهایت‌ها- نگاره آزاد از ویکی پدیا
بی‌نهایت‌ها- نگاره آزاد از ویکی پدیا

پادکست شماره ۱/۰،«فیزیک پایه – سهل ممتنع»،  گفت‌وگوی صمیمی بین عباس کریمی و امید مومن‌زاده در مورد مفاهیم ابتدایی فیزیک پایه است . مفاهیمی که به وفور از آن‌ها استفاده می‌کنیم و ظاهرا بسیار بدیهی  به نظر می‌رسند؛ در صورتی که این‌گونه نیست! مفاهیمی مثل جرم لختی، انرژی، فضا، بی‌نهایت و … . همچنین در این پادکست عباس کریمی به این پرسش پاسخ می‌دهد که آیا قوانین فیزیک کشف و یا اختراع شده‌اند و پس از آن امید مومن‌زاده به این سوال در مورد ریاضیات می‌پردازد.

 
برای کمی سرگرمی بیشتر، از این به بعد شماره‌ی پادکست‌ها به این صورت خواهد بود که ارقام ثابت کاهش یافته پلانک ،با افزایش دقت، شماره برنامه می‌شوند. در هر پادکست جدید یک رقم بامعنی به رقم قبلی اضافه خواهد شد. این شماره ۱/۰ ، شماره بعد ۱/۰۵، شماره بعد از آن ۱/۰۵۴ و …

دانلود با کیفیت 320 kbps:
دانلود با کیفیت 128 kbps:

این پادکست یک برداشت کاملا آزاد از یکی از برنامه‌های World Science U است.  آهنگ پخش شده در ابتدا و انتهای این پادکست برگفته شده از وب سایت symphonyofscience.com هستند. شما می‌توانیدسایر موزیک‌های پخش شده در این پادکست را از سایت jamendo.com رایگان و آزاد تهیه کنید.

با تشکر از همه‌ی شما. امیدواریم که از شنیدن این پادکست لذت ببرید 🙂

نور: یه چیزی بیییییییییینِ موج و ذره :)

سلام،

خُب این اولین پُست من در اینجا است. در واقع اولین پُست اینترنتی من به این شکل. کمی در گوپس (g+) می‌نویسم، اما به طور کلی اهل نوشتن در دنیای مجازی نیستم. این بار هم عباس به من گفت که بنویسم. قرار شد کمی درباره‌ی آزمایشی که کمی پیش‌تر انجام شد بنویسم. در واقع باید خیلی زودتر می‌نوشتم اما نشد.

خُب قضیه چیه؟ در یک خط بخوایم بگیم داستان این است که برای اولین بار به طور هم‌زمان ویژگی ذره‌ای و موجی نور دیده شده!

برگرفته از سایت دانشگاه پلی تکنیک لوزان
برگرفته از سایت دانشگاه پلی تکنیک لوزان

بگذارید برگردیم عقب. در زمان جناب نیوتون و فرما نور، به عنوان یک سری ذره دیده می‌شد، اینکه میگم دیده می‌شد یعنی منظر عمومی و علمی و نه «دیدن با چشم». این طور فکر می‌شد که نور از یک سری ذره تشکیل شده که در جهت مستقیم حرکت می‌کنند و با برخورد با سطحی یا عبور می‌کنند و یا بازتاب می‌شوند. قانون اسنل-دکارت هم به ما می‌گه که اگر ذرات بخواهند بازتاب پیدا کنند، با همون زاویه‌ای که نسب به خط عمود به سطح تابیده شدند، بازتاب می‌شوند و اگر هم عبور کنند بسته به سرعت نور در دو محیط زاویه در محیط دوم تعیین میشه(همون قانونی که توش سینوس و زاویه و اینا داره:) ). اگر اصل جناب فِرما رو هم بپذیرید هر دو قانون به‌دست می‌آیند. اصل این است که نور مسیری رو طی می‌کنه که کمترین زمان رو سپری کنه. یعنی می‌خواد زود به مقصد برسه. با کمی ریاضیات و هندسه هر دو قانون با این اصل اثبات می‌شوند. خُب، همه چیز خوب بود و عدسی‌ها، تلسکوپ‌ها و میکروسکوپ‌ها هم ساخته شدند. بخش 26 نوشته‌های فاینمن را می‌تونید بخونید.

اما این نوع نگاه به نور همه چیز رو توضیح نمی‌داد! برای نمونه پراش رو توضیح نمی‌داد. در آزمایش پراش شما یک روزنه‌ی باریک دارید که نور به علت عبور از این روزنه‌ی کوچک طرحی روشن-تاریک روی صفحه‌ی نمایش درست می‌کنه. اگر یک لیزر داشته باشید(فکر می‌کنم همین لیزرهای کوچک دستی هم کار را راه بیاندازد) و آن را به یک تار مو بتابانید روی دیوار یک طرح روشن و خاموش می‌بینید. اینجا تار جای روزنه است و هوای بیرون جای فضایی که روزنه روی آن تشکیل شده بوده! درست است برعکس است! اینجا نور از همه جا جز تار مو به دیوار می‌رسد، اما در حالتی که روزنه داریم، فقط از روزنه نور می‌رسد. اما نتیجه در کُل یکسان است. بخش 30 نوشته‌های فاینمن را می‌تونید بخونید.

این آزمایش و به نظر کارهای دیگر فیزیک‌دانان رو وادار کرده بود تا تئوری موجی رو آماده کنند. در این بین آزمایش دوشکافی یانگ هم خیلی تاثیر

آزمایش دوشکاف یانگ - برگرفته شده از صفحه ویکی‌پدیای این آزمایش
آزمایش دوشکاف یانگ – برگرفته از صفحه ویکی‌پدیای این آزمایش

گذاشت. در این آزمایش روی یک دیواره‌ی مات دو شکاف ایجاد می‌کنند. از یک منبع، نور به سمت این دو شکاف تابیده می‌شود و پس از عبور از دو شکاف نور به پرده می‌رسد. برای اینکه آزمایش رو بفهمیم اول بیاید حالت تک شکاف رو در نظر بگیریم. فرض هم می‌کنیم پراش نداریم. یعنی لبه‌ی روزنه‌ای که درست کردیم دست به نور نمی‌زنه. انتظار داریم که روبروی روزنه بر روی پرده نور یک بخش روشن داشته باشیم و همین طور آرام آرام با دور شدن از آن، شدت نور کم بشه. حالا اگر دو تا از این روزنه‌ها داشته باشیم چی؟ خُب انتظار می‌ره که دو تا از این روشنی‌ها داشته باشیم. یعنی یکی روبروی روزنه‌ی اول و یکی دیگه روبری روزنه‌ی دوم. بقیه‌ی جاها هم به تناسب فاصله‌شون کمتر  و کمتر روشن باشند. اما در کمال تعجب یک سری موجود روشن و خاموش می‌بینیم! اینکه یک جاهایی کاملن تیره باشند، یعنی اصلن انگار نه انگار که نور تابیده شده عجیبه واقعن!!! بخش 29 از نوشته‌های فاینمن را می‌تونید بخونید.

اینجا است که تئوری موجی نور خیلی خودنمایی می‌کنه. اگر شما در نظر بگیرید که دو جبهه‌ی موج دارید، یکی از روزنه‌ی اول و یکی از دوم، این دو جبهه می‌تونن به صورت هم‌فاز یا ناهم‌فاز به هم برسند، پس می‌تونند بر شدت هم بیافزایند یا کم کنند، می‌تونند برای هم مفید باشند یا مخرب. پس یه جاهایی روشنایی زیاد میشه و یک جاهایی تاریک!

در ادامه‌ی قرن نوزدهم با توسعه‌ی الکترومغناطیس و نوشته شدن معادلات ماکسول، مشخص شد که برای نور میشه یک توصیف موجی پیدا کرد. ماکسول نشون داد که نور در معادله‌ی موجی صدق می‌کنه که در مکانیک و صوت می‌شناختند. پس نور موج است! از طرفی همون معادلات تمامی آنچه در دنیای ذره‌ای هم بود رو توصیف کردند. یعنی قانون بازتاب با زاویه‌ی یکسان با تابش و قانون اسنل-دکارت از دل توصیف موجی و معادلات ماکسول بیرون اومد. پس دیگه همه چیز به نظر خوب می‌رسید، تمامی آزمایش‌ها با توصیف جدید می‌خوند و همه خوشحال. پس نور موج بود.

اما کمی که گذشت ورق برگشت. آزمایشی انجام شد به نام فوتوالکتریک .

نموداری از تابش الکترون‌ها از یک صفحهٔ فلزی. این امر زمانی رخ می‌دهد که انرژی واردشده توسط فوتون داخل‌شونده بیش از تابع کار ماده باشد. - برگرفته شده از ویکی‌پدیا
نموداری از تابش الکترون‌ها از یک صفحهٔ فلزی
برگرفته از ویکی‌پدیا

در این آزمایش نور به یک ورقه‌ی رسانا تابیده می‌شود. اگر شرایطی مهیّا باشد، الکترون‌ها از ورقه کنده می‌شوند. اگر این برگه به پتانسیل صفر بسته شده باشد، و در جایی دیگر پتانسیل مثبت باشد، الکترون‌ها به سمت پتانسیل مثبت می‌روند و به این ترتیب آشکار می‌شوند. بر اساس تئوری الکترومغناطیس اگر شدت نور به اندازه‌ی کافی زیاد باشد، باید الکترون‌ها از ورقه کَنده شوند. طبق این پیش‌بینی فرکانس نور تابیده اهمیت ندارد. در این صورت در هر فرکانسی اگر شدت نور به اندازه‌ی کافی زیاد شود باید بتوان الکترون را کَند. اما در آزمایش خلاف این دیده شد. شدت به هیچ وجه مهم نیست! فرکانس مهم است! فرکانس نور تابیده باید از حدی بیشتر باشد تا الکترون‌ها کَنده شوند و به سمت پتانسیل مثبت حرکت کنند. انیشتین پدیده را با توصیف ذره‌ای از نور توجیه کرد. این یکی از مقالات مهم 1905 انیشتین است. خودش فکر می‌کرد که دیگه هیچ وقت کسی به این آزمایش و مقاله برنمی‌گرده اما خُب هم به خاطرش نوبل گرفت و هم بی‌شک در چارچوب فکری فیزیک‌دانان تاثیر شگرفی گذاشت. اما توجیه چی بود؟ توجیه این است که نور از بسته‌های انرژی تشکیل شده. هر بسته انرژی مشخصی داره که رابطه‌ی خطی با فرکانس داره. به این ترتیب انرژی نور کوانتیده است و ضریب صحیحی از انرژی بسته‌ها است. به این ترتیب این شدت نیست که اهمیت داره، بلکه فرکانس نور است. جالب اینجا است که پس از توسعه‌ی تئوری کوانتوم این بسته‌های نور بهتر شناخته شدند و مشخص شد هر کدام انرژی و تکانه‌ی مشخصی دارند و این بسیاری از پدیده‌های بعدی در دنیای کوچک مقیاس رو توصیف کرد. این بسته‌های کوچک، این ذرات نور رو فوتون می‌نامند. بخش‌های 37 و 38 از فاینمن را ببینید.

خیلِ خُب… تا اینجا دیدیم که هرجایی یک نوع نگاه به نور به ما کمک می‌کنه تا پدیده رو توصیف کنیم. اما آیا می‌تونیم آزمایشی انجام بدیم که هم‌زمان هر دو جنبه رو نشون بده؟

الآن جواب این سوال بلی است. در دانشگاه پلی‌تکنیک لوزان اومدند و یک پرتو نور رو به یک نوار نازک رسانا تاباندند. به این ترتیب یک موج ایستا از نور در داخل این سیم نازک درست کردند. خُب پس موج داریم، اما یادمون باشه که این نور جنبه‌ی ذره‌ای هم داره. اما سوال مهم‌تر اینکه اصلن چه طور نور رو ببینیم؟ ما همیشه با نور همه چیز رو می‌بینیم. چه‌طوری نور رو ببینیم؟ خُب با الکترون. میکروسکوپی وجود داره که با الکترون کار می‌کنه!

حالا چه کردند؟ این دوستان  اومدند و یک سری الکترون رو تابوندند به این سیم نازک. الکترون‌ها بسته به اینکه به کجای موج ایستاده برخورد کنند سرعت‌شون زیاد یا کم میشه. با یک میکروسکوپ خیلی سریع می‌تونند جای این اتفاق رو مشخص کنند. به این ترتیب حالت موجی نور رو می‌بینند.

اما حالت ذره‌ای چه‌طور؟ حالا بیاید فرض کنیم که جای موج اونجا یک سری فوتون هستند. وقتی الکترون به سیم برخورد کنه با این فوتون‌ها برخورد می‌کنه.  اما انرژی و تکانه در این برخوردها کوانتیده است! یعنی ضریبی صحیح از فرکانس موج ایستاده است که توی سیم است. پس به این ترتیب با توجه به این کوانتیده بودن بعد از برخورد هم الکترون هر انرژی‌ای نمی‌تونه داشته باشه. انرژی‌ای که به الکترون از طریق این فوتون‌ها می‌رسه کوانتیده است! یعنی انرژی الکترون‌ها بعد از برخورد رو اگر اندازه‌گیری کنیم، می‌بینیم که تغییراتش ضریبی از همون بسته‌های انرژی فوتون‌ها است. این کاری است که انجام دادند! یعنی انرژی الکترون رو بعد از عبور از سیم اندازه‌گیری کردند و دیدند که اختلافش با مقدار اولیه همون بسته‌ها است. به این ترتیب برای اولین بار تونستند هر دو جنبه‌ی نور رو در یک آزمایش نمایش بدهند.

این ویدئو رو ببینید:

ترجمه بهترین‌ آثار کوتاه‌ فاینمن!

A collection of short works from Richard Feynman

تیم‌ترجمه سیتپور شروع به ترجمه بهترین آثار کوتاه فاینمن نموده است.

کتاب The Pleasure Of Finding Things Out مجموعه‌ای از سخنرانی‌ها، مصاحبه‌ها و مقالات چاپ شده فاینمن است. سعی ما بر ترجمه همه‌ی آثار موجود در این کتاب می‌باشد. در کتاب نام‌برده ۱۳ مطلب موجود است که تاکنون برخی از آن‌ها ترجمه شده‌اند، از جمله: «علم چیست؟» و «فضای زیادی در سطوح پایین وجود دارد!»

درصورت تمایل این کتاب را دانلود کنید و عنوان مطلبی که علاقمند به ترجمه آن هستید را در قسمت نظرات بنویسید و یا به نشانی abbascarimi در gmail ایمیل کنید!

دانلود کتاب The Pleasure Of Finding Things Out

تا کنون مقاله‌های زیر توسط اعضای تیم ترجمه، ترجمه شده‌اند، در صورت تمایل مقاله‌هایی غیر از این‌موارد انتخاب کنید:

The Pleasure of Finding Things Out (1

2) Cargo Cult Science

(این لیست آپدیت می‌شود)

 

ما به یاد کسانی که راه را هموار ساختند هستیم و به آنها خواهیم پیوست!

منتظر شما هستیم

تیم ترجمه سیتپور

انتشار پادکست شماره صفر، «فیزیک به چه دردی می‌خوره؟»

سلام
سال نو مبارک
بالاخره پادکست اول آماده شد. لطف کنید گوش کنید و نظرتون رو بهمون بگید. هرچقدر به جزئیات بیشتری اشاره کنید صددرصد بهتر میشه رادیوفیزیک.
ممنون که همراه هستید 🙂
پادکست شماره صفر، «فیزیک به چه دردی می‌خوره؟»
در این پادکست  عباس کریمی و امید مومن‌زاده به بررسی تاثیر فیزیک بر زندگی روزمره و فناوری‌های آینده پرداخته‌اند.
  • لینک Sound Cloud: دانلود
  • لینک Dropbox: دانلود
  • لینک Google Drive: دانلود
  • دانلود مستقیم از سایت رادیو فیزیک (ترجیحا از گزینه‌های بالا استفاده کنید): دانلود