رفتن به نوشته‌ها

سیتپـــــور مطالب

اشتباه‌های زیاد آینشتین

متن پیش رو ترجمه‌ جستاری از کارلو روولی فیزیک‌دان ایتالیایی است. او عمدتا در زمینه گرانش کوانتومی کار می‌کند و بنیان‌گذار نظریه گرانش کوانتومی حلقه است. اصل این نوشته اخیرا در کتابی با عنوان There Are Places in the World Where Rules Are Less Important Than Kindness منتشر شده است. این جستار پیش از رصد امواج گرانشی نوشته شده است. رصد مستقیم امواج گرانشی در ۱۴ سپتامبر ۲۰۱۵ پنج ماه پس از انتشار این مقاله انجام شد. در سال ۲۰۱۷ این مشاهده منجر به دریافت جایزه نوبل در فیزیک شد.

شکی نیست که آلبرت آینشتین یکی از دانشمندان بزرگ قرن بیستم بود که عمیق‌تر از دیگران رازهای طبیعت را دید. آیا این به معنی این است که ما باید هر کاری را که او انجام داده‌است، درست بدانیم؟ او هرگز اشتباه نمی‌کرد؟ برعکس!
در واقع، تعداد کمی از دانشمندان به اندازه آینشتین اشتباه کرده‌اند و آن‌هایی که به اندازهٔ او نظر خود را تغییر داده‌اند انگشت‌شمارند. در مورد اشتباهات او در زندگی روزمره که موضوعی شخصی است و در نهایت به خودش مربوط است صحبت نمی‌کنم. بلکه در مورد اشتباه‌های کاملا علمی او سخن می‌گویم؛ ایده‌های اشتباه، پیش‌بینی‌های نادرست، معادلات پر از خطا و ادعاهای علمی‌ای که خود او پسشان گرفت و آن‌هایی که نادرست بودنشان ثابت شد.


اجازه دهید برایتان چند نمونه بیاورم. امروزه می‌دانیم که جهان در حال انبساط است. ژرژ لومتر، فیزیک‌دان بلژیکی، با استفاده از نظریه‌های خودِ آینشتین، موفق به درک این موضوع شد و او را از یافته‌های خود آگاه کرد. آینشتین اما آن ایده‌ها را رد کرد و در پاسخ گفت که آن‌ها بی‌معنی‌اند و تنها در دههٔ سی میلادی که انبساط واقعاً مشاهده شد حرف خود را پس گرفت. یکی دیگر از پیامدهای نظریه او وجود سیاه‌چاله‌ها است؛ او چندین متن پراشتباه در این زمینه نوشت و ادعا کرد که جهان در لبه سیاه‌چاله پایان می‌یابد. وجود امواج گرانشی که اکنون برای آن شواهد غیرمستقیم داریم نیز در نتیجهٔ نظریه‌های آینشتین است. آینشتین ابتدا نوشت که این امواج وجود دارند، اما درست پیش از آن‌که به دنبال تفسیر اشتباه نظریه خودش ادعا کند که آن‌ها وجود ندارند. سپس دوباره نظر خود را تغییر داد تا نتیجه مخالف و درست را بپذیرد.


وقتی آینشتین نظریه نسبیت خاص‌اش را نوشت، از ایده فضازمان استفاده نکرد. این ایده که گویی به مفهوم یک پیوستار (فضای پیوسته) چهاربعدی شامل فضا و زمان اشاره می‌کند، در واقع کار هرمان مینکوفسکی بود که از آن برای بازنویسی نظریهٔ آینشتین استفاده کرد. هنگامی که آینشتین از آنچه مینکوفسکی انجام داده بود آگاه شد، ادعا کرد که این کار فقط از نظر ریاضیاتی بغرنج‌کردن بیهودهٔ نظریه‌اش است، البته پس از مدت کوتاهی کاملاً نظر خود را تغییر داد و دقیقاً از مفهوم فضازمان برای نوشتن نظریهٔ نسبیت عام استفاده کرد. در موضوع نقش ریاضی در فیزیک، آینشتین بارها دیدگاهش را تغییر داد و در طول زندگی‌اش طرفدار ایده‌های گوناگونی بود که با هم صریحا در تناقض بودند.
آینشتین پیش از نوشتن معادلاتِ درست کار اصلی‌اش، یعنی نظریهٔ نسبیت عام، مجموعه مقاله‌هایی منتشر کرد که همه غلط بودند و هرکدام معادلهٔ نادرستِ متفاوتی را پیشنهاد می‌دادند. او حتی تا جایی پیش رفت که یک اثر پیچیده و مفصل منتشر کرد تا استدلال کند که این نظریه نمی‌تواند تقارن خاصی داشته باشد، تقارنی که او بعداً به عنوان اساس نظریه‌اش برگزید!


آینشتین در سال‌های پایانی زندگی‌اش، سرسختانه پافشاری می‌کرد که می‌خواهد یک نظریهٔ وحدت‌بخش برای گرانش و الکترومغناطیس بنویسد، بدون توجه به این که الکترومغناطیس جزئی از یک نظریه بزرگ‌تر (نظریهٔ الکتروضعیف) است، کما این‌که پس از مدت کوتاهی نشان داده شد. بنابراین، پروژه او در متحد کردن آن با گرانش بی‌فایده بود.
آینشتین همچنین بارها موضع خود را در مناظره‌های مربوط به مکانیک کوانتومی تغییر داد. او در ابتدا می‌گفت که این نظریه در تضاد با بقیه چیزها است. سپس پذیرفت که این‌طور نیست و خودش را محدود به پافشاری بر این ایده کرد که این نظریه ناکامل است و نمی‌تواند تمام طبیعت را توصیف کند.
در مورد نسبیت عام، اینشتین برای مدت طولانی متقاعد شده بود که معادلات در نبودِ ماده نمی‌توانند جواب داشته باشند و بنابراین، میدان گرانشی به ماده وابسته است. او دست از این باور برنداشت تا زمانی که ویلم دوسیته و دیگران نشان دادند که او اشتباه می‌کند. سرانجام نظریه را این گونه تفسیر کرد که میدان گرانشی یک موجود مجزای واقعی است که به خودی‌ خود وجود دارد.


در اثر خارق‌العادهٔ ۱۹۱۷ او کیهان‌شناسی نوین را بنیان گذاشت. آینشتین به این پی برد که جهان می‌تواند یک ۳-کره باشد. او ثابت کیهان‌شناسی را معرفی کرد که امروز مورد تایید است ولی با این کار همزمان یک خطای فاحش به فیزیک (عدم تغییر عالم در زمان) و یک خطای چشمگیر به ریاضی اضافه کرد؛ او متوجه نشد جوابی که ارائه کرده بود ناپایدار است و نمی‌تواند دنیای واقعی را توصیف کند. در نتیجه، آن مقاله‌ ترکیب عجیبی از ایده‌های بزرگِ جدید و انقلابی و انبوهی از خطاهای جدی است.


آیا این اشتباه‌ها و تغییر رویه‌ها چیزی از تحسین و ستایش ما نسبت به آلبرت آینشتین کم می‌کند؟ به‌ هیچ‌ وجه. اگر تغییری هم در ما باشد، برعکس است. به نظر من در عوض، این چیزها نکته‌ای راجع به ذات هوش به ما می‌آموزند. هوش، طرفداری سرسختانه از نظرات خود نیست بلکه آمادگی لازم برای تغییر و حتی کنار گذاشتن آن نظرات است. برای درک جهان، باید شهامت آن را داشته باشید که ایده‌ها را بدون ترس از شکست آزمایش کنید، پیوسته نظرات خود را بازبینی کنید و آن‌ها را بهبوبد ببخشید.


آینشتینی که بیش از هر کس دیگری مرتکب خطا می‌شود دقیقاً همان آینشتینی است که بیش‌تر از دیگران در فهم طبیعت موفق است و این‌ها مکمل هم و از جنبه‌های ضروری همان هوش عمیق هستند: بی‌پروایی در تفکر، شهامت خطر کردن، ایمان نداشتن به ایده‌های دریافت‌شده، از همه مهم‌تر ایده‌های خود شخص. اینکه شهامت اشتباه کردن داشته باشی، ایده‌های خود را تغییر دهی، و نه یک بار بلکه بارها، تا به مرحله کشف برسی.
آنچه مهم است درست بودن نیست، تلاش برای فهمیدن است.

متجاوزان معرفتی

همه ما اسم گالیله رو شنیدیم و می‌دونیم که یکی از تاثیرگذارترین فیزیکدانان‌های تاریخه. اثر معروف گالیله «دیالوگو» در مورد این ایده است که خورشید مرکز منظومه‌ شمسیه که خب همین حرف‌ها هم پای گالیله رو به دادگاه تفتیش عقاید باز کرد. با این وجود، گالیله نه تنها در زمینه فیزیک و ریاضی که در زمینه‌های دیگه‌ای هم اهل تحقیق و پژوهش بوده و گاهی هم سوال‌های خیلی مهمی پرسیده و به بعضی‌هاشون هم تونسته جواب بده. یه مثال خیلی مهم، الگوی تغییر میزان سوخت‌وساز پایه (متابولیسم) حیوانات به نسبت وزنشونه. در واقع سوال اینه که وقتی در گونه‌های مختلف وزن حیوونی دو برابر میشه مقدار سوخت و سازش چند برابر میشه؟ جواب این سوال به یک مسئله خیلی مهم مقیاسی در سامانه‌های زیستی برمی‌گرده. چیزی که بعد از گذشت چند قرن، تازه دانشمندا موفق شدن توضیحی برای این کار پیدا کنند! نوع وابستگی سوخت و ساز به وزن حیوونا همون چیزیه که امروز به قانون Kleiber معروفه.

Metabolic rate as a function of body mass (plotted logarithmically)
West G., 2017, Scale. The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies,

خب این خیلی جالبه که گالیله‌ در اون سال‌ها تونسته به این‌چیزها فکر کنه و سوال‌های مهمی خارج از فیزیک و ریاضیات مطرح کنه و به کمک شناخت و مهارت‌مناسبی که در این زمینه‌ها داشته سعی کرده مسئله‌ای خارج از تخصص اصلیش رو به میزان قابل توجهی جواب بده. بینش عمیقی که گالیله، نیوتون یا ریچارد فاینمن داشته همیشه زبان‌زد جامعه علمی بوده. بینشی که گاهی فقط منجر به این شده که سوال‌های بسیار خوبی مطرح کنند. به قول کارل سیگن، «ما جهان خود را با شهامت پرسش‌ها و عمق پاسخ‌هایمان درخور می‌سازیم.» 

مستقل از زمان گذشته که یک‌ سری همه‌چیزدان معروف مثل ابن‌سینا وجود داشته در تاریخ مدرن هم که ما مفاهیمی مثل دانشگاه و تخصص دانشگاهی داریم باز اسم افراد دیگه‌ای شنیده میشه که به مسائلی خارج از تخصص اصلیشون پرداختن و در نهایت موفق شدن که اون‌ها رو به خوبی توسعه بدن. مثلا، اگه فیلم ذهن زیبا رو دیده باشین می‌دونید که جان نش، ریاضیدون معروف، برنده جایزه نوبل در اقتصاده یا مثلا جان فون‌نویمان هم در توسعه ریاضیات و فیزیک مشارکت جدی داشته و هم در علوم کامپیوتر و اقتصاد! اسم نوآم چامسکی رو هم که این روزا دیگه همه شنیدیم؛ چامسکی پدر علم زبان‌شناسی مدرنه که این روزها بیشتر از هر چیزی به عنوان یک منتقد جدی سیاست‌های امریکا شناخته می‌شه و حرفش هم در بین اهل فن خریدار داره. خلاصه این که آدم‌ها سعی کنن با توجه به دانش‌ و مهارت‌هایی که در زمینه تخصصیشون دارن سراغ بررسی یا حل مسئله‌های دیگه در بقیه حوزه‌ها برن چیز عجیبی نیست. توی پست معرفی کتاب «قوانین عمومی موفقیت» باراباشی گفتیم که این تحقیقات عموما توسط افرادی انجام شده که زمینه تحقیقاتشون چیزهایی مثل فیزیک و علوم داده بوده نه مثلا مدیریت یا روان‌شناسی! در واقع لازلو باراباشی، نویسنده کتاب،  به کمک همکارانش با استفاده از روش علمی سعی کرده راهی برای مطالعه کمی میزان موفقیت افراد یا شرکت‌ها در موضوعات مختلف پیدا کنه و به نتیجه‌‌گیری معقولی برسه. نتایج این تحقیقات توی مجله‌های معتبر علمی چاپ شده و خلاصه‌ای از اون‌ها رو باراباشی در کتاب عامه‌پسندی منتشر کرده. اگه کنجکاویتون در مورد این ماجرا زیاد شد پیشنهاد می‌کنیم حتما قسمت ۲۸ام پادکست بی‌پلاس که خلاصه این کتاب رو تعریف می‌کنه رو گوش کنید.

اگه همه این داستان‌ها رو هم بذاریم کنار، عصری که ما توش زندگی می‌کنیم عصر توسعه علوم بین‌رشته‌ایه. این روزها مرتب می‌شنویم که مثلا فیزیکدان‌ها و ریاضیدان‌ها در بازارهای مالی مشغول فعالیت هستند یا اینکه زیست‌شناس‌ها و روان‌شناس‌ها در یک پروژه مشترک مشغول مطالعه مسائلی پیرامون عملکرد مغز انسان هستند. اصلا این روزها وقتی اسم نوروساینس برده میشه به طور مشخص در مورد یک حوزه کاملا بین رشته‌ای صحبت میشه که متخصص‌هایی از رشته‌هایی مثل ریاضی، علوم کامپیوتر، فیزیک، آمار، زیست‌شناسی، روان‌شناسی، پزشکی و رشته‌های مختلف مهندسی دور هم جمع شدند و به کمک همدیگه مشغول تحقیق و پژوهش هستند تا از کار مغز و رفتار انسان سر در بیارن. از طرف دیگه زیاد از جاهای مختلف شنیدیم که اضافه کردن آدم‌های جدید و بعضا خیلی دور از رویه یه شرکت منجر به این میشه که ایده‌های خلاقانه بیشتری شکل بگیره و در نهایت انگار شرکت‌های بزرگ بدشون هم نمیاد که آدم‌های خارج از چارچوب‌های رایج کسب و کارشون رو استخدام کنند. اون قدرها هم البته دور از عقل نیست این کار؛ شما اگه واقعا نیاز دارید که به چیزی جور دیگه‌ای نگاه کنید باید یا سعی کنید که از شر همه چارچوب‌های شکل گرفته در ذهنتون بعد از سال‌ها آموزش حرفه‌ای خلاص بشین که خب این کار خیلی سختیه یا اینکه از آدم‌هایی که ذهنیت متفاوتی دارن دعوت کنید تا به چالش پیش اومده فکر کنند و راه حلی ارائه کنند. بالاخره گاهی برای رسیدن به جایی که هرگز نبودیم مجبوریم راه‌هایی رو طی کنیم که تاحالا نرفتیم دیگه، نه؟!

اما، این فقط یک طرف ماجرا است! در حقیقت طرفی که اتفاقا این روزها زیاد ازش صحبت میشه و به ظاهر مردم هم ازش استقبال می‌کنند. عموما هم همه جا در مورد خیر و برکتی که پشت این مدل کارهای بین‌رشته‌ای و میان‌موضوعی قرار داره صحبت میشه. ای کاش همیشه هم این جوری بود،‌ ولی خب اگه یکمی با دقت بیشتری نگاه کنیم متوجه میشیم اینکه این جور مواقع ماجرا ختم به خیر نمیشه که هیچ، تازه این طرف در واقع طرف پر از ریسک ماجراست! یکی از چالش‌های جدی این رهیافت اینه که آدم‌هایی که در زمینه‌ای تخصص دارن در مورد زمینه دیگه شروع به اظهار نظر می‌کنن در حالی که به جهلشون نسبت به پیش‌زمینه‌های اون مسئله واقف نیستند و فکر می‌‌کنند که کاملا حق با اون‌هاست در حالی که یا تحلیلشون غلطه یا به نتیجه‌گیری اشتباهی ‌می‌رسند. به افرادی که در زمینه‌ای خارج از تخصص اصلیشون اظهار نظر غلط می‌کنند اصطلاحا متجاوزان معرفتی می‌گن؛Epistemic trespassers

چند درصد جامعه باید واکسن بزنن تا ایمنی جمعی حاصل بشه؟

ویدیو در یوتیوب

ویدیو در اینستاگرام

مقاله‌ای که بهش اشاره کردم:
Directed Percolation in Temporal Networks
Epidemic Spreading and Digital Contact Tracing: Effects of Heterogeneous Mixing and Quarantine Failures

می‌تونید به این بخش از کتاب باراباشی هم نگاه کنید اگه دنبال جزئیات فنی بیشتری هستید:
http://networksciencebook.com/chapter/10

بد نیست به این نوشته‌ها هم نگاهی کنید:

دانشگاه خوب چه جور جاییه؟!

ملاک برتری یک محیط علمی به جای دیگه واقعا چیه؟!

دانشگاه فقط محل برگزاری یک سری کلاس نیست! شما می‌توانید کلاس‌های دانشگاه‌های مختلف دنیا را به کمک اینترنت ببینید یا در دوره‌های آنلاین شرکت کنید. اما همه چیز که کلاس درس نیست! دانشگاه خوب، جایی است که ایده‌های خوب شکل بگیرد، دانشگاه خوب جایی است که هم‌صحبت‌های خوب داشته باشید. یک دانشگاه خوب جایی است که از گفتگو با آدم‌هایش، استاد و دانشجو، لذت ببرید و در فضای حرفه‌ای ایجاد شده بتوانید رشد کنید. دانشگاه فقط در و تخته و یک مشت کارمند نیست. اگر بعد از این نوشته تصمیم گرفتید که فیزیک بخوانید، در دانشگاهی بخوانید که این ویژگی‌ها را داشته باشد.

کنکوری‌ها حواستان باشد جوگیر نشوید؛ در علم جایی برای جوگیرها نیست!

دانشگاه‌ها پایه و اساس پژوهش هستند و نه صرفا محل برگزاری یک‌سری کلاس! در ضمن شما توی دانشگاه با انسان‌های متفاوتی تعامل می‌کنید، انسان‌هایی که در بین وفور و پراکندگی منابع و راه‌های موجود برای رسیدن به سطح خوبی از علم می‌تونند شما رو راهنمایی و هدایت کنند. در حقیقت این‌که شما فقط انسان باهوشی باشید و یا اینکه مطالعه‌ی زیادی داشته باشید، کافی نیست. شاید در مقاطع اولیه تحصیل این قضیه‌ زیاد خودش رو نشون نده ولی زمانی که پای پژوهش به میون بیاد اون موقع هدایت علمی مناسب خودش رو به خوبی نشون میده.  مهم‌ترین تفاوت دانشگاه‌ها و موسسات‌ علمی تراز اول جهان با بقیه جاها در نوع کلاس‌هاشون و ساختمون‌هاشون نیست، بلکه وجود افراد به معنی واقعی متخصص هست که وظیفه‌ی هدایت علمی رو درست ایفا می‌کنند.

لیسانس فیزیک با بیژامه

مطالب مرتبط:

ویدیو در یوتیوب

ویدیو در اینستاگرام

چرا مدل آیزینگ اینقدر برای فیریکدونا جذابه؟ چرا اینقدر کاربردیه حتی بیرون فیزیک؟!

مدل آیزینگ، به عنوان معرف‌ترین مدل در فیزیک آماری، یک مدل ساده برای توصیف گذار فاز در مواد مغناطیسی است. این مدل از متغیرهای گسسته (اسپین) به روی یک گراف مشبکه (Lattice) تشکیل شده است.

ویدیو در یوتیوب

ویدیو در اینستاگرام

برای بیشتر عمیق شدن

شبیه‌سازی مدل آیزینگ

فرکتال‌ها، قوانین توانی، توزیع‌های دم‌کلفت و پدیده‌های بحرانی

سرخس‌ها گیاهانی هستند که شکلی هندسی خاصی دارند. اگر قسمتی از آن‌ها را جدا کنید، با کمی دوران و بزرگ‌نمایی می‌توانید قسمت دیگری را بازسازی کنید. این ویژگی هندسی فرکتال‌ها است. در مورد هندسه فرکتالی و کاربرد آن در فیزیک نکات جالبی وجود دارد. مثلا به نوشته‌های زیر سر بزنید:

تصویری از یک سرخس به عنوان موجودی با ساختار فرکتالی – نگاره از عباس ک. ریزی (ارسفیورد – نروژ)

برای آشنایی با هندسه فرکتالی:

مطالب کمی‌ پیشرفته‌تر:

ویدیو در یوتیوب

ویدیو در اینستاگرام

چهار درس طلایی از استیون واینبرگ

اول مرداد سال جاری، استیون واینبرگ از بزرگترین فیزیکدانان نظری زمان ما فوت کرد. واینبرگ به مراتب بلند قامت‌تر از چیزی است که من درباره او بنویسم. با این حال‌، سال‌ها پیش واینبرگ در نوشته‌ کوتاهی ۴ درس طلایی به دانشمندان تازه‌کار می‌دهد. اصل این نوشته در این جا قابل خواندن است و متن پیش رو ترجمه‌ای از متن اصلی است.

Weinberg, S. Four golden lessons. Nature 426, 389 (2003)
doi.org/10.1038/426389a

حدود صدسال پیش، هنگامی که مدرک کارشناسیم را گرفتم، قبل از شروع پژوهش شخصیم، هر گوشه‌ای از فیزیک که می‌خواستم آن را برای خود ترسیم کنم مانند اقیانوسی وسیع و کشف نشده‌ به نظرم می‌رسید. چه‌طور می‌توانستم کاری انجام بدهم بدون آن‌که بدانم چه چیزی پیش از این انجام شده است؟ خوش‌بختانه در سال اول تحصیلات تکمیلی، شانس این را داشتم که به دستان فیزیکدانان باتجربه‌ای سپرده شوم که علی رغم اعتراض‌های دلواپسانه من، بر این پافشاری کردند که من باید پژوهشم را شروع کنم و هر چیزی که به دانستن آن نیاز دارم را طی مسیر بردارم. یا باید شنا می‌کردی یا که غرق می‌شدی! در کمال تعجب، فهمیدم که این روش موثر است. سرانجام موفق شدم که یک دکتری سریع بگیرم؛ هرچند که در لحظه فارغ‌ التحصیلی به این موضوع آگاه بودم که تقریبا چیزی در مورد فیزیک نمی‌دانم. با این وجود من درس بزرگی گرفتم و آن این‌که هیچ کس همه چیز را نمی‌داند و شما هم نیازی ندارید که بدانید!

به دنبال استعاره اقیانوس‌شناسی‌ام، درس بعدی برای آموختن این است که تا وقتی که شنا می‌کنید و غرق نمی‌شوید باید آب‌های سخت را هدف بگیرید. در اواخر دهه ۶۰ هنگامی که در MIT تدریس می‌کردم، دانشجویی به من گفت که می‌خواهد به جای فیزیک ذرات بنیادی که من روی آن کار می‌کردم به سمت نسبیت عام برود. دلیلش هم این بود که اصول دومی شناخته شده بود در حالی‌که اولی به چشم او بهم ریخته می‌آمد. بی‌درنگ به ذهنم رسید که او همین الان دلیل بسیار خوبی برای انجام دادن خلاف چیزی که گفته را آورده! فیزیک ذرات حوزه‌ای بود که هنوز میشد در آن کار خلاقانه انجام داد. با این‌که در دهه ۶۰ فیزیک ذرات واقعا کلاف سردرگمی بود ولی تلاش‌ خیلی از فیزیکدانان نظری و تجربی از آن زمان منجر به باز کردن گره‌ها و کنار هم گذاشتن همه چیز (خب، تقریبا همه‌چیز) در قالب یک نظریه زیبا به اسم مدل استاندارد شد. نصیحت من است که به دنبال بهم‌ریختگی‌ها بروید، هر چه خبر است در آنجاست!

نصیحت سوم من احتمالا سخت‌ترین آن‌ها برای پذیرفتن است. و آن این‌که خودتان را به خاطر هدردادن وقت ببخشید! از دانشجویان فقط خواسته می‌شود مسائلی را حل کنند که اساتیدشان به قابل حل بودن آن‌ها آگاه هستند (مگر اینکه آن اساتید به‌طور غیرعادی بی‌رحم باشند). علاوه بر این، اصلا مهم نیست که آن مسائل از لحاظ علمی مهم باشند چرا که هدف از حل شدنشان تنها گذراندن درس است! در دنیای واقعی دانستن اینکه کدام مسائل مهم هستند کار دشواری است و شما هیچگاه متوجه نمی‌شوید که در مقطعی از تاریخ که در آن به سر می‌بری آن مسئله حل‌شدنی است یا نه. در آغاز قرن بیستم، لورنتز و آبراهام به دنبال به‌دست آوردن نظریه‌ای برای الکترون بودند. هدف بخشی از این کار رسیدن به این نکته بود که چرا تمام تلاش‌های صورت گرفته برای شناسایی اثرات حرکت زمین در میان اتر با شکست روبه‌رو شده است. اکنون ما می‌دانیم که آن‌ها روی مسئله اشتباهی کار می‌کردند. در آن زمان، هیچ‌کس نمی‌توانست برای الکترون نظریه موفقی را توسعه دهد چرا که هنوز مکانیک کوانتومی کشف نشده بود! نبوغ آلبرت آینشتین در ۱۹۰۵ نیاز بود تا به این پی‌برده شود که مسئله درستی که باید روی آن کار کرد اثر حرکت روی اندازه‌گیری‌های فضا و زمان است. این مسئله منجر به نظریه نسبیت خاص برای او شد. از آنجا که شما هیچ‌گاه نخواهید فهمید که کدام مسائل انتخاب‌های درستی برای کار کردن روی آن‌ها هستند، بیشتر وقت سپری شده‌تان در آزمایشگاه یا پشت میز هدر خواهد رفت. اگر می‌خواهید خلاق باشید، باید به این عادت کنید که بیشتر زمان خود را می‌بایست صرف خلاق نبودن کنید و برای مدتی روی اقیانوس دانش علمی در انتظار باد متوقف بمانید.

در آخر، چیزی از تاریخ علم یا دست کم تاریخ شاخه‌ای از علم که دنبالش می‌کنید یادبگیرید. کم‌اهمیت‌ترین دلیل برای این کار این است که تاریخ ممکن است واقعا دردی از کار پژوهشی شما دوا کند. به عنوان مثال، هر از گاهی دانشمندان از حرکت باز می‌ایستند چرا که به یکی از مدل‌های بیش از حد ساده شده علم باور پیدا می‌کنند که توسط فیلسوفانی چون فرانسیس بیکن تا توماس کوهن و کارل پوپر مطرح شده‌ است. بهترین پادزهر برای فلسفه علم، دانشی از تاریخ علم است.

از آن مهم‌تر، تاریخ علم کار شما را می‌تواند ارزشمندتر نزدتان جلوه دهد. به عنوان یک دانشمند احتمالا شما قرار نیست که فرد ثروتمندی شوید. احتمالا دوستان و خانواده‌تان نخواهند فهمید که شما مشغول چه کاری هستید. و اگر در زمینه‌ای مثل فیزیک ذرات بنیادی کار می‌کنید، شما حتی احساس رضایت از انجام کاری که بلافاصله مفید است را هم نخواهید نداشت. با این وجود شما می‌توانید با تشخیص این‌که کار شما در علم بخشی از تاریخ است احساس رضایت زیادی به دست آورید.

به یک‌صد سال پیش، سال ۱۹۰۳ نگاه کنید. امروز چقدر مهم است که چه کسی نخست‌وزیر بریتانیای کبیر در ۱۹۰۳ یا رئیس‌جمهور ایالات متحده بوده است؟ آن‌چه که به وضوح خیلی مهم است این است که در دانشگاه مک‌گیل، ارنست راترفورد و فردریک سودی مشغول درک و بررسی طبیعت پرتوزایی بوده‌اند. این کار (البته که) کابردهای عملی داشت اما آن‌چه که مهم‌تر است پیامدهای فرهنگیش است. درک درست پرتوزایی به فیزیکدانان اجازه داد تا توجیهی برای چگونگی داغ بودن هسته زمین و خورشید پس از میلیون‌ها سال پیدا کنند. به این ترتیب، آخرین ایراد علمی به چیزی که بسیاری از زمین‌شناسان و دیرینه‌شناسان برای دوران اوج زمین و خورشید تصور می‌کردند هم مرتفع شد. پس از آن، مسیحی‌ها و یهودی‌ها یا باید از اعتقاد به نص صریح کتاب مقدس دست می‌کشیدند یا خود را متقاعد می‌کردند که ارتباط عقلانی وجود ندارد. این فقط یک قدم از سری قدم‌هایی بود که از گالیله تا نیوتون و داروین تا حال حاضر به کرات برداشته شد و ستون‌های جزم‌اندیشی دینی را تضعیف کرد. این روزها خواندن هر روزنامه‌ای کافی است تا نشان دهد که این گونه‌ کارها هنوز تکمیل نشده‌اند. با این وجود این کاری است تمدن‌ساز، چیزی که دانشمندان به خاطر انجام دادنش می‌توانند احساس غرور داشته باشند.

استیون واینبرگ ( Steven Weinberg) (زاده ۳ مه ۱۹۳۳ در نیویورک – ۲۳ جولای ۲۰۲۱) فیزیک‌دان مشهور آمریکایی بود که در سال ۱۹۷۹ به همراه عبدالسلام و شلدون لی گلاشو، جایزه نوبل فیزیک را به خاطر ادغام نیروی الکترومغناطیسی با نیروی هسته‌ای ضعیف که به برهمکنش الکتروضعیف معروف شد، دریافت کرد.