رفتن به نوشته‌ها

سیتپـــــور مطالب

جایگاه علم داده در نجوم امروزی

بخش ششم از سری گفت‌وگوهای «پشت‌پرده نجوم»

«پشت‌پرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفت‌و‌گو شده و هم‌چنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبه‌علم داشته است.

امروزه با پیشرفت تکنولوژی، نقش داده‌ها در حوزه‌های مختلف علم، از‌جمله علم نجوم، بیش‌از‌پیش نمایان شده است. به‌نظر می‌رسد ابزار برنامه‌نویسی و شبیه‌سازی در آینده‌ای نزدیک، به یکی از مهارت‌های مهم و ضروری برای پژوهش در علم (نجوم) تبدیل شود؛ کما اینکه هم‌اکنون نیز تا حدی همین‌گونه است. در ششمین بخش از «پشت پرده علم» با علیرضا وفایی صدر، پژوهشگر فیزیک در مقطع پسا‌دکتری در IPM، در‌مورد جایگاه علم داده در نجوم امروزی گفت‌و‌گو کرده‌ایم. ویدیو و صوت این گفت‌وگو ضبط شده و در ادامه این متن می‌توانید آن را ببینید و بشنوید.

در علم نجوم امروزی، به‌دلیل ساخت تلسکوپ‌ها و آشکارساز‌های بزرگ متعدد ـ و ترکیب تلسکوپ‌های بزرگ با یکدیگر با استفاده از روش تداخل‌سنجی، برای ساخت تلسکوپ‌های مجازیِ حتی بزرگ‌تر ـ و هم‌چنین افزایش کیفیت و رزولوشن تصاویر دریافتی از آسمان، حجم داده‌ها بسیار افزایش پیدا کرده و کار با داده‌های کلان، به مسئله‌ای مهم تبدیل شده است. به‌عنوان مثال، برای ثبت اولین تصویر از یک سیاه‌چاله که سال پیش توسط تیم تلسکوپ افق رویداد منتشر شد، هشت آرایه‌ از تلسکوپ‌های رادیویی، حدود یک هفته رصد انجام دادند که منجر به دریافت داده‌ای با حجم حدود ۲۷ پتا‌بایت شد و کار انتقال، پاکسازی و تحلیل آن حدود ۲ سال طول کشید (برای اطلاعات بیشتر درمورد جزئیات ثبت این تصویر، این نوشته را بخوانید)! 

در گفت‌وگویمان با علیرضا وفایی‌صدر، به مسائل مختلفی در ‌زمینه نقش داده در نجوم پرداخته‌ایم؛ از جمله اینکه: چطور می‌توان داده‌های کلان را سرو‌سامان داد؟ ماشین‌‌ها (کامپیوترها) چه جنس کارهایی را در زمینه نجوم می‌توانند برای ما انجام دهند؟ همکاری‌های بین‌المللی چه نقشی در این زمینه دارند؟

بخش ششم «پشت‌ پرده نجوم»
ویدیوی گفت‌و‌گوی محمد‌مهدی موسوی (فیزیک‌پیشه) و علیرضا وفایی‌صدر (پژوهشگر فیزیک در مقطع پسادکتری در IPM) درمورد جایگاه علم داده در نجوم امروزی

به این گفت‌وگو گوش دهید:

فراز‌ و‌ فرودهای تاریخی علم نجوم

بخش اول از سری‌ گفت‌وگوهای «پشت‌پرده نجوم»

«پشت‌پرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفت‌و‌گو شده و هم‌چنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبه‌علم داشته است.

تاریخ همیشه عبرت‌آموز است! به‌ همین‌ خاطر، در اولین قسمت از برنامه‌ی «پشت‌پرده نجوم» با دکتر امیر‌محمد گمینی، عضو هیئت علمی پژوهشکده تاریخ علم دانشگاه تهران، در‌مورد علم نجوم در بستر تاریخ گفت‌وگو کردیم. ویدیوی این گفت‌و‌گو ضبط شده و در ادامه‌ این مطلب آمده است.

علم در طول تاریخ، فراز‌ و‌ فرود‌های زیادی داشته است. این تصور که بخواهیم تاریخ علم نجوم را تنها به نظرات انقلابی از قبیل: مدل زمین‌مرکزی بطلمیوسی و مدل خورشید‌مرکزی کپرنیکی، یا چند چهرهٔ سرشناس مانند گالیله و نیوتن تقلیل بدهیم، برداشت درستی نیست. 

در این گفت‌و‌گو به سؤالات زیادی در‌ رابطه با تصورات رایج در‌مورد تاریخ علم (به‌ویژه علم نجوم) پاسخ داده شده است؛ از جمله آن‌که: آیا در تمدن اسلامی، انقلاب علمی اتفاق افتاد؟ دانشمندان مسلمان چه نگاهی به مسئله علم و دین داشته‌اند؟ عوامل مؤثر در روابط انسانی و اجتماعی تا چه حد می‌توانند روی پیشرفت علم تأثیرگذار باشند؟

بخش اول «پشت‌ پرده نجوم»
ویدیوی گفت‌و‌گوی محمد‌مهدی موسوی (فیزیک‌پیشه) و دکتر گمینی (عضو هیات‌علمی پژوهشکده تاریخ علم دانشگاه تهران) درمورد فراز و فرودهای تاریخی علم نجوم

معرفی کتاب

در این گفت‌و‌گو دو کتاب معرفی شدند:

  • «دایره‌های مینایی»، نوشته دکتر امیر‌محمد گمینی، که می‌توانید آن را از اینجا تهیه کنید. معرفی اجمالی کتاب:
کتاب «دایره‌های مینایی، نوشته امیرمحمد گمینی

کیهان‌شناسیِ علمی از چه زمانی پا‌ گرفت و در یونان و تمدن اسلامی تا چه حد از روش تجربی و ریاضی استفاده می‌کرد و چقدر تحت تأثیر فلسفه طبیعی بود؟ منجمان تمدن اسلامی چه راهکارهایی را برای حل مشکلات علمی زمان خود پی گرفتند؟ برای پاسخ به سوالات و پرسش‌هایی دیگر درباره تحولات علمی و تبادل نظرهای رایج در نجوم تمدن اسلامی نیاز به پژوهش‌هایی مبتنی بر نسخ خطی به جا‌مانده و آخرین دستاوردهای مورّخان دانشگاهی علم قدیم است. این کتاب نتایج این پژوهش‌ها را در کنار پژوهش‌هایی جدیدتر برای متخصّصان و غیرمتخصّصان علاقه‌مند به رشته تاریخ علم معرفی می‌کند. مخاطب این کتاب افرادی هستند که به تاریخ تحولات علوم در گذشته‌های دور و نزدیک دلبسته‌اند یا می‌خواهند با دستاوردهای فکری و فرهنگی تمدن اسلامی در حوزه علم هیئت آشنا شوند.

  • «زندگینامه علمی دانشمندان اسلامی» که توسط جمعی از پژوهشگران نوشته شده و می‌توانید از اینجا آن را تهیه کنید. معرفی اجمالی این اثر دو‌جلدی:

«زندگینامه علمی دانشمندان اسلامی» بیان شرح احوال، آثار و آرای علمی ۱۲۶ نفر از دانشمندان اسلامی است که در ریاضیات و علوم وابسته به آن مانند نجوم، نورشناسی، موسیقی و علم‌الحیل و علوم‌طبیعی مانند فیزیک، شیمی، کیمیا، طب و زیست‌شناسی کار کرده‌اند.

کتاب «زندگینامه علمی دانشمندان اسلامی»،

همچنین احوال برخی از جغرافی‌دانان، تاریخ‌نویسان و بعضی از فلاسفه نیز بیشتر از باب حکمت ایشان، در این مجموعه آمده است. می توان گفت که زندگی و کار مهم‌ترین دانشمندان اسلامی در این مجموعه بررسی شده و برخی مقالات آن از لحاظ تفصیل و عمق و وسعت دامنه تحقیق، بی‌نظیر یا کم‌نظیرند.

دانشمندان اسلامی که احوالشان در این مجموعه آمده همه اسلامی‌اند. بی‌آنکه همه مسلمان باشند و همه ـ از ایرانی و عرب و مغربی و مسلمان و یهودی و مسیحی ـ در سایه درخت پربار تمدن اسلامی زیسته و کار کرده‌اند.

جلد اول این مجموعه، شامل مقالات حروف «الف» تا «ح» است. جلد دوم، علاوه بر بقیه مقالات، دارای یک فهرست راهنمای تفصیلی و واژه‌نامه‌ای مشتمل بر معادل‌های برخی واژه‌ها و توضیح برخی از اصطلاحات علمی خواهد بود، تا خوانندگانی که از این کتاب برای تحقیق در تاریخ علوم در اسلام یا در دروس مربوط به این موضوع استفاده می‌کنند، از آن بهتر بهره ببرند.

کلام پایانی

در پایان، شاید اشاره به این چند جمله از کارل سِیگِن در کتاب «جهان دیو‌زده» خالی از لطف نباشد:

«چالش بزرگ برای مروجان علم آن است که تاریخ واقعیِ پر‌ پیچ‌و‌خم اکتشافات بزرگش و سوءتفاهم‌ها و امتناع لجوجانه‌ی گاه‌و‌بیگاهِ دانشمندان از تغییر مسیر را شفاف کنند. بسیاری از ـ شاید اغلب ـ درسنامه‌های علمی که برای دانشجویان نوشته شده‌، نسبت به این مسئله با‌ بی‌توجهی عمل کرده‌اند. ارائه‌ی جذابِ معرفتی که عصاره‌ی قرن‌ها پرسش‌گریِ جمعیِ صبورانه درباره طبیعت بوده، بسیار راحت‌تر از بیان جزئیاتِ دستگاهِ درهم‌وبرهمِ عصاره‌گیری است. روش علم، با همان ظاهر ملال‌آور و گرفته‌اش، بسیار مهم‌تر از یافته‌های علم است.»

روز جهانی نور، فیزیک لیزر و جامعه علمی

از زمانی که من وارد دانشگاه شدم (مهر ۹۱) تقریبا میشه گفت که دو اتفاق مهم دنیای نور و فوتونیک رو پشت سر گذاشتم. اولی سال جهانی نور بود (۹۳). اون‌سال دانشگاه بهشتی میزبان «۲۱امین کنفرانس اپتیک و فوتونیک و ۷امین کنفرانس مهندسی و فناوری فوتونیک» در ایران بود و من به عنوان خبرنگار این کنفرانس توی اکثر برنامه‌ها شرکت می‌کردم. خیلی برنامه خوبی بود و حسابی هم خرج کرده بودند! خلاصه که خوش گذشت و از همه جهات برای من منجر به یک تجربه هیجان‌انگیز شد. به نظرم‌ حرفه‌ای‌ترین رویدادی بود که در عمرم در ایران دیده بودم! اما خب اینکه حالا این همه پول از کجا اومد و چه‌طور برنامه‌ای با اون کیفیت برگزار شد توی بهشتی رو نمی‌دونم. بگذریم! رویداد بعدی، مهر ۹۷ بود. اون سال جایزه نوبل فیزیک به سه نفر، با سهم‌های مختلف، برای نوآوری‌های پیشگامانه در زمینه فیزیک لیزر تعلق گرفت.

از دو سال پیش هم، سازمان ملل، تصمیم گرفت که روز ۱۶ ماه می یا ۲۸ اریبهشت رو به عنوان روز جهانی نور اعلام کنه. علت این تاریخ هم برمیگرده به ۶۰ سال پیش، وقتی که اولین لیزر دنیا کار کرد! مردم امسال به خاطر کرونا، در خونه و پشت کامپیوترهاشون با هشتگ #SEETHELIGHT این روز جشن گرفتند و رویدادهای آنلاین برگزار کردند. این نوشته رو بخونید!

یکی از سه برنده نوبل فیزیک سال ۲۰۱۸، خانومی بود به اسم دانا استریکلند که سومین زنی بود که برنده این جایزه می‌شد در تاریخ. قبل از ایشون، خانم ماریا مایر برنده این جایزه شده بود که اختلاف زمانی این دو نفر بیشتر از ۵۰ ساله! خانم دانا استریکلند، استاد دانشگاه واترلو کانادا هستند و طبیعتا کارشون فیزیک لیزر هست. فیزیک لیزر در حقیقت زیرمجموعه‌ای از فیزیک اتمی حساب میشه و به تعبیر دیگه‌ای، بخشی از شاخه علم فوتونیک. در مورد فوتونیک، امین مطلبی نوشته که پیشنهاد می‌کنم اون رو بخونید.

توی این ویدیو خانم استریکلند مفهوم لیزر رو در چند مرحله، از مقدماتی تا حرفه‌ای توضیح میده:

یادگیری فیزیک لیزر

اگر علاقمند هستید که فیزیک لیزر رو یاد بگیرین طبیعتا باید درس‌هایی مثل الکترومغناطیس و مکانیک کوانتومی رو خیلی خوب یادبگیرید. دست کم در اندازه‌ای که بچه‌های رشته‌ فیزیک توی دوره لیسانس یاد میگیرند. قبلا در مورد یادگیری آنلاین این دو موضوع در اینجا نوشتم. به طور خاص، دوره‌هایی که در ادامه اومده بهتون در درک فیزیک لیزر می‌تونه کمک کنه:

اگر هنوز الکترومغناطیس و مکانیک کوانتومی نمی‌دونید، خوبه که این چیزها رو ببینید:

و اگر الکترومغناطیس و کوانتوم بلد هستین، برای حرفه‌ای شدن سراغ این دو دوره برین:

جستاری کوتاه در مورد جامعه علمی

سال ۲۰۱۸ زمانی که جایزه نوبل فیزیک اعلام شد، یکی از خبرهای عجیب که دست به دست میشد این بود که خانم استریکلند صفحه ویکی‌پدیا نداشت! برای خیلی‌ها سوال شده بود که چرا اصلا این اتفاق، یعنی ساخته نشدن صفحه ویکی‌پدیا برای یه همچین آدمی، افتاده؟! آیا این مربوط به اینه که ایشون خانومه و نه آقا یا چی؟! بازتابی از اون اتفاقات و پاسخ به خیلی از پرسش‌ها رو می‌تونید در اینجا بخونید. اما بد نیست به عنوان یک حاشیه، اشاره کنم به اینکه حتی الان اگه صفحه گوگل اسکالر خانم استریکلند رو ببینید، عددی که h-index نشون میده شما رو متعجب خواهد کرد؛ عددی به ظاهر کم، برای برنده شدن یک جایزه نوبل در علم! بحث بیشتر در مورد این موضوع، نه کار منه و نه علاقه‌ای دارم که بهش بپردازم. همون توضیح بنیاد ویکی‌مدیا در مورد صفحه نداشتن ایشون به نظرم ایده‌های خوبی از برخورد دنیای بیرون از دانشگاه با دانشگاه رو نشون میده. برهمکنش اهل دانشگاه با هم‌دیگه هم بمونه داخل محافل خودشون. بگذریم!

راستش چیزی که سبب شد این متن رو بنویسم، دیدن این تصویر از گروه خانم استریکلند در دانشگاه واترلو بود:

عکس دسته جمعی از گروه لیزرهای فوق‌سریع دانشگاه واترلو – ۲۰۱۷ – نگاره از ویکی‌پدیا

این عکس که شبیه به یک عکس خونوادگی می‌مونه در حقیقت تصویری از آدم‌هاییه که در حرفه‌ای‌ترین سطح، مشغول به انجام کار علمی هستند. یکی از این آدم‌ها (خانم مسن آبی‌پوش) برنده جایزه نوبل در فیزیک هست و بقیه هم تیم تحقیقاتی ایشون رو تشکیل میدن که حضورشون در این عکس، تنوعی از سن و سال، جنسیت، وزن، تیپ، نژاد، فرهنگ‌، ملیت، عقیده و … رو نشون میده! واقعیت اینه که دانشگاه‌ها این شکلی هستند و طیفی از آدم‌های مختلف با سلیقه‌ها و ویژگی‌ها شخصیتی متفاوت رو در بر می‌گیره که همه‌شون در یک چیز، دست‌کم، مشترک هستند: انجام دادن کار زیاد!

به نظرم این تصویر و تصاویر مشابه برای کسایی که دوست دارن وارد کار پژوهشی بشن و آینده شغلی خودشون رو در دانشگاه بسازن این ارمغان رو داره که دانشمند شدن نه به قیافه‌س و نه به تیپ و عقیده آدما! دانشمند شدن به صبر، پشتکار، حوصله، خونواده حمایتگر و شانس نیاز داره. از طرف دیگه ممکنه این عکس این ایده رو به ذهن‌ها بیاره که این آدم‌ها همیشه این قدر خندان و خوشحال هستند! نه این طوری نیست! حتی ممکنه همیشه هم اینقدر خوش لباس و آراسته نباشن! بالاخره آدم‌ها موقع عکس گرفتن سعی می‌کنن بهترین حالت از خودشون رو ثبت کنند! برای همین درسته که این جور تصویرها، یک جمع شاد و سرزنده رو نشون میده ولی نباید فراموش کنیم که پشت هر عکس دست جمعی در علم، کلی خون دل، شکست، تلاش‌ مجدد و بدشانسی می‌تونه نشسته باشه!

جمله آخر این نوشته هم باشه تعمیمی از حرف مریم میرزاخانی که:

علم، زیبایی‌هاشو فقط به اونایی که صبور هستند نشون میده!

وبلاگ‌نویسی و روایتگری در علم

بعد از مدت‌ها، فرصتی پیش‌ اومد تا با مهدی در مورد وبلاگ‌نویسی و روایتگری در علم گپ بزنیم. ویدیوی این گفت‌وگو ضبط شده و در ادامه‌ی این نوشته می‌تونید ببینیدش. به‌طور کلی در مورد این حرف زدیم که چرا وبلاگ‌نویسی مهمه، منظورمون از روایتگری در علم چیه و اشاره‌هایی هم داشتیم به تجربه‌هامون در سیتپور. حین این گپ و گفت یک سری وبلاگ معرفی شد و یک سری ایده و ترفند برای شروع وبلاگ‌نویسی که سعی می‌کنم اینجا به اون‌ها اشاره‌ مختصری کنم.

«پشت پرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که توی اون با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم گفت و گو شده و هم چنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبه علم داشته. در سومین قسمت از «پشت پرده نجوم»، شاهد گپ و گفت محمد مهدی موسوی و عباس ک. ریزی (دانشجوی دکتری سیستم های پیچیده در دانشگاه Aalto)، درمورد مفهوم «روایتگری در علم» و تجربیاتش از وبلاگ نویسی خواهید بود.

برای شروع وبلاگ‌نویسی

.There is nothing to writing. All you do is sit down at a typewriter and bleed

Ernest Hemingway, awarded the 1954 Nobel Prize in Literature

می‌تونید به سادگی وبلاگ شخصی خودتون رو توی blog.ir یا ویرگول یا هر جای دیگه درست کنید. برای دنبال کردن وبلاگ‌های مورد علاقه‌تون هم می‌تونید همه‌ رو به صورت یکجا به کمک feedly.com داشته باشید. این نوشته از جادی رو بخونید: برای پیشرفت مجدد، دوباره وبلاگ بنویسید!

وبلاگ‌های پیشنهادی

وبلاگ‌هایی که شخصا دنبال می‌کنم رو با توجه به سطح مطالبشون لیست کردم. منظور از «عمومی» یعنی مناسب هر علاقه‌مندی بدون در نظر گرفتن پیش زمینه خاصی هستند. «کمی فنی» یعنی باید دانش عمومی از ریاضیات و فیزیک داشته باشید. مثلا دانشجوی کارشناسی این رشته‌ها باشید. «فنی» یعنی نیاز به دونستن پیش‌زمینه‌های خاص در فیزیکی یا ریاضی هست. «خیلی فنی» هم یعنی باید دانشجوی تحصیلات تکمیلی باشین دست‌کم!

برای زندگی روزمره و بیشتر برای جنبه‌های عمومی مسئله:

«عمومی» 
«کمی فنی» 

نوشته‌های مربوط به فیزیک جریان‌اصلی:

«کمی فنی» 

فیزیک آماری، ماده‌چگال و محاسباتی:

«فنی» 

سیستم‌های پیچیده، یادگیری ماشین و علوم داده:

«فنی» 
«خیلی فنی» 

برای عمیق شدن در ریاضیات:

«خیلی فنی» 

این دو تدتاک رو هم برای جنبه عمومی نوشتن پیشنهاد می‌کنم:

دینامیک: نیرو، حرکت و زمان

به تازگی کامنتی دریافت کردم که چندتا سوال ازم پرسیده بود. در این نوشته می‌خوام به این پرسش‌ها جواب بدم!

۱) زمان بر نیروی وزن اثر داره ؟ منظورم اینه وقتی زمان رو ثابت یکنیم یعنی اینکه تمام قوانین فیزیک رو با استفاده از زمان ثابت کنیم باز هم جسمی مثل لیوان به زمین برخورد میکنه اونم بر اثر نیروی گرانش یا نه؟(مثلا اگر تندی زمان رو زیاد کنیم جسمی مثل لیوان با تندی زیاد به زمین میرسه)
۲) چرا بعضی از پدیده ها در حال حرکت هستند؟ (مثل نور که وقتی لامپ رو روشن میکنیم بدون اینکه کاری بکنیم پرتوی نور خود به خود حرکت میکنه)
۳) آیا واقعا نور به دام سیاهچاله میفته ؟تا جایی که من میدونم انسان برای دیدن پدیده ها و اجسام ها به نور نیاز داره پس اگه نور از سیاهچله نمیتونه فرار کنه چطور دیدیمش؟(منظورم
عکسی که از سیاهچاله توی سال ۹۸ پارسال گرفتن)
۴) آیا نور تنها پدیده ایی هستش که سرعتی بسیار زیاد داره یا نه ؟
۵) نور ثابته ؟

۱) رابطه نیرو و زمان

قوانین نیوتون به ما میگه که اگه جسمی در حال حرکت باشه، تا زمانی که به اون جسم در کل نیرویی وارد نشه، جسم به حرکت خودش ادامه میده. اگر هم جسم از اول در حال حرکت نباشه، قاعدتا همون‌جایی که هست می‌مونه. مثل توپی که یه گوشه افتاده و تا زمانی که کسی بهش لگ نزنه از جاش تکون نمی‌خوره. منظور از «حرکت» هم تغییر موقعیت جسم با گذشت زمانه. یعنی هر بار که عقربه ساعت روی دست من تیک بزنه جسم از جایی به جای دیگه بره.

مسیر حرکت یک جسم در فضای ۳بعدی. هر نقطه از این مسیر را می‌توان با زمان نشانه‌گذاری کرد. به این معنی که بردار مکان $r$ در هر لحظه با مشخص کردن زمان به صورت یکتا مشخص خواهد شد.

در فیزیک نیوتونی اختیار تند و کند کردن گذر زمان دست ما نیست. یعنی ما نمی‌تونیم کاری کنیم که زمان سریع‌تر بگذره یا کندتر بگذره یا اینکه متوقف بشه! ولی می‌تونیم این ایده رو شبیه‌سازی کنیم. مثل زمانی که از چیزی فیلم گرفته باشیم و با سرعت‌های مختلف اونو پخش کنیم. می‌تونیم تندتند بزنیم جلو ببینم آخرش چی میشه یا اصلا متوقفش کنیم. برای همین، اگه بتونیم که زمان رو متوقف کنیم، اون موقع اتفاقی که می‌افته اینه که آخرین تصویری که از هر چیزی داریم، همون باقی می‌مونه. پس اگه سیبی در حال سقوط به زمینه، با متوقف کردن زمان بین زمین و آسمون می‌مونه. این به این معنی نیست که نیرویی وجود نداره! بلکه به این معنی هست که در یک لحظه خاص، ما فقط یک فریم از یک فیلم رو انتخاب کردیم و داریم اونو می‌بینیم و با راه انداختن دوباره زمان، می‌بینیم که سیب به سقوطش ادامه میده. یا اگه فرض کنیم که گذر زمان رو سریع‌تر کنیم اون موقع می‌بینیم که سیب زودتر به زمین می‌خوره. یا اگه زمان رو به عقب برگردونیم می‌بینم که سیب به جای زمین خوردن، هوا میره 🙂

توضیح‌ فنی‌تر:

اگر دینامیک توصیف‌کننده یک سیستم، توسط معادلات تعینی داده بشه،اون موقع خروجی مسئله، یک «مسیر» می‌تونه باشه. مسیر، یک «خم» در فضای مکانه که توسط زمان نشانه‌گذاری شده. با داشتن مسیر، می‌تونیم بدونیم که سرشت نهایی سیستم چیه. به عنوان مثال با حل مسئله گرانش عمومی نیوتون برای دو جسم، به یک مسیر بسته بیضی شکل برای یکی از اون دو جسم می‌رسیم. با تغییر زمان، از نقطه‌ای به نقطه‌ی دیگه‌ از اون مدار (مسیر بسته) هدایت میشیم.

قانون دوم نیوتون، $F=ma$ یا معادله اویلر-لاگرانژ $\frac{\partial L(x,\dot{x}; t)}{\partial x } = \frac{d}{dt}\frac{\partial L(x,\dot{x}; t)}{\partial \dot{x} }$ هر دو منجر به دسته‌ای از معادلات دیفرانسیل معروف به معادلات حرکت میشن. در این روش مدل‌سازی، حرکت سیستم شما تعینی هست و شما با دونستن اطلاعات در مورد حال، دقیقا می‌تونید بگید که چه اتفاقی در آینده می‌افته.

گاهی دینامیک توصیف کننده شما توسط معادلات غیر تعینی داده میشه، مثل زمانی که حرکت یک ولگرد (قدم زن تصادفی) یا یک فرایند تصادفی رو مدل می‌کنید. اون موقع برای شروع مسئله، با معادله «مادر» یا معادله فوکر-پلانک می‌تونید پیش‌ برید. در این حالت، مسئله شما دیگه تعینی نیست و پیش‌بینی آینده یا پیش‌بینی مسیر، با عدم قطعیت (یا به عبارتی خطا) همراه خواهد بود. مثلا برای یک ولگرد نمی‌تونید با قطعیت کامل بگید که در فلان لحظه کجاست!

۲) علت حرکت چیزها

چیزها حرکت می‌کنند چون که بهشون نیرو وارد میشه! زمین دور خورشید می‌چرخه چون از طرف خورشید بهش نیرو وارد میشه یا توپ فوتبال حرکت می‌کنه چون یکی بهش ضربه می‌زنه! در مورد نور لامپ هم این جوری نیست که ما «کاری نمی‌کنیم»! در حقیقت با زدن کلید برق، جریان الکتریکی به لامپ میرسه و توی لامپ انرژی الکتریکی تبدیل به انرژی روشنایی میشه. یعنی همون‌جور که فوتبالیست به توپ ضربه می‌زنه و توپ حرکت می‌کنه، رسیدن جریان الکتریکی به لامپ‌ هم سبب ضربه زدن به نور میشه که به مسیرهای مختلف حرکت کنه. به این پدیده در فیزیک، تابش الکترومغناطیسی گفته میشه. به عبارت فنی‌تر، میدان الکتریکی اعمال شده توسط جریان خارجی (برق) سبب برانگیختگی ماده‌ای مثل تنگستن یا گاز خاصی مثل نئون میشه. برانگیختگی یعنی الکترون‌های که توی اتم‌های تشکیل دهنده اون مواد هستند از یک سطح انرژی به سطح بالاتری می‌رن (مثل وقتی که از پله‌های سرسره بالا میرین). اون موقع وقتی الکترون‌ها از یک سطح با انرژی بالاتر به سطی با انرژی پایین‌تر میان (مثل وقتی از سرسره پایین میاین)، اندازه اختلاف انرژی این دو سطح، از خودشون موج الکترومغناطیس یا ذرات نور منتشر می‌کنند!

این ویدیو رو ببینید:

۳) نور به دام سیاه‌چاله می‌افته؟

در مورد داستان سیاه‌چاله‌ها و اینکه چه‌طور از یک سیاه‌چاله میشه تصویر برداری کرد مفصل نوشتیم قبلا! این نوشته رو بخونید: قیام علیه سیاهی! به طور خلاصه، سیاه‌چاله‌ها اجسام بسیار بسیار سنگینی هستند که حتی بر حرکت نور هم اثر می‌ذارن. در مورد تصاویر منسوب به سیاه‌چاله‌ها هم، در حقیقت نوری که توی تصویر می‌بینیم دقیقا خود سیاهچاله نیست! یه سری موادی هستند که توی یه دیسک (شبیه حلقه‌های زحل) اطراف سیاهچاله دارن میچرخن و چون خیلی داغ هستن از خودشون نور تابش می‌کنن (درست شبیه به همون لامپ!). درواقع ما نور این موادی که در اطراف سیاهچاله وجود دارند و تونستن قسر دربرن و به چشم ما برسن رو می‌بینیم. تصویر ثبت شده، به خاطر اون نورها هست!

کمی توضیح فنی‌تر: ناحیه‌ای هست به‌اسم کره فوتونی که نزدیکترین مدار به افق رویداد که فوتون‌ها می‌تونن توی یه مدار پایدار دور سیاهچاله بچرخن. نزدیک‌تر از اون دیگه تقریبا فوتون شانسی برای برگشت نداره!

نمودار شماتیک از یک سیاه‌چاله شوارتزشیلد. نگاه کنید به نوشته «قیام علیه سیاهی»

۴) آیا نور فقط سرعتش زیاده؟

نه! هر چیزی می‌تونه خیلی سریع حرکت کنه. محدودیتی در اصول نداریم. مثلا در آزمایش‌های مختلف فیزیکی، نوترون‌ها، الکترون‌ها یا پروتون‌ها رو با سرعت‌های خیلی زیاد به حرکت در میارن. یکی از جاهایی که مثلا پروتون‌ها رو تا سرعت‌های نزدیک به سرعت نور به حرکت در میارن آزمایشگاه سرن هست.

۵) آیا نور ثابته؟!

سوال رو درست متوجه نشدم! اگر منظور سرعت حرکت نوره، بله سرعت حرکت نور در هر محیط ثابته ولی موقعی که از محیطی به محیط دیگه میره تغییر میکنه. مثلا سرعت نور در هوا یک چیزه و در آب یک چیز دیگه‌ است. طبق نسبیت اینشتین، نور بیشترین سرعت در حرکت رو داره.

فوتونیک چیه؟ فوتونیک کجاست؟

راستش نور همیشه برای من جذاب‌ترین قسمت فیزیک و آزمایش‌هاش بوده اما در مورد رشته فوتونیک تا قبل از شروع لیسانس هیچ چیز نمی‌دونستم. می‌خوام در طول این متن برای بچه‌هایی بنویسم که لیسانسشون رو به اتمامه و میخوان برای کنکور ارشد آماده بشن یا حتی برای دوستان دبیرستانی که به نور علاقه دارن و می‌خوان مستقیماً برن دنبالش و از دنیای پرهیاهوی فیزیک و درس‌های به ظاهر طاقت‌فرسای نظری سریعتر بگذرن. (همین‌جا بگم تا یادم نرفته که این‌کار به نظر جذاب‌تره ولی اصلاً توصیه‌ش نمی‌کنم. در ادامه توضیحش می‌دم!)

فوتونیک چیه؟

فوتونیک رو چند مدل تعریف می‌کنن. ساده‌ترینش اینه که فوتونیک، علمی است که در آن به نور می‌پردازند! همین‌قدر کلی! یا یکم کامل‌ترش اینه که فوتونیک، علمی است که در آن به تولید و کنترل و آشکارسازی امواج نوری و فوتون‌ها می‌پردازیم. حتی کمی دقیق‌تر بخواییم نگاه کنیم می‌تونیم بگیم فوتونیک علم و تکنولوژی‌ای است که در آن به تولید و استفاده از نور و دیگر انرژی‌های تابشی مشغولیم که واحد کوانتومیشون فوتونه (که با تقریب خوبی بیشتر طیف الکترومغناطیسی رو شامل میشه به جز امواج رادیویی و ریزموج‌ها که معمولاً تو حیطه برق مخابرات و اینا باهاشون کار می‌کنیم). گذشته از این تعاریف، یادمه که استاد درس فوتونیک۱ هم تعریف جالبی ارائه داد. ایشون می‌گفت فوتونیک علم و فناوری تولید، انتقال، دستکاری و دریافت اطلاعات به وسیله نور هست. من این تعریف رو بشخصه بسیار می‌پسندم. حالا چرا اسم فوتونیک گذاشتن روی این زمینه علمی؟ خب انگار اون زمان (یعنی سال ۷۰–۱۹۶۰ میلادی) از الکترونیک تقلید کردن! الکترونیک علم استفاده از جریان الکترون‌هاست و حالا که سیلی از فوتون‌ها داریم، خب اسمشو میذاریم فوتونیک. ☺

مردم تو فوتونیک دارن چیکار می‌کنن؟ فوتونیک کجاهاست؟

تقریباً همه دانشگاه‌های دنیا به نحوی مشغول تحقیق در زمینه فوتونیک هستن. اکثراً در دانشکده فیزیک و دانشکده برق یا گاهی به صورت یک مؤسسه یا مرکز تحقیقات جدا، مشغول کار بر روی حوزه‌های مختلف فوتونیک هستند. همون‌طور که در ادامه می‌بینید به دلیل تنوع موضوعات، این که در دانشکده‌های مختلف بهش بپردازند، اصلاً چیز عجیبی نیست. حالا که از اسم و تعریفش گفتم، قبل از این که بگم تو دنیا متخصصان فوتونیک مشغول چه مدل کارهایی هستن، می‌خوام چندتا از حوزه‌های کلی علمیش رو براتون بگم. اولیش که اینقدر معروفه که خیلی جاها اصلاً علم فوتونیک رو به اون می‌شناسن رو قطعاً حدس زدین تا الان: لیزرها! البته علم فوتونیک بسیار بسیار وسیع‌تر از این حرف‌هاست و انواع لیزرها فقط یه بخشی از اون هستن. در ادامه ما فیبر نوری، اپتیک غیر خطی، الکترواپتیک (یعنی موادی که وقتی نور بهشون می‌خوره خواص الکتریکیشون عوض میشه)، فتوولتائیک (فناوری استفاده شده در ساخت سلول‌های خورشیدی)، LEDها، طیف‌سنجی، مدارات مجتمع، دانش و فناوری امواج تراهرتز، اپتیک کوانتومی، اپتیک نیمه‌رساناها و البته خود اپتیک (نورشناسی)! بله.اپتیک به عنوان شاخه‌ای از فیزیک رو هم میشه در واقع زیرشاخه‌ای از فوتونیک طبقه‌بندی کرد. زیرشاخه‌ای بسیار وسیع که مطالعه خود اون یک رشته تخصصی است و سال‌ها وقت می‌خواد.

نمایی از یک چیدمان اپتیکی در دانشگاه نبراسکا که برای شتاب‌دهی الکترون به کار می‌رود.

خب ازین موارد هم بگذریم. می‌خوام توضیح بدم تو دنیا فوتونیک رو برای چه چیزهایی استفاده می‌کنند و این شاخه‌هایی که گفتیم کجاها تو زندگی به دردمون خوردن و قراره بخورن. قبل از هر چیزی این رو بگم که یکی از مهم‌ترین وظایف علم فوتونیک، پر کردن خلأهاییه که الکترونیک در زندگی ما قادر به پر کردنشون نیست. نیازهایی که با پیشرفت الکترونیک و مخابرات ایجاد شدن و حالا دیگه ما به این حدی که داریم قانع نیستیم یا نیاز مارو نمی‌تونن برطرف کنن. مثل افزایش سرعت اینترنت یا افزایش پهنای باند برای انتقال داده‌ها یا امثالهم که با فیبرها و موج‌برهای نوری سعی در بهبودشون داریم چون می‌دونیم سرعت نور تقریباً ۱۰ برابر سرعت برقه (جریان الکترونی) پس می‌تونه تا حد زیادی سرعت انتقال اطلاعات و همچنین پهنای باند را زیاد کنه و همچنین موج نور بر خلاف الکترون‌ها در مدهای خاص و قابل تنظیم حرکت می‌کنه که با هم تداخل نمی‌کنند پس امکانش هست که حتی مثلاً سه میلیون مکالمه همزمان تلفنی را توسط تنها یک فیبر نوری منتقل کنیم! پس در کل باید قطعاتی بسازیم و استفاده کنیم که به جای الکترون از فوتون استفاده کنن که این میشه بخشی از فوتونیک که به مدارات مجتمع می‌شناسنش؛ همون چیزی که در بالا هم ازش اسم برده بودم.

اگر بخوام ادامه بدم می‌تونم به کاربرد نور (لیزرها) در بریدن و جوش دادن و سوراخ‌کاری تقریباً هرچیزی یعنی از فلزها تا پارچه و پوست انسان بگم، میشه از کاربردهای فوق‌العاده طیف‌سنجی نوری در انواع و اقسام بخش‌ها از نجوم و دریافت و تحلیل داده‌های آسمانی تا مواد و نمونه‌های مختلف اطرافمون که به تشخیص مواد سازنده اونا نیاز داریم، گفت، یا از دانش نسبتاً جدید تراهرتز گفت که به دلیل ویژگی‌های منحصر به فرد خودش (مثلا جذب بسیار زیاد در آب یا بازتاب بسیار زیاد از سطح فلزها یا عبور با جذب بسیار پایین از موادی مثل پارچه یا پلاستیک) بسیار محبوب شده‌است، در صنایع نظامی لیزرها و ادوات اپتیکی مثل دوربین‌ها یا آشکارسازها بسیار کمک کننده هستند، در حیطه تشخیص و درمان پزشکی، استفاده از نور، تجربه بسیار موفقی بوده‌است؛ برای مثال در عمل‌های جراحی داخلی یا پوست و مخصوصاً چشم که بسیار حساس است، لیزرهای توان‌پایین بدون آسیب زدن به بافت کلی چشم می‌توانند آن را به خوبی بشکافند، در صنایع کشاورزی برای کنترل کیفیت رشد و همچنین داشتن تصاویر بزرگ مقیاس و با کیفیت از نحوه حاصل‌دهی محصول از فتونیک استفاده میشه. موارد دیگه از استفاده شامل تولید انرژی پاک و استفاده از قطعات فتوولتائیک (سلول‌های خورشیدی) برای تولید انرژیه. کاربردهای بسیار جالب و متنوع دیگری هم در صنایع هوافضا و نانوتکنولوژی و مهندسی اطلاعات و امنیت و تولید و فناوری زیستی داره که به خودتون میسپرمش.

نمونه‌ای از لیزر تراپی که برای خون‌رسانی و درمان بافت از آن استفاده می‌شود.

فوتونیک در ایران

در وهله اول باید بدونین فوتونیک یک علم تجربیه که برای پیشرفت کردن در اکثر زمینه‌های اون، نیاز به تجهیزات و آزمایشگاه‌های پیشرفته و دقیقی هست. وضعیت کشور ما رو هم که می‌دونید در این زمینه‌ها. پس صادقانه بهتون بگم که توقعتون رو بیارین پایین از همین الان! ☹

از بهترین دانشگاه‌هایی که در مقطع لیسانس، رشته اپتیک و لیزر رو دارن میشه به دانشگاه مالک اشتر (وابسته به وزارت دفاع) یا دانشگاه شهید باهنر کرمان یا دانشگاه بناب و دانشگاه صنعتی ارومیه اشاره کرد. البته همونطور که در ابتدای متن هم گفتم توصیه شخصی من این هست که حتی اگر می‌خوایین در رشته فوتونیک وارد شین و فعالیت کنین در مقطع لیسانس سعی کنین فیزیک بخونین و در یک دانشگاه خوب هم بخونین؛ دلیلم البته هم تجربه‌ایه که با دیدن دوستان و اطرافیان تو دوران کارشناسی ارشد به دست آوردم. از طرف دیگه، یک دانشجوی خوب فیزیک، مجبوره سخت‌کوش و با دانش وسیع‌تری بار بیاد. وقتی شما لیسانس فیزیک می‌گیرید باید علی‌الاصول دید خوبی به مباحثی مثل مکانیک کوانتومی و فیزیک حالت جامد و مکانیک آماری داشته باشید که تا جایی که من خبر دارم در رشته اپتیک و لیزر بسیار سطحی این مباحث رو تدریس می‌کنن (حداقل نسبت به دانشکده‌های فیزیک) در حالی که بسیار بسیار دونستن این مفاهیم در درک شاخه‌های مختلف فوتونیک راه‌گشاست.

در تحصیلات تکمیلی هم مهم‌ترین مرکزی که در کشور این رشته رو داره، پژوهشکده لیزر و پلاسما دانشگاه شهید بهشتیه. همچنین دانشگاه علم و صنعت، دانشگاه خوارزمی، دانشگاه تحصیلات تکمیلی در علوم پایه زنجان، دانشگاه تبریز، دانشگاه زنجان، دانشگاه زاهدان، دانشگاه شهرکرد، دانشگاه صنعتی شیراز، دانشگاه کاشان، دانشگاه سنندج، دانشگاه رشت، دانشگاه ملایر، دانشگاه بابلسر و دانشگاه رفسنجان هم از طریق کنکور کارشناسی ارشد فوتونیک پذیرش دانشجو دارند؛ البته همون‌طور که گفتم باید بسیار زیاد به این نکته توجه کنین که این رشته یک علم تجربیه و تجهیزات و آزمایشگاه‌ها حرف بسیار زیادی رو در اون می‌زنن پس برای انتخاب دانشگاه به این نکته بسیار دقت کنید که بعداً پشیمون نشین.

اگر بخوام در حد یک بند توضیح بدم که این‌جا در ایران، مهم‌ترین و بیشترین مباحثی که استادها و دانشجوهاشون دارن کار می‌کنن روش چه چیزهایی هستن، میتونم به موضوعاتی مثل ساخت انواع لیزر، ساخت انواع حسگر به کمک فیبر نوری، فوتونیک مواد آلی و پلیمری، دانش و فناوری تراهرتز (فعلا به صورت شبیه‌سازی)، انواع مختلف میکروسکوپی و تصویربرداری از جمله عکس‌برداری از بافت‌های زیستی، بایوفوتونیک، تحقیق بر روی انبرک‌های نوری، پلاسمونیک (محلی برای توضیح این مبحث بسیار جذاب در این متن نبود ولی توصیه می‌کنیم حتماً یه سرچی بکنید در موردش)، اپتیک کوانتومی، تحقیق و توسعه سلول‌های خورشیدی، حسگرهای نیمه‌رسانا، انواع طیف‌سنجی، نانو فوتونیک اشاره کنم.

البته مباحث دیگری هم شاید باشند که احتمالاً نسبت به موارد ذکر شده اهمیت کمتری دارند. به هر حال، تلاش بر این بوده که مهم‌ترین و برجسته‌ترین موضوعاتی که در دانشگاه‌های داخل کشور به آن‌ها پرداخته می‌شه ر مطرح کنم. باز هم تأکید می‌کنم که مثلاً وقتی گفته میشه در داخل کشور برخی آزمایشگاه‌ها به کار بایوفوتونیک مشغول هستند، اصلاً و به هیچ عنوان نمیشه کار شون رو با آزمایشگاه‌های بسیار مجهز و اساتید خارج از ایران مقایسه کرد. تفاوت‌ها گاهی ناامید کننده هستند.

در پایان و به عنوان سخن آخر

تحصیل در رشته فوتونیک همواره سختی‌ها و مشقات خاص خودش مثل کار کردن با ادوات آزمایشگاهی قدیمی یا نبود امکانات آزمایشگاهی، کمی عقب بودن از باقی دنیا به دلیل تحریم و … رو به همراه داره. اما برای عاشقان سینه‌چاک نور، این موضوعات محدودیت نیست و قطعاً موضوعات بسیار جالب و چالش‌برانگیزی رو می‌شه پیدا کرد که هم دست اول باشند و هم با همین امکانات هم به پژوهش در موردشون پرداخت. مهم، دید علمی و درست به دنیا و به اطرافتون هست!

نظریه گراف و علم شبکه

نزدیک به ۲۰ ساله که چیزی به اسم نظریه شبکه‌ یا علم شبکه در ادبیات علمی پیدا شده. شاید نزدیک‌ترین یا نام‌آشناترین نظریه به علم شبکه، نظریه گراف در ریاضیات باشه. چیزی که از زمان اویلر (۱۷۳۶) شکل گرفته و در چند قرن اخیر هم همیشه حوزه‌ی پژوهشی برای ریاضیدون‌ها بوده. اما این فقط ظاهر کاره! نگاهی به جامعه‌ی علمی این دو شاخه از معرفت بشری، تصویری از دو گروه از متخصصین رو نشون می‌ده که چندان هم کارشون شبیه به هم نیست! به عبارتی، با این‌که نظریه شبکه بسیار وام‌دار نظریه گراف هست، اما چیزی که در عمل در حال اتفاق افتادنه اینه که مسائلی که گراف‌کارها مشغول مطالعه‌شون هستند اصلا شبیه به مسائل شبکه‌کارها (دانشمندان شبکه!) نیست. با تقریب خوبی البته!

علت این اتفاق هم بیشتر به این برمیگرده که برای یک ریاضیدان، گراف یک موجود انتزاعی/مجرد و خوش‌تعریف ریاضی به همراه یک عقبه محکم و استوار ریاضی و تعداد زیادی لم، قضیه و حدسه، در حالی که برای دانشمندان شبکه، شبکه یک موجود کاربردی و پدیدارشناسانه‌ هست که نه تعریف چندان صریحی داره و نه عقبه کاملا مشخصی! علم شبکه یا نظریه شبکه، علمی جدید، پدیداره از علوم و دانش‌های مختلفه که حدودا ۲۰ ساله شکل گرفته و بیشتر از هر چیزی تحت تاثیر داده‌های بزرگ و کامپیوترها بوده تا کاغذ و قلم و حل‌های بسته (تحلیلی)!

نگاره از QuantaMagazine

در نظریه گراف تلاش عمدتا بر شناسایی و مطالعه ساختارهاییه که بتونیم اون‌ها رو به صورت تحلیلی دنبال کنیم. برای همین، گراف‌کارها (نظریه‌پردازان گراف!) معمولا به سراغ گراف‌های تصادفی، گراف‌های کامل و مسائلی مثل رنگ آمیزی و کاور کردن میرن. اما در علم شبکه، مردم بیشتر به دنبال مسائل کاربردی‌تر و مدل‌هایی هستند که بیشتر مسائل دنیای واقعی (فیزیکی، شیمیایی، زیستی، اجتماعی و اقتصادی) رو توجیه‌ کنند! برای همین لزوما از لحاظ ساختاری این شبکه‌ها، گراف‌هایی نه کاملا تصادفی و نه کامل، بلکه گراف‌هایی تنک با توزیع درجه‌‌های دم‌کلفت هستند!

علم شبکه، امروز یک ساختار پدیدارشناسانه از دنیای بس‌ذره‌ای و پیچیده بیرونه! یک مقایسه زمانی با فیزیک، میشه گفت که علم شبکه در زمان ما، بسیار شبیه به ترمودینامیک زمان کارنو هست و نه ترمودینامیک در زمان بولتزمان، مکسول و فون‌نویمان! انتظار بر اینه که تلاش‌های جدی صورت بگیره تا ریاضیات لازم برای علم شبکه به قدری توسعه پیدا کنه که علم شبکه به بلوغی برسه که ترمودینامیک بعد از بولتزمن رسید.

چیزی که خوندید، در حقیقت مقدمه‌ای بود برای دعوت به مطالعه این نوشته:

Iñiguez, G., Battiston, F. & Karsai, M. Bridging the gap between graphs and networks. Commun Phys 3, 88 (2020). https://doi.org/10.1038/s42005-020-0359-6

Bridging the gap between graphs and networks
arXiv:2004.01467 [physics.soc-ph] DOWNLOAD

مستقل از این‌که این نوشته دید خوبی می‌ده از تفاوت نگاه دو جامعه علمی متفاوت به یک مسئله و مسائل مختلف حوزه پژوهش در هر کدوم از اون جوامع، این نوشته دارای منابع گلچین شده‌ای هست که هر کسی که کارش مربوط به شبکه است خوبه که حتما اون‌ها رو بخونه!

برای همین اگر دانشجوی سیستم‌های پیچیده یا یکی از سه رشته فیزیک، ریاضی و علوم کامپیوتر هستید و علاقه‌مند به موضوع شبکه‌ها، این نوشته رو به شما توصیه می‌کنم تا بدونید که:

  • علم شبکه، نظریه گراف نیست و بالعکس!
  • تفاوت مسائل روز پژوهشی که ریاضیدون‌ها و شبکه‌کارها بهشون می‌پردازن چی هست.
  • آینده این علوم چه شکلی ممکنه داشته باشه؟!
  • اگر ریاضی خوندید و علاقه‌مند به شبکه هستید، مسیری که در پیش دارید چه‌طوری می‌تونه باشه!
  • اگه فکر می‌کنید علم شبکه چندان پشتوانه ریاضی قوی نداره، اون موقع باید چه‌طور نگاهتون رو اصلاح کنید!