این روزها، همه کسایی که با من لیسانس رو شروع کرده بودن یا دانشگاه رو کاملا ترک کردن یا اینکه جایی در گذار از کارشناسی ارشد به دکتری هستن. تعدادی وارد دوره دکتری شدن و تعدادی هم در فکر ورود به این مقطع، شب و روزشون رو سر میکنن. نزدیک به یکساله که من دوره دکتریم رو در آلتو شروع کردم. احتمالا هنوز تجربه کافی برای دادن یک جواب خیلی پخته به این سوال رو ندارم، اما به نظرم تجربههایی که این مدت کسب کردم یا چیزهایی که از بقیه شنیدم یا دیدم بتونه ایدههای شفافتری بده در مورد دکتری خوندن!
دکتری خواندن در ایران
راستش من به طور کلی مخالف دکتری خوندن توی ایران هستم! نه به این خاطر که ما اصلا اساتید خوبی نداریم در ایران، نه! بلکه به این خاطر که دکتری خوندن یک کار حرفهایه و نیازمند یک بستر مناسبه که در ایران با تقریب خوبی همچین بستری وجود نداره. البته استثناهایی وجود داره برای قشر خاصی از جامعه!
ما توی ایران دانشگاههای خوبی داریم که «آموزش» با کیفتی ارائه میکنند. تجربه من از کلاسهای دانشگاه شهید بهشتی و دانشگاه صنعتی شریف اینه که آموزش ارائه شده، به نسبت بقیه جاهای دنیا، از کیفیت قابل قبولی برخورداره. خصوصا که بعضی از کلاسها واقعا با کیفیت بالایی برگزار میشن. کسی نمیتونه منکر کیفیت کلاس جبر یا ریاضی عمومی دکتر شهشهانی، فرایندهای تصادفی دکتر علیشاهی، فیزیک۳ یا کاربرد کامپیوتر در فیزیک دکتر اجتهادی، الکترومغناطیس دکتربهمنآبادی ودینامیک غیرخطیدکتر مقیمی بشه! اصلا مگه چند جای دنیا در دوره لیسانس کلاسی با کیفیت کلاس مکانیک کوانتومی دکتر گوشه، فیزیک۱ یا هواشناسی یا نسبیت دکتر شجاعی ارائه میشه؟ اگه بخوایم منصف باشیم، ما در مقطع کارشناسی، حداقل در علوم پایه که من بیشتر اطلاع دارم، دانشگاههای خوبی داریم؛ دانشگاه خوب به معنی مجموعهای از اساتید (مدرس)، دانشجوها، امکانات آموزشی و کادر اجرایی. قبول دارم که قوانین آموزشی، منش کادر اجرایی و فضای بسته و سیاستزده دانشگاههای ما اصلا راضیکننده نیست. اما از نقطه نظر آموزشی، دورههای لیسانسی که در دانشگاههای برجسته ما ارائه میشه واقعا خوبه. برای همین اگر کسی واقعا دوست داشته باشه که مثلا فیزیک بخونه، حتما توی پایتخت یا کلانشهرهای ایران فرصت استفاده از یک آموزش با کیفیت و به شدت ارزونقیمت رو پیدا میکنه. از طرف دیگه، به لطف دورههای آنلاین و ویدیوهای آموزشی روی وب، بخش بزرگی از ضعفهای آموزش برطرف شده. شاید شما درسی بگیرین و استاد اون درس نتونه خوب درس بده، اما احتمال زیاد میتونه سوال شما رو جواب بده یا بالاخره کسایی پیدا میشن که به سوال شما جواب بدن. به عنوان مثال شما میتونید کلاسهای درس حالت جامد دانشگاه آکسفورد رو ببینید و در نهایت مشکلاتی که توی حل مسئله دارین رو از کسی بپرسین.
از زمانی که من وارد دانشگاه شدم (مهر ۹۱) تقریبا میشه گفت که دو اتفاق مهم دنیای نور و فوتونیک رو پشت سر گذاشتم. اولی سال جهانی نور بود (۹۳). اونسال دانشگاه بهشتی میزبان «۲۱امین کنفرانس اپتیک و فوتونیک و ۷امین کنفرانس مهندسی و فناوری فوتونیک» در ایران بود و من به عنوان خبرنگار این کنفرانس توی اکثر برنامهها شرکت میکردم. خیلی برنامه خوبی بود و حسابی هم خرج کرده بودند! خلاصه که خوش گذشت و از همه جهات برای من منجر به یک تجربه هیجانانگیز شد. به نظرم حرفهایترین رویدادی بود که در عمرم در ایران دیده بودم! اما خب اینکه حالا این همه پول از کجا اومد و چهطور برنامهای با اون کیفیت برگزار شد توی بهشتی رو نمیدونم. بگذریم! رویداد بعدی، مهر ۹۷ بود. اون سال جایزه نوبل فیزیک به سه نفر، با سهمهای مختلف، برای نوآوریهای پیشگامانه در زمینه فیزیک لیزر تعلق گرفت.
از دو سال پیش هم، سازمان ملل، تصمیم گرفت که روز ۱۶ ماه می یا ۲۸ اریبهشت رو به عنوان روز جهانی نور اعلام کنه. علت این تاریخ هم برمیگرده به ۶۰ سال پیش، وقتی که اولین لیزر دنیا کار کرد! مردم امسال به خاطر کرونا، در خونه و پشت کامپیوترهاشون با هشتگ #SEETHELIGHT این روز جشن گرفتند و رویدادهای آنلاین برگزار کردند. این نوشته رو بخونید!
یکی از سه برنده نوبل فیزیک سال ۲۰۱۸، خانومی بود به اسم دانا استریکلند که سومین زنی بود که برنده این جایزه میشد در تاریخ. قبل از ایشون، خانم ماریا مایر برنده این جایزه شده بود که اختلاف زمانی این دو نفر بیشتر از ۵۰ ساله! خانم دانا استریکلند، استاد دانشگاه واترلو کانادا هستند و طبیعتا کارشون فیزیک لیزر هست. فیزیک لیزر در حقیقت زیرمجموعهای از فیزیک اتمی حساب میشه و به تعبیر دیگهای، بخشی از شاخه علم فوتونیک. در مورد فوتونیک، امین مطلبی نوشته که پیشنهاد میکنم اون رو بخونید.
توی این ویدیو خانم استریکلند مفهوم لیزر رو در چند مرحله، از مقدماتی تا حرفهای توضیح میده:
یادگیری فیزیک لیزر
اگر علاقهمند هستید که فیزیک لیزر رو یاد بگیرین طبیعتا باید درسهایی مثل الکترومغناطیس و مکانیک کوانتومی رو خیلی خوب یادبگیرید. دست کم در اندازهای که بچههای رشته فیزیک توی دوره لیسانس یاد میگیرند. قبلا در مورد یادگیری آنلاین این دو موضوع در اینجا نوشتم. به طور خاص، دورههایی که در ادامه اومده بهتون در درک فیزیک لیزر میتونه کمک کنه:
اگر هنوز الکترومغناطیس و مکانیک کوانتومی نمیدونید، خوبه که این چیزها رو ببینید:
سال ۲۰۱۸ زمانی که جایزه نوبل فیزیک اعلام شد، یکی از خبرهای عجیب که دست به دست میشد این بود که خانم استریکلند صفحه ویکیپدیا نداشت! برای خیلیها سوال شده بود که چرا اصلا این اتفاق، یعنی ساخته نشدن صفحه ویکیپدیا برای یه همچین آدمی، افتاده؟! آیا این مربوط به اینه که ایشون خانومه و نه آقا یا چی؟! بازتابی از اون اتفاقات و پاسخ به خیلی از پرسشها رو میتونید در اینجا بخونید. اما بد نیست به عنوان یک حاشیه، اشاره کنم به اینکه حتی الان اگه صفحه گوگل اسکالر خانم استریکلند رو ببینید، عددی که h-index نشون میده شما رو متعجب خواهد کرد؛ عددی به ظاهر کم، برای برنده شدن یک جایزه نوبل در علم! بحث بیشتر در مورد این موضوع، نه کار منه و نه علاقهای دارم که بهش بپردازم. همون توضیح بنیاد ویکیمدیا در مورد صفحه نداشتن ایشون به نظرم ایدههای خوبی از برخورد دنیای بیرون از دانشگاه با دانشگاه رو نشون میده. برهمکنش اهل دانشگاه با همدیگه هم بمونه داخل محافل خودشون. بگذریم!
راستش چیزی که سبب شد این متن رو بنویسم، دیدن این تصویر از گروه خانم استریکلند در دانشگاه واترلو بود:
عکس دسته جمعی از گروه لیزرهای فوقسریع دانشگاه واترلو – ۲۰۱۷ – نگاره از ویکیپدیا
این عکس که شبیه به یک عکس خونوادگی میمونه در حقیقت تصویری از آدمهاییه که در حرفهایترین سطح، مشغول به انجام کار علمی هستند. یکی از این آدمها (خانم مسن آبیپوش) برنده جایزه نوبل در فیزیک هست و بقیه هم تیم تحقیقاتی ایشون رو تشکیل میدن که حضورشون در این عکس، تنوعی از سن و سال، جنسیت، وزن، تیپ، نژاد، فرهنگ، ملیت، عقیده و … رو نشون میده! واقعیت اینه که دانشگاهها این شکلی هستند و طیفی از آدمهای مختلف با سلیقهها و ویژگیها شخصیتی متفاوت رو در بر میگیره که همهشون در یک چیز، دستکم، مشترک هستند: انجام دادن کار زیاد!
به نظرم این تصویر و تصاویر مشابه برای کسایی که دوست دارن وارد کار پژوهشی بشن و آینده شغلی خودشون رو در دانشگاه بسازن این ارمغان رو داره که دانشمند شدن نه به قیافهس و نه به تیپ و عقیده آدما! دانشمند شدن به صبر، پشتکار، حوصله، خونواده حمایتگر و شانس نیاز داره. از طرف دیگه ممکنه این عکس این ایده رو به ذهنها بیاره که این آدمها همیشه این قدر خندان و خوشحال هستند! نه این طوری نیست! حتی ممکنه همیشه هم اینقدر خوش لباس و آراسته نباشن! بالاخره آدمها موقع عکس گرفتن سعی میکنن بهترین حالت از خودشون رو ثبت کنند! برای همین درسته که این جور تصویرها، یک جمع شاد و سرزنده رو نشون میده ولی نباید فراموش کنیم که پشت هر عکس دست جمعی در علم، کلی خون دل، شکست، تلاش مجدد و بدشانسی میتونه نشسته باشه!
جمله آخر این نوشته هم باشه تعمیمی از حرف مریم میرزاخانی که:
علم، زیباییهاشو فقط به اونایی که صبور هستند نشون میده!
بعد از مدتها، فرصتی پیش اومد تا با مهدی در مورد وبلاگنویسی و روایتگری در علم گپ بزنیم. ویدیوی این گفتوگو ضبط شده و در ادامهی این نوشته میتونید ببینیدش. بهطور کلی در مورد این حرف زدیم که چرا وبلاگنویسی مهمه، منظورمون از روایتگری در علم چیه و اشارههایی هم داشتیم به تجربههامون در سیتپور. حین این گپ و گفت یک سری وبلاگ معرفی شد و یک سری ایده و ترفند برای شروع وبلاگنویسی که سعی میکنم اینجا به اونها اشاره مختصری کنم.
وبلاگهایی که شخصا دنبال میکنم رو با توجه به سطح مطالبشون لیست کردم. منظور از «عمومی» یعنی مناسب هر علاقهمندی بدون در نظر گرفتن پیش زمینه خاصی هستند. «کمی فنی» یعنی باید دانش عمومی از ریاضیات و فیزیک داشته باشید. مثلا دانشجوی کارشناسی این رشتهها باشید. «فنی» یعنی نیاز به دونستن پیشزمینههای خاص در فیزیکی یا ریاضی هست. «خیلی فنی» هم یعنی باید دانشجوی تحصیلات تکمیلی باشین دستکم!
برای زندگی روزمره و بیشتر برای جنبههای عمومی مسئله:
به تازگی کامنتی دریافت کردم که چندتا سوال ازم پرسیده بود. در این نوشته میخوام به این پرسشها جواب بدم!
۱) زمان بر نیروی وزن اثر داره ؟ منظورم اینه وقتی زمان رو ثابت یکنیم یعنی اینکه تمام قوانین فیزیک رو با استفاده از زمان ثابت کنیم باز هم جسمی مثل لیوان به زمین برخورد میکنه اونم بر اثر نیروی گرانش یا نه؟(مثلا اگر تندی زمان رو زیاد کنیم جسمی مثل لیوان با تندی زیاد به زمین میرسه) ۲) چرا بعضی از پدیده ها در حال حرکت هستند؟ (مثل نور که وقتی لامپ رو روشن میکنیم بدون اینکه کاری بکنیم پرتوی نور خود به خود حرکت میکنه) ۳) آیا واقعا نور به دام سیاهچاله میفته ؟تا جایی که من میدونم انسان برای دیدن پدیده ها و اجسام ها به نور نیاز داره پس اگه نور از سیاهچله نمیتونه فرار کنه چطور دیدیمش؟(منظورم عکسی که از سیاهچاله توی سال ۹۸ پارسال گرفتن) ۴) آیا نور تنها پدیده ایی هستش که سرعتی بسیار زیاد داره یا نه ؟ ۵) نور ثابته ؟
۱) رابطه نیرو و زمان
قوانین نیوتون به ما میگه که اگه جسمی در حال حرکت باشه، تا زمانی که به اون جسم در کل نیرویی وارد نشه، جسم به حرکت خودش ادامه میده. اگر هم جسم از اول در حال حرکت نباشه، قاعدتا همونجایی که هست میمونه. مثل توپی که یه گوشه افتاده و تا زمانی که کسی بهش لگ نزنه از جاش تکون نمیخوره. منظور از «حرکت» هم تغییر موقعیت جسم با گذشت زمانه. یعنی هر بار که عقربه ساعت روی دست من تیک بزنه جسم از جایی به جای دیگه بره.
مسیر حرکت یک جسم در فضای ۳بعدی. هر نقطه از این مسیر را میتوان با زمان نشانهگذاری کرد. به این معنی که بردار مکان $r$ در هر لحظه با مشخص کردن زمان به صورت یکتا مشخص خواهد شد.
در فیزیک نیوتونی اختیار تند و کند کردن گذر زمان دست ما نیست. یعنی ما نمیتونیم کاری کنیم که زمان سریعتر بگذره یا کندتر بگذره یا اینکه متوقف بشه! ولی میتونیم این ایده رو شبیهسازی کنیم. مثل زمانی که از چیزی فیلم گرفته باشیم و با سرعتهای مختلف اونو پخش کنیم. میتونیم تندتند بزنیم جلو ببینم آخرش چی میشه یا اصلا متوقفش کنیم. برای همین، اگه بتونیم که زمان رو متوقف کنیم، اون موقع اتفاقی که میافته اینه که آخرین تصویری که از هر چیزی داریم، همون باقی میمونه. پس اگه سیبی در حال سقوط به زمینه، با متوقف کردن زمان بین زمین و آسمون میمونه. این به این معنی نیست که نیرویی وجود نداره! بلکه به این معنی هست که در یک لحظه خاص، ما فقط یک فریم از یک فیلم رو انتخاب کردیم و داریم اونو میبینیم و با راه انداختن دوباره زمان، میبینیم که سیب به سقوطش ادامه میده. یا اگه فرض کنیم که گذر زمان رو سریعتر کنیم اون موقع میبینیم که سیب زودتر به زمین میخوره. یا اگه زمان رو به عقب برگردونیم میبینم که سیب به جای زمین خوردن، هوا میره 🙂
توضیح فنیتر:
اگر دینامیک توصیفکننده یک سیستم، توسط معادلات تعینی داده بشه،اون موقع خروجی مسئله، یک «مسیر» میتونه باشه. مسیر، یک «خم» در فضای مکانه که توسط زمان نشانهگذاری شده. با داشتن مسیر، میتونیم بدونیم که سرشت نهایی سیستم چیه. به عنوان مثال با حل مسئله گرانش عمومی نیوتون برای دو جسم، به یک مسیر بسته بیضی شکل برای یکی از اون دو جسم میرسیم. با تغییر زمان، از نقطهای به نقطهی دیگه از اون مدار (مسیر بسته) هدایت میشیم.
قانون دوم نیوتون، $F=ma$ یا معادله اویلر-لاگرانژ $\frac{\partial L(x,\dot{x}; t)}{\partial x } = \frac{d}{dt}\frac{\partial L(x,\dot{x}; t)}{\partial \dot{x} }$ هر دو منجر به دستهای از معادلات دیفرانسیل معروف به معادلات حرکت میشن. در این روش مدلسازی، حرکت سیستم شما تعینی هست و شما با دونستن اطلاعات در مورد حال، دقیقا میتونید بگید که چه اتفاقی در آینده میافته.
گاهی دینامیک توصیف کننده شما توسط معادلات غیر تعینی داده میشه، مثل زمانی که حرکت یک ولگرد (قدم زن تصادفی) یا یک فرایند تصادفی رو مدل میکنید. اون موقع برای شروع مسئله، با معادله «مادر» یا معادله فوکر-پلانک میتونید پیش برید. در این حالت، مسئله شما دیگه تعینی نیست و پیشبینی آینده یا پیشبینی مسیر، با عدم قطعیت (یا به عبارتی خطا) همراه خواهد بود. مثلا برای یک ولگرد نمیتونید با قطعیت کامل بگید که در فلان لحظه کجاست!
۲) علت حرکت چیزها
چیزها حرکت میکنند چون که بهشون نیرو وارد میشه! زمین دور خورشید میچرخه چون از طرف خورشید بهش نیرو وارد میشه یا توپ فوتبال حرکت میکنه چون یکی بهش ضربه میزنه! در مورد نور لامپ هم این جوری نیست که ما «کاری نمیکنیم»! در حقیقت با زدن کلید برق، جریان الکتریکی به لامپ میرسه و توی لامپ انرژی الکتریکی تبدیل به انرژی روشنایی میشه. یعنی همونجور که فوتبالیست به توپ ضربه میزنه و توپ حرکت میکنه، رسیدن جریان الکتریکی به لامپ هم سبب ضربه زدن به نور میشه که به مسیرهای مختلف حرکت کنه. به این پدیده در فیزیک، تابش الکترومغناطیسی گفته میشه. به عبارت فنیتر، میدان الکتریکی اعمال شده توسط جریان خارجی (برق) سبب برانگیختگی مادهای مثل تنگستن یا گاز خاصی مثل نئون میشه. برانگیختگی یعنی الکترونهای که توی اتمهای تشکیل دهنده اون مواد هستند از یک سطح انرژی به سطح بالاتری میرن (مثل وقتی که از پلههای سرسره بالا میرین). اون موقع وقتی الکترونها از یک سطح با انرژی بالاتر به سطی با انرژی پایینتر میان (مثل وقتی از سرسره پایین میاین)، اندازه اختلاف انرژی این دو سطح، از خودشون موج الکترومغناطیس یا ذرات نور منتشر میکنند!
این ویدیو رو ببینید:
۳) نور به دام سیاهچاله میافته؟
در مورد داستان سیاهچالهها و اینکه چهطور از یک سیاهچاله میشه تصویر برداری کرد مفصل نوشتیم قبلا! این نوشته رو بخونید: قیام علیه سیاهی! به طور خلاصه، سیاهچالهها اجسام بسیار بسیار سنگینی هستند که حتی بر حرکت نور هم اثر میذارن. در مورد تصاویر منسوب به سیاهچالهها هم، در حقیقت نوری که توی تصویر میبینیم دقیقا خود سیاهچاله نیست! یه سری موادی هستند که توی یه دیسک (شبیه حلقههای زحل) اطراف سیاهچاله دارن میچرخن و چون خیلی داغ هستن از خودشون نور تابش میکنن (درست شبیه به همون لامپ!). درواقع ما نور این موادی که در اطراف سیاهچاله وجود دارند و تونستن قسر دربرن و به چشم ما برسن رو میبینیم. تصویر ثبت شده، به خاطر اون نورها هست!
کمی توضیح فنیتر: ناحیهای هست بهاسم کره فوتونی که نزدیکترین مدار به افق رویداد که فوتونها میتونن توی یه مدار پایدار دور سیاهچاله بچرخن. نزدیکتر از اون دیگه تقریبا فوتون شانسی برای برگشت نداره!
نمودار شماتیک از یک سیاهچاله شوارتزشیلد. نگاه کنید به نوشته «قیام علیه سیاهی»
۴) آیا نور فقط سرعتش زیاده؟
نه! هر چیزی میتونه خیلی سریع حرکت کنه. محدودیتی در اصول نداریم. مثلا در آزمایشهای مختلف فیزیکی، نوترونها، الکترونها یا پروتونها رو با سرعتهای خیلی زیاد به حرکت در میارن. یکی از جاهایی که مثلا پروتونها رو تا سرعتهای نزدیک به سرعت نور به حرکت در میارن آزمایشگاه سرن هست.
۵) آیا نور ثابته؟!
سوال رو درست متوجه نشدم! اگر منظور سرعت حرکت نوره، بله سرعت حرکت نور در هر محیط ثابته ولی موقعی که از محیطی به محیط دیگه میره تغییر میکنه. مثلا سرعت نور در هوا یک چیزه و در آب یک چیز دیگه است. طبق نسبیت اینشتین، نور بیشترین سرعت در حرکت رو داره.
نزدیک به ۲۰ ساله که چیزی به اسم نظریه شبکه یا علم شبکه در ادبیات علمی پیدا شده. شاید نزدیکترین یا نامآشناترین نظریه به علم شبکه، نظریه گراف در ریاضیات باشه. چیزی که از زمان اویلر (۱۷۳۶) شکل گرفته و در چند قرن اخیر هم همیشه حوزهی پژوهشی برای ریاضیدونها بوده. اما این فقط ظاهر کاره! نگاهی به جامعهی علمی این دو شاخه از معرفت بشری، تصویری از دو گروه از متخصصین رو نشون میده که چندان هم کارشون شبیه به هم نیست! به عبارتی، با اینکه نظریه شبکه بسیار وامدار نظریه گراف هست، اما چیزی که در عمل در حال اتفاق افتادنه اینه که مسائلی که گرافکارها مشغول مطالعهشون هستند اصلا شبیه به مسائل شبکهکارها (دانشمندان شبکه!) نیست. با تقریب خوبی البته!
علت این اتفاق هم بیشتر به این برمیگرده که برای یک ریاضیدان، گراف یک موجود انتزاعی/مجرد و خوشتعریف ریاضی به همراه یک عقبه محکم و استوار ریاضی و تعداد زیادی لم، قضیه و حدسه، در حالی که برای دانشمندان شبکه، شبکه یک موجود کاربردی و پدیدارشناسانه هست که نه تعریف چندان صریحی داره و نه عقبه کاملا مشخصی! علم شبکه یا نظریه شبکه، علمی جدید، پدیداره از علوم و دانشهای مختلفه که حدودا ۲۰ ساله شکل گرفته و بیشتر از هر چیزی تحت تاثیر دادههای بزرگ و کامپیوترها بوده تا کاغذ و قلم و حلهای بسته (تحلیلی)!
نگاره از QuantaMagazine
در نظریه گراف تلاش عمدتا بر شناسایی و مطالعه ساختارهاییه که بتونیم اونها رو به صورت تحلیلی دنبال کنیم. برای همین، گرافکارها (نظریهپردازان گراف!) معمولا به سراغ گرافهای تصادفی، گرافهای کامل و مسائلی مثل رنگ آمیزی و کاور کردن میرن. اما در علم شبکه، مردم بیشتر به دنبال مسائل کاربردیتر و مدلهایی هستند که بیشتر مسائل دنیای واقعی (فیزیکی، شیمیایی، زیستی، اجتماعی و اقتصادی) رو توجیه کنند! برای همین لزوما از لحاظ ساختاری این شبکهها، گرافهایی نه کاملا تصادفی و نه کامل، بلکه گرافهایی تنک با توزیع درجههای دمکلفت هستند!
علم شبکه، امروز یک ساختار پدیدارشناسانه از دنیای بسذرهای و پیچیده بیرونه! یک مقایسه زمانی با فیزیک، میشه گفت که علم شبکه در زمان ما، بسیار شبیه به ترمودینامیک زمان کارنو هست و نه ترمودینامیک در زمان بولتزمان، مکسول و فوننویمان! انتظار بر اینه که تلاشهای جدی صورت بگیره تا ریاضیات لازم برای علم شبکه به قدری توسعه پیدا کنه که علم شبکه به بلوغی برسه که ترمودینامیک بعد از بولتزمن رسید.
چیزی که خوندید، در حقیقت مقدمهای بود برای دعوت به مطالعه این نوشته:
مستقل از اینکه این نوشته دید خوبی میده از تفاوت نگاه دو جامعه علمی متفاوت به یک مسئله و مسائل مختلف حوزه پژوهش در هر کدوم از اون جوامع، این نوشته دارای منابع گلچین شدهای هست که هر کسی که کارش مربوط به شبکه است خوبه که حتما اونها رو بخونه!
آلبرت آینشتین یک غول است! یک روایتگر بینظیر در علم! بدون تعارف او برای همیشه نماد فیزیک معاصر خواهد ماند. آینشتین قهرمان دنیای نوجوانی بسیاری از کسانی است که امروز فیزیکدان شدهاند یا قرار است فردا فیزیکدان شوند. همیشه در اعماق قلبم برای آینشتین جایگاه خاصی قائل هستم. دبیرستانی که بودم برایم هیجانانگیزترین چیز این بود که نسبیت آینشتین را بفهمم! بگذریم. غیرممکن است که شخصی در فیزیک معاصر جستاری داشته باشد و ردپایی از او پیدا نکند. عوام او را به خاطر نسبیتش و فرمول $E = mc^2$ میشناسند و صدالبته به خاطر ژولیدگی او! از نگاه من اما، آینشتین نماد واقعی یک فیزیکدان است! نماد کسی که فیزیک را بدون هر گونه دستهبندی بهخوبی میشناسد و در توسعه هر قسمت آن مشارکت جدی داشته است. در این روزها که برخی از دوستان آینشتین را به نفع فیزیک نظری ثبت و ضبط میکنند و قهرمان دنیای کیهانشناسی و نسبیت میدانندش، دوست دارم به شخصیت او از دریچههای مختلف نگاه کنم. برای من بیش از هر چیزی، او استاد بزرگ تمام فیزیک است، کسی که از اشتباهاتش هم درسهای فراوان گرفته تاریخ! در این نوشته به چند گفتاورد که دوستشان دارم اشاره میکنم.
کم نیستند کسانی که از یک ملاقات نیمساعتهشان با آینشتین به عنوان یک اتفاق مهم در زندگیشان یاد نکرده باشند. نقل است که ریچارد فاینمن در اولین دیدارش در سمیناری با این پرسش از طرف آینشتین روبهرو شده که «شما میدانید چای کجاست؟» و فاینمن جوان از این که پاسخ پرسش آینشتین را میدانسته کیفش کوک شده! بعدها، فاینمن در مورد ژرفا و گستره نگاه آینشتین در شاخههای مختلف فیزیک گفت:
آینشتین یک غول بود؛ سرش در میان ابرها بود ولی پاهایش به روی زمین! اما از میان ما، آنان که قامتشان به آن بلندی نیست، بهتر است که انتخاب کنند!
Carver Mead – Collective Electrodynamics: Quantum Foundations of Electromagnetism (2002), p. xix
در این روزها که بلا و سختی از هر دریچهای بیرون زده، از زمین و زمان برایمان میبارد، دانشگاههایمان تبدیل به بنگاههای معاملاتی و محل برگزاری یک سری مراسم تشریفاتی شدهاند شاید بد نباشد که به زندگی کسانی که عمری قهرمانشان دانستهایم زیرچشمی نگاهی داشته باشیم و ببینیم که در نهایت، با خودمان چندچندیم!
«هر عمل آدمی تابعی است از ارادهی خود او یا ارادهی کسی دیگر. اگر این همه آدم ارادهی خود را تابع ارادهی نازیها نکرده بودند، چیزی به نام اردوگاههای مرگ به وجود نمیآمد.» (هرمان، ۱۳۹۰: ۱۰۰؛ به نقل از آلبرت آینشتین)
ـ هرمان، ویلیام؛ اینشتین و شاعر؛ ترجمهی ناصر موفقیان؛ تهران: انتشارات علمی و فرهنگی، (۱۳۹۰) چاپ چهارم.
در قرنطینه خانگی ماندهایم، سختمان است؟ تجربه تحریم و گرانی و بیچارگی داشتهایم؟! دچار درد مهاجرت و غربت هستیم؟ قبول! شرایط سخت است. اما میشود این گونه هم نگاه کرد که قهرمانهایی که عمری ستایششان کردهایم در دوران سختی درخشیدهاند، آنگاه روحیه میگیریم! معروف است که نیوتون، قانون گرانش عمومی را زمانی کشف کرد که به خاطر طاعون مجبور شده بود از کمبریج به لینکلنشر (خانه مادری) برود. همینطور ویلیام شکسپیر، «لیر شاه» را در زمان طاعون نوشت! کتاب «جز و کل» هایزنبرگ را بخوانیم و ببینیم که در آن بحبحه جنگ و بگیر و ببند این عزیزان چگونه هم به علم میپرداختند، هم به سیاست و هم به شرافت! در کتاب «حتما شوخی میکنید آقای فاینمن!» ببینیم که زندگی چگونه بر فاینمن سخت گذشت و هنگامه جنگ چگونه آنها را مجبور به کارهایی کرد که دوست نمیداشتند! برگردیم به آینشتین، نشنال جئوگرافیک در مجموعه سریالهای «نابغه» ، سریالکی ساخته در مورد او که دیدنش خالی از لطف نیست. در زندگی آلبرت آینشتین چیزی که کم نیست، درد است و رنج:
«در زوریخ من اغلب گرسنه بودم. هیچکس نمیداند که هر روز چندتا در را برای پیدا کردن کار میکوبیدم.» (هرمان، ۱۳۹۰: ۸۴؛ به نقل از آلبرت آینشتین)
ـ هرمان، ویلیام؛ اینشتین و شاعر؛ ترجمهی ناصر موفقیان؛ تهران: انتشارات علمی و فرهنگی، (۱۳۹۰) چاپ چهارم.
آثار آینشتین را در اینجا میتوانید ببینید. این نوشته را فقط به این خاطر منتشر کردم که در این شرایط که همه چیز سیاه است بد نیست که به چیزهای بهتری هم فکر کنیم. امید داشته باشیم به آینده و عزم داشته باشیم به یادگیری. در دنیایی که علم و پژوهش تبدیل به دکان شده، یاد کردن از این گونه انسانها خاطرمان را آسوده میکند.
این روزها در میان گفتاوردهای آینشتین، این جمله را هر روز با خود زمزمه میکنم:
هر احمقی میتواند بداند، نکته فهمیدن است!
Any fool can know. The point is to understand Albert Einstein
تصویری از آینشتین به همراه والتر مایر (ریاضیدان و دستیار آینشتین) در پاسادینا، کالیفرنیا، اوایل ۱۹۳۱. والتر مایر به ماشین حساب آینشتین معروف بود!
در گذار فاز، سیستم ویژگی بازگشتپذیری ترمودینامیکی رو از دست میده و معمولا گسستگی در فضای ترمودینامیکی دیده میشه. یک لحظه مثال آب و یخ رو مرور کنیم: دمای انجماد آب (H2O مایع) و دمای ذوب برای یخ (H2O جامد) برابره. حدود صفر درجه آب یخ میزنه و یخ آب میشه!
اما مثلا برای «آگار» اینجوری نیست! یعنی دمای ذوب آگار جامد و دمای انجماد آگار مایع یکی نیستند! آگار جامد در دمای ۸۵ درجه سانتیگراد ذوب میشه. اما وقتی آگار مایع داشته باشین و شروع به سرد کردنش کنید، در دمای ۴۰ درجه منجمد میشه (نه در ۸۵ درجه). یعنی چی؟!
وقتی آگار جامد رو در دمای ۸۵ درجه ذوب کنید، تا زمانی که به دمای ۴۰ درجه میرسه مایعه! یعنی اگه آگار ذوب شد و خواستین منجمدش کنید باید صبر کنید که به ۴۰ درجه برسه! برای همین اگه در بازه زمانی ۴۰ تا ۸۵ درجه آگار هم به صورت مایع میتونه وجود داشته باشه هم به صورت جامد! «بستگی داره که مسیر گرما دادن به سیستم چه جوری باشه» (ببینید که مسیر مهمه!)
این ایده وابستگی به مسیر رو توی فیزیک با واژه پسماند یا hysteresis در موردش حرف میزنند. مثال آشناترش وقتیه که میدان مغناطیسی روی یه تیکه آهن اعمال میکنیم و آهن خاصیت آهنربایی (مغناطیسی) پیدا میکنه ولی وقتی میدان اعمال شده رو قطع میکنیم، برخلاف انتظارمون سیستم به حالت قبلی (عدم وجود خاصیت آهنربایی) بر نمیگرده
مدل تئوری مغناطش m، در برابر میدان مغناطیسی h. با شروع از مبدأ نمودار صعودی نشاندهنده منحنی مغناطش اولیه است. نمودار نزولی پس از اشباع، به همراه منحنی بازگشت پایین، حلقه اصلی را شکل میدهند. نگاره از ویکیپدیا