تصمیم گرفتم تا جایی که میتوانم، مسیر یادگیری سیستمهای پیچیده را برای علاقمندانی که جرات یادگرفتن و شهامت حرکت کردن بیرون از مرزهای تعریف شده علوم را دارند را هموار کنم. برای شروع قصد دارم چند جلسه کلاس/سمینار در دانشگاه شهید بهشتی (تهران) برگزار کنم. ایده اصلی این جلسات لکچرهایی پیرامون مفاهیم اصلی سیستمهای پیچیده است بیآنکه وارد جزئیات ریز آن شوم. میخواهم طی این جلسات افراد با پیشزمینههای مختلف با ایدههای اصلی آشنا شوند.
فیزیک نیوتون و موضوعات مربوط به حساب دیفرانسیل و انتگرال که غالب تفکر علمی سه سده گذشته را تشکیل دادهاند بر این ایده استوار هستند که هر چه مقیاس فضایی یا زمانی یک سیستم فیزیکی را ریزتر و ریزتر کنیم، با سیستمی سادهتر، هموارتر و با جزئیات کمتری روبهرو میشویم. ملاحظات دقیقتری نشان میدهد که ساختار ریزمقیاس سیارات، مواد و اتمها بدون جزئیات نیست. با این وجود، برای بسیاری از مسائل، چنین جزئیاتی در مقیاسهای بزرگتر نامرتبط به حساب میآیند. از آنجا که این جزئیات مهم نیستند، فرموله کردن نظریهها به شیوهای که اصلا جزئیاتی وجود نداشته باشد منجر به همان نتایجی میشود که با در نظر گرفتن توصیف دقیقی از سیستم میتوان به آنها رسید.
برف دانه کخ – یک فرکتال کاملا خودمتشابه. نگاره از ویکیپدیا
میدانیم در رویارویی با سیستمهای پیچیده، هموار کردن پیدرپی سیستم در مقیاسهای ریزتر معمولا نقطه شروع مناسبی برای مطالعه سیستم به طور ریاضیاتی نیست. درک این موضوع، تغییر چشمگیری را در بنیادهای فکری ما به همراه داشته است.
در این سخنرانی ابتدا فرکتالها، به عنوان موجوداتی که در مقیاس ریزتر جزئیاتشان را از دست نمیدهند را معرفی میکنیم. سپس بیآنکه سراغ جعبه ابزار نظریه میدانهای کوانتومی رویم، ایده بازبهنجارش را به عنوان چارچوب جامعتری برای مطالعه رفتار سیستمها در مقیاسهای مختلف و چگونگی ارتباط این رفتارها مطرح میکنیم.
این نوشته اشارهی مستقیمی دارد به مقاله منتشر شده در Nature News and Views توسط Alessandro Vespignani به مناسبت تولد ۲۰ سالگی شبکههای جهان-کوچک است.
«این ایده که هرکس در دنیا به هرکس دیگری تنها با ۶ درجه جدایی متصل است، ۲۰ سال پیش توسط مدل شبکه «جهان کوچک» توضیح داده شد. چیزی که به نظر میرسید کاربرد خاصی داشته باشد تبدیل به یافتهای با نتایج فراوان شد.» الساندرو وسپینانی
ماجرا از اینجا شروع شد که اواخر بهار سال ۱۹۹۸، واتس و استروگتز مقالهای منتشر کردن به اسم «دینامیک جمعی شبکههای جهان-کوچک» که در اون مقاله مدلی معرفی شد که «خوشگی» و «فاصله کوتاه بین رئوس» شبکههایی که در زندگی واقعی پیدا میشن رو توصیف میکرد. خب، اون اوایل این مدل یه جوری جالب بهنظر میرسید. ولی صرفا به عنوان یک خروجی یا تعمیمی از شبکههای منظمی که فیزیکدونای آماری و مادهچگالیها بهشون عادت داشتن. [در حقیقت تا ۲۰ سال پیش، منظور ما از شبکه توی فیزیک، گرافهای منظم توری شکلی بودن که بهشون lattice میگفتیم و نه network.] اما با گذر زمان، هر چی که دانشمندان رشتههای مختلفی از این مدل استفاده کردند، پیامدهای عمیق این مدل بیشتر آشکار شد. به این معنی که درک ما از رفتارهای دینامیکی و گذار فازهایی که توی پدیدههای روزمره مشاهده میکردیم به طور جدی بهتر شد. از فرایندهای واگیری گرفته تا انتشار اطلاعات! به زودی مشخص شد که این مقاله دوران جدیدی از پژوهش رو ایجاد کرده که نهایتا منجر به شکلگیری «علم شبکه» به عنوان یک رشته «چندرشتهای» شد!
در حقیقت قبل از اینکه واتس و استروگتز مقالهشون رو منتشر کنند، الگوریتمهایی که برای ایجاد شبکهها استفاده میشد به دنبال این بودن که یک شبکه تصادفی ایجاد کنند. مثل مدل اردوش-رینی. ایده اساسی این الگوریتمها این بود که ما نمیدونیم چهطور هر دو راس در شبکه باید بهم متصل بشن برای همین فرض میکنیم که شیوه اتصال هر دو تا راس در شبکه بر اساس یک احتمال از پیش مشخص شده هست. ویژگی مشترک شبکههای تصادفی، اینه که هر چقد اندازه شبکه (تعداد رئوس) بزرگ بشه، میانگین طول کوتاهترین مسیر بین هر دو تا راس به صورت لگاریتم تعداد رئوس رشد میکنه. منظور از طول (کوتاهترین) مسیر بین دو راس، کمترین تعداد یال (پیوند) برای رسیدن از این راس به اون یکی هست. بنابراین اگر یک شبکه تصادفی N تا راس داشته باشه، میانگین طول مسیر بین هر دو راس که به تصادف انتخاب بشن این شکلی تغییر میکنه:
این رفتار لگاریتمی به معنی جهان-کوچک بودن هست. همون ایدهای که در دنیا هر نفر حداکثر با ۶ تا واسطه به هرکس دیگهای میتونه برسه. یعنی آهنگ بزرگ شدن فاصله بین هر دو راس در یک شبکه تصادفی کمتر از آهنگ بزرگ شدن اندازه اون شبکه است. (این رابطه خطی نیست، با دو برابر کردن L ،N دو برابر نمیشه!).
پروفایل چگونگی تغییر متوسط طول کوتاهترین مسیرین بین دو راس در شبکههایی با تپولوژی متفاوت. نگاره از کتاب علم شبکه باراباشی
با این وجود، مدلهای شبکههای تصادفی، وجود گروهکهایی (Cliques) که در شبکههای واقعی دیده شده رو توصیف نمیکنند. برای اندازه گیری گروهکدار بودن یک شبکه باید ضریب خوشگی هر راس رو حساب کنیم. برای اینکار، بهازای هر راس، تعداد پیوندهای بین همسایههاش رو میشماریم و تقسیم میکنیم بر تعداد کل پیوندهای ممکن بین همسایههای راس مورد نظر. در حقیقت ضریب خوشگی معیاری از اینه که چقدر همسایهها به هم متصل هستند. یک شبکه اجتماعی رو در نظر بگیرین، معمولا دوستِ دوستِ شما، دوست شما هم هست! یعنی مثلثهایی از روابط توی شبکههای واقعی دیده میشه و این درست چیزیه که شبکههای تصادفی فاقدش هستن. به عبارت دیگه، احتمال اینکه سه نفر در یک شبکه اجتماعی دوست هم باشن به مراتب بیشتر از چیزیه که شبکهای که طی یک فرایند ساده تصادفی ایجاد شده پیشبینی کنه!
سازوکار ایجاد یک شبکه جهان کوچک در مدل واتس-استروگتز با اضافه کردن بینظمی به یک شبکه منظم. نگاره برگرفته از مقاله اصلی ۱۹۹۸
میدونیم که شبکههای منظم، دارای ضریب خوشگی بالایی هستن و شبکههای تصادفی دارای خاصیت نزدیک بودن اعضا به هم! چیزی که یک شبکه جهان-کوچک واقعی نیاز داره هر دوی این ویژگیهاست! واتس و استروگتز برای اینکه این دوگانگی رو برطرف کنند پیشنهاد مدلی رو دادن که ابتدا یک شبکه منظم با ضریب خوشگی بالا رو ایجاد کنه و بعد از اون، با احتمال p، یالها رو بین رئوس اصطلاحا بُر بزنه! یعنی برای این کار، از یک شبکه منظم، هر یال رو با احتمال p انتخاب میکنید و دو سرش رو به رئوس متفاوتی وصل میکنید! به این کار اصطلاحا سیمبندی گفته میشه و اگر این سیمبندی به طور تصادفی انجام بشه، اصطلاحا گفته میشه که یالهای شبکه رو بُر میزنیم! بنابراین با تغییر مقدار p میتونیم شبکه رو از حالت منظم (p → 0) به حالت تصادفی (p → 1) تبدیل کنیم.
برای مقادیر بسیار کوچک p شبکه حاصل، یک شبکه منظمه با ضریب خوشگی بالا. اما برای مقادیر کوچک p میانبرهایی که بین نقاط دور شبکه ایجاد میشه، میانگین طول کوتاهترین مسیر رو کاهش میده. واتس و استروگتز نشون دادن که برای طیف وسیعی از مقادیر p، بسته به تعداد رئوس، میشه شبکههای با ضریب خوشگی بالا و میانگین فاصله کمی بین رئوس ساخت. برای همین با این روش میشه پدیده جهان-کوچکی به همراه گروهکداربودن رو ایجاد کرد!
وجود میانبرهای قرمز، به یک شبکه با ضریبخوشگی بالا، خاصیت جهان کوچکی میبخشد. نگاره از nature
مدل واتس و استروگتز ابتدا به عنوانی مدلی که «شش درجه جدایی» رو توصیف میکرد، در نظر گرفته میشد. اما در حقیقت مهمترین تاثیرش هموار کردن مسیر مطالعه اثرات ساختار شبکه روی طیف وسیعی از پدیدههای دینامیکی بود. یک سال پس از انتشار مقاله شبکههای جهان-کوچک، آلبرت باراباشی و رِکا آلبرت در مقالهای با عنوان «برآمدگی اثر مقیاسی در شبکههای تصادفی» مدلی معروف به مدل شبکه «اتصال ترجیحی» رو منتشر کردن که نقش بسیار کلیدی در توسعه پژوهش در نظریه شبکههای پیچیده ایفا کرد. در نظریه گراف یا علم شبکه، به تعداد یالهای متصل به هر راس، درجه اون راس گفته میشه و برای شبکه تصادفی، توزیع درجات رئوس، پواسونی هست. ایده مدل باراباشی-آلبرت این بود که توزیع درجات شبکههای واقعی، پواسونی نیست بلکه یک توزیع دمکلفت (توانی) هست. برای همین باراباشی و آلبرت سازوکاری رو معرفی کردن که به کمکش بشه شبکههایی با توزیع درجات توانی داشت. این که درجات یک شبکه از توزیعی توانی میاد، به معنای وجود پدیدههایی نادر ولی مهمه! مثلا تعداد کسانی که توی اینستاگرام بالای ۱۰۰میلیون دنبالکننده دارن ۱۰ نفر هست ولی اینها افراد سرشناسی هستن! یا مثلا وقتی گفته میشه که در امریکا ۹۹٪ ثروت دست ۱٪ افراد جامعه است، درسته که این ۱٪ تعداد کمی از افراد جامعه امریکا رو تشکیل میدن ولی افراد بسیار تاثیرگذاری هستن! از اونجایی که در شبکههای جهان-کوچک و شبکههایی که توزیع درجات ناهمگنی دارن طیف وسیعی از گذارفازها و رفتارهای برآمده رو میشه مشاهده کرد، رفتهرفته دانشمندان زیادی از رشتههای مختلف به این موضوع علاقمند شدن.
یک شبکه تصادفی (شبکه جادههای امریکا) در برابر یک شبکه باراباشی-آلبرت (شبکه خطوط هوایی امریکا). در شبکه خطوط هوایی، راسهایی (فرودگاهها) با درجه بسیار بالا وجود دارد در صورتی که در شبکه جادهای اینگونه نیست. نگاره از کتاب علم شبکه باراباشی.
نکته مهمی که به مرور خیلی جلب توجه کرد، اصطلاحا تپولوژی شبکهها بود، به این معنا که طی سلسلهای از پژوهشها متوجه شدیم که چگونگی ارتباطات عناصر در یک شبکه میتونه چه تبعات جالبی به همراه داشته باشه. کمکم اتفاقات بزرگی رقم خورد. ما تونستیم مقاومت شبکههای مختلف رو بررسی کنیم، گسترش بیماریهای همهگیر رو کنترل کنیم، درک عمیقتری از انتشار اطلاعات پیدا کنیم و همینطور بفهمیم که همگاهسازی رفتارهای برآمده چهطور روی شبکهها شکل میگیره. به عنوان مثال، با استفاده از مفهوم شبکههای جهان-کوچک موفق شدیم که ساختار وب (WWW) رو درک کنیم یا اینکه بفهمیم چهطور قسمتهای آناتومیک و کارکردی مغز با همدیگه ارتباط برقرار میکنند. ویژگیهای ساختاری دیگهای هم کمکم مورد مطالعه قرار گرفت، مثل پیمانهای بودن یا مفهوم موتیفهای شبکه. همه این یافتهها در نهایت سبب شد که دانشمندان، معماری شبکههای موجودات زنده و مصنوعی رو شناسایی و درک کنند، از شبکههای زیرسلولی گرفته تا زیستبومها و اینترنت!
به لطف توان محاسباتی بیسابقه، مجموعه دادههای بزرگ و تکنیکهای مدلسازی محاسباتی موجود، پژوهشهای روز این حوزه موفق شدن که پلی بین دینامیک تکتک راسها و ویژگیهای برآمده بزرگمقیاس شبکهها برقرار کنن. با این وجود، سادگی و دمدست بودن مدلهای جهان-کوچک و اتصال ترجیحی هنوز پایهی فهم ما از تپولوژی شبکهها رو تشکیل میدن و از صدقهسر ارتباط این مدلها با شاخههای مختلف علم، امروز رسما با یک حوزه بینرشتهای به اسم «علم شبکه» روبهرو هستیم!
نکتهای که حتما باید بهش اشاره کنیم اینه که جمعآوری دانش و روش از رشتههای کاملا مختلفی مثل علوم اجتماعی، ریاضیات کاربردی، فیزیک، زیستشناسی و علوم کامپیوتر واقعا کار آسونی نبوده! سالها جنگ و جدل به خاطر توافق بر سر تعاریف و مفاهیم بوده و واقعا انرژی زیادی صرف شده تا رهیافتهایی که مردم در رشتههای مختلف به کار بردن برای بقیه هم واضح بشه! ولی ما این کار رو انجام دادیم! طی ۲۰ سال گذشته، یک جامعه پرجوش و خروشی از علم شبکه ایجاد شده که برای خودش مجلات معتبر، موسسات تحقیقاتی و کنفرانسهایی با هزاران دانشمند داره!
در ۲۰امین سالگرد انتشار مقاله واتس و استروگتز، بیتشر از ۱۸۰۰۰ مقاله به این مدل که یکی از نمادهای تپولوژی شبکه است ارجاع دادن. واتس و استروگتز مقالهشون رو با این جمله تموم میکنن که «امیدواریم که کار ما انگیزهبخش مطالعات بیشتر شبکههای جهان-کوچک بشه!» شاید در بستر تاریخ، هیچ گزارهای اینقدر پیشگویانه نبوده باشه!
اینکه سن پیش بینی شدهی کیهان، قابل مقایسه با اندازهگیریهای مستقیم انجام شده روی سن اجرام درون آن است
و اینکه با وجود داشتن بینظمیهای موجود در تابش زمینهی کیهانی، میتوان توصیف قابل قبولی برای رشد ساختار در کیهان به وسیلهی رمبش گرانشی داشت.
مسأله افق
اما با وجود این موفقیتها، نظریهی مهبانگ داغ نمی تواند به چند پرسش اساسی پاسخ دهد؛ اول آنکه چرا کیهان در مقیاسهای بزرگ تا این اندازه همگن و همسانگرد است؟ با نگاه کردن به طیف تابش زمینهی کیهانی میتوان دریافت که نقاط مختلف آسمان، با دقت زیاد(از مرتبهی یک در صد هزار)، در همهی جهات دارای ویژگیهای کاملا یکسان هستند. به طور معمول برای آنکه دو جسم شبیه به هم باشند، باید زمانی با یکدیگر در تماس بوده باشند تا اصطلاحا به تعادل گرماییبرسند. به عنوان مثال وقتی یک لیوان چای داغ را در محیط اتاق قرار دهید، پس از مدتی با محیط همدما شده و به تعادل گرمایی میرسند. اما دو نقطه در جهت مقابل یکدیگر در آسمان که نورشان از دوران واجفتیدگیِنور و ماده به ما میرسد، نمیتوانند روزی در تماس با هم بوده باشند؛ چرا که نور هر یک، از آن زمان تا به حال در راه بوده تا تنها به نقطهای که ما قرار داریم برسد.
مسألهی افق. فوتونهایی که از دو لبهی کیهان به ما میرسند، زمان کافی برای اینکه در گذشته به تعادل ترمودیناکی برسند را نداشتهاند. نگاره از ویکیپدیا
حال آنکه حداقل به همان اندازه زمان نیاز بوده است تا بتواند با نقطهی دیگر برهمکنش داشته باشد. البته با انجام محاسبات، میتوان نشان داد که حتی دو نقطه در فاصلهی زاویهای حدود دو درجه در آسمان نیز زمان کافی برای رسیدن به تعادل گرمایی را نداشتهاند؛ زیرا دو نقطه، باید پیش از دوران واجفتیدگی به تعادل گرمایی رسیده باشند. دورهی واجفتیدگی به دورهای گفته میشود که به علت گسترش فضا و در نتیجه کاهش دمای کیهان، انرژی فوتونها به اندازهای کاهش یافته است که از آن پس، فوتونها دیگر با هستههای اتم برهمکنش نداشته و آزادانه در فضا منتشر شده اند. تا پیش از آن، فوتونها به علت پراکندگی زیاد از هستهها، قادر به طی کردن مسافتهای طولانی نبودند. بنابراین از آنجایی که برای برهمکنش دو نقطه با یکدیگر، نور باید مسافت بینشان را بپیماید، نسبت به حالت عادی بعد از این دوره، زمان بیشتری نیاز است تا به تعادل گرمایی برسند. این پرسش که چرا طیف تابش زمینهی کیهانی در همهی جهات تقریبا یکسان است، معروف به مسألهی افقمیباشد.
مسأله تخت بودن
پرسش دیگر موسوم به مسألهی تخت بودن، در مورد هندسهی کیهان است. طبق مشاهدات رصدی به خصوص تابش زمینهی کیهانی، جهان تقریبا تخت است. در واقع هندسهی فضا ـ زمان با همان هندسهی آشنای اقلیدسی یا به بیان دیگر متریک مینکوفسکی توصیف میشود؛ طبق نظریهی نسبیت عام انیشتین، فضا ـ زمان میتواند بسته به توزیع چگالی مادهي (یا انرژی) درون آن، دارای انحنا باشد.
هندسه محلی جهان با توجه به اینکه چگالی نسبی Ω کوچکتر،بزرگتر یا برابر با یک باشد، تعیین می گردد. از بالا به پایین: یک جهان کروی با چگالی بیشتر از چگالی بحرانی (Ω>1, k>0)؛ جهان هایپربولیک با چگالی کمتر از چگالی بحرانی (Ω<1, k<0)؛ و یک جهان تخت با چگالی دقیقا برابر با چگالی بحرانی (Ω=1, k=0). جهان ما برخلاف این نمودار ها، سه بعدی است. نگاره از ویکیپدیا
اگر چگالی ماده در جهان کمتر از مقدار معینی موسوم به چگالی بحرانیباشد، انحنا منفی بوده و جهان باز است؛ در واقع کیهان تا ابد به گسترش خود ادامه خواهد داد. اگر چگالی کل ماده از چگالی بحرانی بیشتر باشد، انحنا مثبت بوده و اصطلاحا جهان بسته است؛ به عبارت دیگر، گسترش کیهان پس از مدتی متوقف شده و شروع به رمبش میکند تا به نقطهی تکینگی یا مهرُمببرسد. در حالتی که چگالی ماده در کیهان با چگالی بحرانی برابر است، با جهانی تخت رو به رو هستیم که انحنای آن صفر میباشد. همچنین به نسبتِ چگالی کل کیهان به مقدار چگالی بحرانی آن در هر زمان، پارامتر چگالیگفته میشود. طبق تعریف های بالا میتوان به سادگی دریافت، در صورتی که این پارامتر برابر یک باشد، جهان تخت است و اگر بزرگتر یا کوچکتر از یک باشد، به ترتیب انحنای فضا ـ زمان، مثبت و منفی خواهد بود. طبق آخرین دادههای رصدی، مقدار پارامتر چگالی در حال حاضر بسیار به یک نزدیک بوده و جهان با دقت نیم درصد تخت است. با حل معادلات میتوان نشان داد که با گذشت زمان، انحراف از تخت بودن افزایش مییابد، بهطوریکه کوچکترین انحراف از تختی در دوران اولیهی کیهان، خیلی زود به جهانی با انحنای غیر صفر میانجامد. بنابراین با توجه به مقدار کنونیِ پارامتر چگالی، هر چه به زمانهای عقبتر برویم، مقدار این پارامتر به یک نزدیکتر شده و جهان به تخت بودن، نزدیک و نزدیکتر میشود.
مثلا در دوران واجفتیدگی (سیصد و هشتاد هزار سال بعد از مهبانگ)، اختلاف پارامتر چگالی از عدد یک، از مرتبهي یک در صد هزار است. در دوران هسته سازی (یک ثانیه پس از مهبانگ)، این مقدار از مرتبهی یک در یک میلیارد میلیارد بوده و در مقیاسهای انرژی الکتروضعیف (یک هزار میلیاردم ثانیه بعد از مهبانگ)، کیهان با دقتِ یک در هزار میلیارد میلیارد میلیارد، تخت بوده است!
مسأله تخت بودن و تنظیم ظریف.
پرسشی که در اینجا مطرح میشود این است که چرا کیهان باید با مقدار اولیهای تا این اندازه نزدیک به تخت بودن، آغاز شده باشد. گویی که کیهان دارای تنظیمی ظریف است. هر اختلاف ناچیزی از این مقدار اولیه، میتوانسته به تفاوتی فاحش منجر شده و کیهان را به شکلی دیگر درآورد.
مسأله ذرات یادگاره
این دو پرسش یعنی مسألهی افق و مسألهی تخت بودن، توسط یاکوف بوریسوویچ زلدوویچ، در اوایل دههی ۱۹۷۰ میلادی مطرح شد. وی چند سال بعد، در ۱۹۷۸ میلادی، مسألهی دیگری با عنوان مسألهی تکقطبی مغناطیسیرا مطرح کرد که در واقع نوع دیگری از همان مسألهی افق است که در فیزیکِ ذراتِ بنیادین مطرح میشود. طبق پیشبینی نظریههای مدرنِ ذرات، یک سری از ذرات یادگارهکه در دوران آغازین کیهان تولید شدهاند، باید در کیهان امروزی نیز وجود داشته باشند. این یادگارهها شامل موارد زیر هستند:
هر چند که در ابتدا، مسألهی تکقطبیهای مغناطیسی که از نتایج نظریهی وحدت بزرگهستند مطرح شد، اما این بحث برای بقیهی یادگارهها نیز برقرار است. تکقطبی مغناطیسی نسبت به ذراتی مانند پروتون بسیار سنگینتر بوده و بههمینخاطر باید در زمانهای نزدیک به ما به صورت غالب در کیهان ما حضور داشته باشند. این در حالی است که تا به امروز هیچ تکقطبی مغناطیسی در جهان مشاهده نشده است!
مدل تورم
آلن گوث، نگازه از edge.org
سه سال بعد، آلن گوت، مدل تورم را برای پاسخ به مسألهی تکقطبی مغناطیسی پیشنهاد داد. اما خیلی زود مشخص شد که این مدل میتواند پاسخگوی بقیهی پرسشها نیز باشد. ایدهی مدل تورم بسیار ساده است؛ جهانِ خیلی آغازین، دستخوش گسترشی بسیار بزرگ شده است. در واقع در بازهی زمانی ۱۰−۳۶ تا حدود ۱۰−۳۲ ثانیه پس از مهبانگ، کیهان به صورت نمایی گسترش یافته، بهطوری که در این بازهی زمانی بسیار کوتاه، از چیزی بسیار کوچکتر از یک اتم تا حدود اندازهی یک توپ بسکتبال، افزایش حجم پیدا کرده است! گسترش بسیار سریع کیهان در دورهی تورم، موجب شد تا ذرات یادگاره رقیق شوند؛ بدین ترتیب، مقدار آنها در کیهان امروزی قابل اغماض خواهد بود. همچنین دو نقطهای که در حال حاضر در فاصلهي زیاد از یکدیگر قرار دارند، در زمان پیش از تورم، قادر بودهاند در تماس با یکدیگر باشند؛ چرا که تورم باعث دور افتادن آنها از یکدیگر با سرعتی بسیار بیشتر از سرعت نور شده است. بنابراین دو نقطهی به ظاهر غیر مرتبط با یکدیگر در زمان کنونی، پیش از تورم در تعادل گرمایی بودهاند. در مورد مسألهی تخت بودن نیز اینطور میتوان بیان کرد که به علت کشآمدگی زیادِ کیهان در این دوره، هر گونه انحنای اولیهی فضا ـ زمان، به جهانی بسیار نزدیک به جهانِ تخت منجر شده تا آنجا که امروز نیز کیهان تقریبا تخت است. تنها در آیندهای دور است که بار دیگر پارامتر چگالی از مقدار یک فاصله خواهد گرفت.
علاوه بر موارد یاد شده، امروزه میدانیم مدل تورمی، نقش مهمی در توصیف منشأ ساختارها در کیهان و وجود ناهمسانگردیهای موجود در طیف تابش زمینهی کیهانی دارد؛ همانطور که پیشتر اشاره شد، طیف تابش زمینهی کیهانی کاملا همگن نیست، بلکه افت و خیزهای دمایی ناچیزی از مرتبهی یک در صد هزار، در آن مشاهده میشود. احتمالا این افت و خیزها توسط نیروی گرانش تقویت شده و بنابراین مناطقی با چگالی بیشتر و بیشتر به وجود آمدهاند که هستههای اولیه برای اولین ستارگان را تشکیل داده و بعدها منجر به ساختِ ساختارهای بزرگتر مانند کهکشانها، خوشههای کهکشانی و نهایتاً ابرخوشهها در کیهان شدهاند.
نمایش تعمیم نظریه مهبانگ توسط مدل تورم
طبق مدل تورم، طی این دوره، افت و خیزهای کوانتومی اولیهدر خلأ، با کش آمدن کیهان، تبدیل به افت و خیزهای کلاسیک شدند و ناهمسانگردیهای موجود در طیف تابش زمینهی کیهانی را به وجود آوردند.
در پایان، باید به این نکته توجه داشت که مدل تورم به عنوان رقیبی برای نظریهی مهبانگ داغ نیست، بلکه در دوران خیلی آغازینِ کیهان اتفاق افتاده و نظریهی مهبانگ داغ، برای زمانهای بعد از این دوره، با تمام موفقیت هایش در توصیف کیهان، صادق است.
حدود۳۳۰ سال پیش، نیوتون با انتشار شاهکار خود، اصول ریاضی فلسفه طبیعی، نگاهی جدید نسبت به بررسی طبیعت را معرفی کرد. نگاه نیوتون به علم به کمک نظریه الکترومغناطیس که توسط مکسول جمع بندی و در نهایت توسط آلبرت اینشتین کامل شد، شالوده فیزیککلاسیک را بنا نهاد. انقلاب بعدی علم، توسط مکانیک کوانتومی رخداد. آنچه که مکانیک کوانتومی در قرن ۲۰ میلادی نشانه گرفت، مسئله موضعیت در فیزیک کلاسیک و نگاه احتمالاتی به طبیعت بود. نگاهی که سرانجام منجر به پارادایمی جدید در علم، به عنوان فیزیک مدرن شد. با این وجود، علیرغم پیشرفتهای خارقالعاده در فیزیک و سایر علوم، کماکان در توجیه بسیاری از پدیدهها ناتوان ماندهایم. پدیدههایی که همیشه اطرافمان حاضر بودهاند ولی هیچموقع قادر به توجیه رفتار آنها نبودهایم. بنابراین، میتوان به این فکر کرد که شاید در نگاه ما به طبیعت و مسائل علمی، نقصی وجود داشته باشد. به دیگر سخن، بعید نیست که مجددا نیاز به بازنگری در نگاهمان به طبیعت (تغییر پارادایم) داشته باشیم؛ عدهی زیادی معتقدند آنچه که در قرن ۲۱ام نیاز است، نگاهی جدید به مبانی علم است؛ نگاه پیچیدگی!
گاهی گفته میشود که ایده پیچیدگی، بخشی از چهارچوب اتحاد بخشی برای علم و انقلابی در فهم ما از سیستمهایی مانند مغز انسان یا اقتصاد جهانی است که رفتار آنها بهسختی قابل پیشبینی و کنترل است. به همین خاطر، سوالی مطرح میشود؛ آیا چیزی به عنوان «علم پیچیدگی» وجود دارد یا اینکه پیچیدگی متناظر با هر شاخهای از علم، دارای شیوه خاص خود است و مردم در رشتههای مختلف مشغول سر و کله زدن با سیستمهای پیچیده زمینه کاری خود هستند؟! به عبارت دیگر، آیا یک پدیده طبیعی مجرد به اسم پیچیدگی، به عنوان بخشی از یک نظریه خاص علمی در سیستمهای متنوع فیزیکی (شامل موجودات زنده) وجود دارد یا اینکه ممکن است سیستمهای پیچده گوناگونی بدون هیچ وجه مشترک وجود داشته باشند؟! بنابراین، مهمترین سوالی که در زمینه پیچیدگی میتوانیم بپرسیم این است که، به راستی پیچیدگی چیست؟ و در صورت وجود پاسخ مناسب به این پرسش، به دنبال این باشیم که آیا برای تمام علوم یک نوع پیچیدگی وجود دارد یا اینکه پیچیدگی وابسته به حوزه مورد مطالعه است!
در مورد تعریف پیچیدگی، هنوز اتفاق نظری بین متخصصان یک رشته خاص، مانند فیزیک، وجود ندارد، چه برسد به تعاریفی که در رشتههای متنوع مطرح میشود. این تعاریف در ادامه نقد و بررسی میشوند. با این وجود، مشترکات زیادی در بین تعاریف موجود وجود دارد که برای شروع بحث، مرور آنها خالی از لطف نیست:
برای ما، پیچیدگی به معنای وجود ساختار به همراه تغییرات است. (۱)
از یک جهت، سیستمپیچیده، سیستمی است که تحول آن شدیدا به شرایط اولیه و یا اختلالهای کوچک حساس است. سیستمی شامل تعداد زیادی قسمتِ مستقلِ درحالِ برهمکنش با یکدیگر که میتواند مسیرهای مختلفی برای تحولش را بپیماید. توصیف تحلیلی چنین سیستمی قاعتدا نیاز به معادلات دیفرانسیل غیرخطی دارد. از جهت دیگر، میتوانیم نگاهی غیررسمی داشته باشیم، به این معنا که اگر بخواهیم قضاوتی داشته باشیم، سیستم «بغرنج (complicated) » است و قابلیت اینکه دقیقا به طور تحلیلی یا نوع دیگری توصیف شود وجود نداشته باشد.(۲)
به طور کلی، صفت «پیچیده»، سیستم و یا مولفهای را توصیف میکند که فهم یا تغییر طراحی و/یا عملکرد آن دشوار باشد. پیچیدگی توسط عواملی چون تعداد مولفههای سازنده و روابط غیربدیهی بین آنها، تعداد و روابط غیربدیهی شاخههای شرطی، میزان تودرتو بودن و نوع ساختمان داده است. (۳)
نظریه پیچیدگی بیان میکند که جمعیت زیادی از اجزا، میتوانند به سمت تودهها خودسازماندهی کنند و منجر به ایجاد الگو، ذخیره اطلاعات و مشارکت در تصمیمگیری جمعی شوند. (۴)
پیچیدگی در الگوهای طبیعی نمایانگر دو مشخصه کلیدی است؛ الگوهای طبیعی حاصل از پردازشهای غیرخطی، آنهایی که ویژگیهای محیطی که در آن عمل میکنند یا شدیدا جفتشدهاند را اصلاح میکنند و الگوهای طبیعی که در سیستمهایی شکل میگیرند که یا باز هستند یا توسط تبادل انرژی، تکانه، ماده یا اطلاعات توسط مرزها از تعادل خارج شدهاند. (۵)
یک سیستم پیچیده، دقیقا سیستمی است که برهمکنشهای چندگانهای بین عناصر متفاوت آن وجود دارد. (۶)
سیستمهای پیچیده، سیستمهایی با تعداد اعضای بالایی هستند که نسبت به الگوهایی که اعضای آن میسازند، سازگار میشوند یا واکنش نشان میدهند. (۷)
در سالهای اخیر، جامعه علمی، عبارت کلیدی «سیستم پیچیده» را برای توصیف پدیدهها، ساختار، تجمعها، موجودات زنده و مسائلی که چنین موضوع مشترکی دارند را مطرح کرده است: ۱) آنها ذاتا بغرنج و تودرتو هستند. ۲) آنها به ندرت کاملا تعینی هستند. ۳) مدلهای ریاضی این گونه سیستمها معمولا پیچیده و شامل رفتار غیرخطی، بدوضع (ill-posed) یا آشوبناک هستند. ۴) این سیستمها متمایل به بروز رفتارهای غیرمنتظره (رفتارهاری ظهوریافته) هستند. (۸)
پیچیدگی زمانی آغاز میشود که علیت نقض میشود! (۹)
برای آشنایی بیشتر به این پروژه سر بزنید!
در مورد تعاریف فوق ابهاماتی وجود دارد؛ در (۱) باید ساختار و تغییرات را به درستی و دقت معنا کنیم. در (۲) باید به دنبال تلفیق سیستمهای پیچده و مفاهیمی چون غیرخطی، آشوبناک و بسذرهای بودن باشیم و به درستی مشخص کنیم که آیا این ویژگیها شرط لازم / کافی برای یک سیستم پیچیده هستند یا نه. (۳) و (۴) مفاهیم محاسباتی و موضوعاتی از علم کامپیوتر را مطرح میکند که به خودیخود مسائل چالشبرانگیزی هستند! (۵) ایده مرکزی غیرخطی بودن را مطرح میکند؛ در ادامه میبینیم با این که تعداد زیادی از سیستمهای پیچیده از ویژگی غیرخطی بودن تبعیت میکنند، با این وجود غیرخطی بودن نه شرط لازم و نه شرط کافی برای پیچیدگی است. در مورد (۶) و (۷) نیز باید تاکید کنیم که بسذرهای بودن و شامل اعضا/عناصر/مولفه/افراد زیادی بودن نیز شرط کافی برای پیچیدگی نیست. در ادامه خواهیم دید، تعریف (۸) که ایدهی پدیدارگی (ظهوریافتگی یا برآمدگی: Emergence) را مطرح میکند میتواند مفهومی بسیار گیجکننده باشد برای اینکه به کمک آن بتوانیم سیستمهای پیچیده را تمیز و تشخیص دهیم. در مورد تعریف (۹) باید بحث زیادی کنیم چرا که افراد زیادی در برابر نقص علیت ناراحت خواهند شد! به همین دلیل است که گاهی درک سیستمهای پیچیده برای مردم دشوار است. بنابراین با توجه به ابهامات تعاریف افراد مختلف در حوزههای گوناگون علم، بهتر از است که مفاهیم وابسته به پیچیدگی را بررسی کنیم.
یه گذار روزمره مثل تغییر فاز آب رو در نظر بگیرید. گاز و مایع به واقع شبیه هم هستن! هر دو از نظر ما بی نظم هستن! حالا یکی یه کم بیشتر یکی یه کم کمتر. اما هیچ کدوم جامد منظم نیستن که همه سرجاشون نشسته باشن. مثال دیگه مواد مغناطیسی است. اینا توشون کلی ذره دارن که هر کدوم یک جهتی داره برای خودش- به زبان فنی اسپین. حالا دما خیلی زیاد باشه مادهمون که مغناطیسی نیست! یعنی مثلن آهن مذاب در دمای بالا براش سخته منظم باشه، به هم ریخته است. پس اون جهتها همه تصادفی اند و بالطبع متوسطشون صفر و ماده مغناطیسی نیست! اما اگر دما پائین بیاد اوضاع عوض میشه، اینا میتونن یه جهت خاص رو بگیرن. به این میگن شکست خود به خودی تقارن!
بالاتر از دمای بحرانی (نقطه کوری)، ماده دیگر مغناطیسی نیست.
مردم با همین میخ و چکش سراغ هر تغییر فازی میرفتن و سربلند بیرون میاومدن. اما یهو آقای فونکیلیتزینگ یه چیز جالب دید: اگر یه مشت الکترون رو به دوبُعد محدود کنید، و بَعد میدان مغناطیسی روشن کنی (این همون روشی است که باهاش فهمیدن حامل بار، بارش منفی است) رسانندگی (همون جریان به ولتاژ با یک مشت ضریب) بهت یک سری عدد میده:۱ و۲ و۳ و … بعدتر عددهای کسری عجیب اما خاصی هم پیدا شدن. اما این طور نیست که شما بگی ۱۷.۳۰۸ بعد ما بهت بگیم آهان، میدان فلان رسانندگی اینه که تو می خوای! اعداد طبیعی یا کسری خاص! هرکی به هرکی نیست!
چند خم بسته با Winding Numberهای متفاوت.
خب مردم هی دست به دهان بودن که چه طور میشه وسط این همه خطای آزمایش و کثیفی نمونه و غیره این اعداد این قدر خاص باشن؟! چرا این همه چیز پیوسته عوض میشه اما اینا نه؟!!
خب بالطبع اول سعی کردن که همون میخ و چکش رو استفاده کنن. اما این درب بسته بود. اما جناب تاولز و همکاراش نشون دادن که میشه اون اعداد رو محاسبه کرد. اینکه اون اعداد واقعن در اون مساله که بالا گفتم (اثر کوانتومی هال ) از کجا و چطور به دست میاد، رو کاریش نداریم، اما میشه یه مثال ساده زد؛ یک خم بستهی دلخواه روی صفحه بکشید. بعد ببینید این خم چند بار مبدا رو دور زده؟! فرض کنید حالا یه میله ی بزرگ دارید و این خم شما در واقع یک ریسمان است. شما اون عدد (winding number) ریسمان رو مگر با بُریدن ریسمان نمی تونید تغییر بدید.
از سوی دیگه اون عدد همیشه یک عدد طبیعی است: ۰ و ۱ و غیره. حالا در اون دنیا این ریسمان چیز عجیب غریب تری است!
ولی خب کلیت داستان همین است. یعنی یک عددی هست که اتفاقن در برخی موارد همین تعداد دور زدنهای یک خم بسته حول مبدا است و جز با بُریدن نمیشه تغییرش داد. این بُریدنها در واقع در دنیای جدید به معنای همون گذار فاز هستن، انگار که مایع میشد جامد! اینجا هم وقتی ریسمان مربوطه بُریده شد و دوباره بسته شد عدد میتونه تغییر کنه! به زبان فنیتر در واقع این عدد تا زمانی که سیستم گاف انرژی داشته باشه نمیتونه تغییر کنه، و اگر گاف بسته و دوباره باز بشه(مثلن با تغییر یک کمیت مثل میدان مغناطیسی) عدد مورد نظر ما میتونه عوض بشه. به خاطر این خواص خیلی سفت و سختش هست که بهش میگن توپولوژیک!پس مساله ی اول حل شد 🙂 تاولز تونست با همکاراش نشون بده که اون اعداد از کجا میان. البته بگم اعداد کسری هنوز حل نشده هستن! خب این حالتهای ماده و این تغییر اعداد، این تغییر نظم(!!!) با یک سری عدد توصیف میشه و توپولوژی!
حالا یک چییز دیگه: همون اسپینها رو در نظر بگیرید. حالا فرض کنید دو بُعد داریم. میشه حالتی رو تصور کرد که همهی اسپینهایی که دورمبدا هستن به سمت خارج هستن! عین خطوط میدان یک بار الکتریکی! اصلن همین مثال خوبه! شما می گید ئه!! همه به سمت بیرون هستن پس باید یه چیزی اونجا باشه! حالا اینجا نمی گیم بار، میگیم گردابه! و به جای مقدار بار همون winding number . آقای تاولز و کاسترلیتز نشون دادن که در دو بُعد جز اون حالت بی نظم که همه می دونستن باید اونجا باشه میشه حالاتی داشت که مثلن دو تا گردابه داشته باشه! پس دوباره سرو کله ی این اعداد طبیعی و توپولوژی و فازها پیدا شدن! این بار شما میتونید چند تا گردابه داشته باشید، مضاف بر اون هرگردابه یک عددبرای خودش داره که شبیه به همون بار است! این گردابهها و این نوع تغییر فاز در ابرشارهی هلیوم دیده شد!
اما جناب هالدین! اون گاز الکترونی و میدان مغناطیسی رو که بالا گفتم در نظر بگیرید! اونا مثلن یه ویژگی خیلی جالب که دارن این است که جریان الکتریکی از روی لبهها حرکت میکنه! و خب رسانندگی ش هم اون اعداد خاص رو میده! تا مدت ها مردم فکر می کردن که خب میدان مغناطیسی قوی خیلی مهمه!اما هالدین در یکی از کارهاش یک مدل تئوری ساخت که بدون شار مغناطیسی خالص همون خواص رو داشت! این مدل دو سال پیش در آزمایشگاه realize شد! پس همه فهمیدن چیزای مهمتری تا میدان مغناطیسی هست! در واقع این بنیان کاری است که در سال ۲۰۰۶، Kane و Mele روی گرافین کردن و عایقهای توپولوژیک رو باز کردن. اینها موادی هستند که علیرغم اینکه نارسانا هستند، یعین در حجمشون گاف هست و رسانش نمیتونیم داشته باشیم، روی مرزهاشون میتونن رسانش داشته باشن! برای همین است که میگن عایق توپولوژیک! عایق trivial میشه همون عایق معمولی، نه تو حجم و نه تو سطح رسانش نداره! اما توپولوژیکها روی سطح رسانش دارن!
اما هالدین کارهایی رو هم روی مدلهای اسپینی کرده که تاثیر گذاشت روی چیزی که الآن بهش میگن symmetry protected topological phase. هالدین مدلهایی رو نگاه کرد که مردم پیش از او هم بررسی کرده بودن! همه فکر میکردن این مدلهای اسپینی Gapless هستن، یعنی با کمی انرژی میتونید توش برانگیختگی درست کنید! این در واقع برای اسپین ۱/۲ نشون داده بودن و فکر می کردن برای اسپینهای بالاتر هم درسته! اما هالدین نشون داد که برای اسپینهای صحیح مثل ۱ باید دقت کرد و چیزهای دیگهای هم هست که باعث میشن سیستم گاف انرژی داشته باشه! این سیستمها و این خواص هم توپولوژیک هستن و به این راحتی از بین نمیرن اما همونطور که از اسمشون برمیاد یک تقارنی رو لازم دارن، مثلن دوران! یعنی اون خواص توپولوژیک هستند مادامی که شما اون تقارن رو حفظ کنی!
گذار کاسترلیتز تاولز رو تو کتاب کاردر خوب توضیح داده. اینا هم یه سری مقاله در مورد کارهای توپولوژیک و اثر هال:
این پست آغازگر سلسله پست های من درباره ی گذار فاز هست. در واقع بنا دارم مفاهیم اصولی و پایه ای که در این باره وجود دارد را طی چند مطلب به صورت کامل و جامع در اختیارتون قرار بدم. در این پست صرفا تصمیم دارم راجع به مفهوم و ماهیت فاز و گذار فاز صحبت کنم و در پست های بعدی مطالبم رو بسط بدم.
همانطور که از معنای لغوی اون پیداست، گذار فاز، یعنی از یک فاز به فاز دیگر رفتن! فازهای مختلف مواد رو از قبل میشناسیم. اما گذار بین آنها رو چطور؟ در سادهترین حالت میتوانم بگویم آب، یخ بزنه و از فاز مایع به فاز جامد تبدیل شود. اما آیا از مفهوم گذار فاز این چنان سطحی میتوان گذشت؟ پاسخ قطعا یک “نه” محکم است.
از فاز تا گذار فاز با یک مثال ملموس:
گذار فاز عبارتست از انتقال یک سیستم ترمودینامیکی از یک فاز یا حالت ماده به حالتی دیگر
ما از اصطلاح فاز برای توضیح حالت خاصی از ماده مثل جامد ، مایع یا گاز استفاده میکنیم. ترکیب آب در فاز جامد به صورت یخ، در فاز مایع به صورت آب و در فاز گازی به صورت بخار است. گذار از یک فاز به فاز دیگر، تغییر فاز یا گذار فاز نامیده میشود. نکتهی مهم این است که برای هر فشار معین، تغییر فاز در دمای معینی اتفاق میافتد، که معمولاً با جذب و گسیل گرما و تغییر حجم و چگالی همراه است. آب شدن یخ مثال آشنایی از تغییر فاز است. وقتی به یخ صفردرجهی سانتیگراد در فشار جوی عادی گرما دهیم، دمای یخ افزایش نمییابد. درواقع مقداری از آن به شکل آب ذوب میشود. اگر به آرامی گرما را اضافه کنیم تا دستگاه خیلی نزدیک به تعادل گرمایی بماند، دما در صفردرجه ی سانتیگراد باقی میماند تا تمام یخ ذوب شود. اثر افزودن گرما به این دستگاه بالا بردن دمای آن نیست، بلکه گذار فاز از جامد به مایع است.
پس باید شرایطی برقرار شود تا گذار اتفاق بیفتد. اما چگونه باید این شرایط را توصیف کرد؟علم توصیف این شرایط چیزی نیست جز مکانیک آماری. مکانیک آماری همان دانشی است که مثل یک پل به ما کمک میکند از فیزیک میکروسکوپی به پدیدههای ماکروسکوپیک برسیم. پس در بحث گذار فاز نوع نگاه ما نیز مهم است. وقتی با ابزار مکانیک آماری در این موضوع روبهرو میشویم باید یک نگاه جمعگونه به مساله داشته باشیم. به نوعی انگار قرار است رفتار جمعی ذرات را (نه خود ذرات را به تنهایی) بررسی کنیم، بع این صورت که بر اساس درجات آزادی هامیلتونی را مینویسیم و سپس مساله را حل میکنیم (برخلاف روند اولیه که یاد گرفتیم).
علم ترمودینامیک و متغیرهای ترمودینامیکی همانند بسیاری مسائل که در توصیف طبیعت بکار میآیند، بازهم نقشی محوری برای ما بازی میکنند. بهترین پارامترهایی که سیستمهای در حال گذار رو توصیف میکنند همان متغیرها هستند. دما، حجم، فشار و …
خوب است بدانید که در بررسی مسائل که با گذار فاز سروکاردارند، با مفاهیم متفاوتی روبهرو میشویم که درک آنها برای توصیف پدیده ضروری است. برای مثال ممکن است با توابع ترمودینامیکی روبهرو شویم که دارای تکینگی یا ناپیوستگی هستند. از پدیدههای مهم در این زمینه میتوان به چگالش گازها، ذوب جامدات، پدیدههای فرومغناطیس و آنتیفرومغناطیس، گذار نظم – بی نظمی در آلیاژها، گذار ابرشاره از هلیومI به هلیومII و گذار از حالت معمولی ماده به ابررسانا اشاره کرد.
همانطور که دیدید به شرایط گذار اشاره کردیم. یکی از مهمترین پارامترها در این زمینه دما است. ما دمایی را به عنوان دمای بحرانی تعریف میکنیم. در بالاتر از این دما و پایینتر از آن خواص مادهای که در پدیدهی ما شرکت میکند متفاوت میگردد و سروکله یک سری روابط عجیب و غریب ریاضی که وجه اشتراک همشون تکینگی هست پیدا میشود. ناحیهای که این دما در آن تعریف میشود ناحیهی بحرانی میگویند. پس با یک مفهوم جدید روبهرو شدیم و آن “بحرانیت” است که در پستهای آینده به اون خواهیم پرداخت.
اگر کتابهای ترمودینامیک رو دیده باشید مشاهده میکنید که برای شرط تعادل بین فازهای یک ماده برابری تابع انرژی آزاد گیبس اونها هست.
در بحث گذار فاز نیز باهمین توابع روبهرو هستیم. در واقع باید تابع گیبس سیستم رو بدست آوریم و ببینیم کدام مشتق آن (در چه مرتبهای) از خود ناپیوستگی نشان میدهند و براین اساس گذار را به دو دستهی مرتبه اول و دوم تقسیم میکنیم.
خب در این پست من فقط تلاش کردم مفهوم کلی گذار فاز و اینکه چه اتفاقی در اون میفته رو شرح مختصری بدم. مفاهیمی از قبیل بحرانیت، جهان شمولی، گذار از نظم به بی نظمی و … مطالبی هستند که من در آینده راجع بهشون براتون خواهم گفت و منابع خوبی رو هم در اختیارتون خواهم گذاشت.