رفتن به نوشته‌ها

دسته: آموزشی

سورپرایزهای ریاضی در مکانیک کوانتومی: در ستایش دقت ریاضی

«دقت ریاضی بسیار زیاد در فیزیک استفاده چندانی ندارد. اما کسی نباید از ریاضی‌دان‌ها در این باره اشکالی بگیرد […] آن‌ها دارند کار خودشان را انجام می‌دهند.»

– ریچارد فاینمن، ۱۹۵۶

از دید بسیاری از فیزیکدان‌ها، دقت ریاضی (mathematical rigor) در اکثر اوقات برای جامعه فیزیک غیر‌ضروری بوده و حتی با کند کردن سرعت پیشرفت فیزیک می‌تواند برای آن مضر نیز باشد.

شاید بتوان دلیل فاینمن را برای بیان این نظر درک کرد؛ برای لحظه‌ای تصور کنید که فاینمن فرمالیسم انتگرال مسیر خود را به دلیل وجود نداشتن تعریف دقیق ریاضی از این انتگرال‌های واگرا (که تا به امروز نیز تعریف جامع و دقیقی از آن‌ها در دسترس نیست) معرفی نمی‌کرد و یا فیزیکدان‌ها به دلیل وجود نداشتن تعریف اصول موضوعه‌ای از نظریه میدان‌های کوانتومی، از آن استفاده نمی‌کردند! قطعا انتظار سطح یکسانی از دقت ریاضی در اثبات قضایای ریاضی و در نظریه‌های فیزیکی انتظاری بیش از حد سنگین و غیر عملی است اما، بر خلاف برداشت رایج در بین فیزیکدان‌ها، دقت ریاضی همیشه به معنی جایگزین کردن استدلال‌های بدیهی اما غیر دقیق با اثبات‌های خسته کننده نیست. در بیشتر اوقات دقت ریاضی به معنی مشخص کردن تعریف‌های دقیق و واضح برای اجزای یک نظریه است به طوری که استدلال‌های منطبق بر شهود با قطعیت درست هم باشند! شاید بتوان این مطلب را در نقل قول زیر خلاصه کرد:

«دقت ریاضی پنجره‌ای را غبارروبی می‌کند که نور شهود از طریق آن به داخل می‌تابد.»

اِلیس کوپر

در فرمول‌‌بندی نظریه‌های‌ فیزیکی، بی‌توجهی به پیش‌فرض‌ها و ظرافت‌های ریاضی می‌تواند به سادگی به نتایجی در ظاهر متناقض بی‌انجامد که در بسیاری از موارد عجیب و حیرت‌انگیز به نظر می‌رسند. این مثال ساده از مکانیک کوانتومی را در نظر بگیرید: برای ذره‌ای کوانتومی در یک بعد، عملگر‌های تکانه خطی P و مکان Q از رابطه جا‌به‌جایی هایزنبرگ پیروی می‌کنند

حال با گرفتن رد (trace) از دو طرف این رابطه مشاهده می‌کنیم که رد طرف چپ این معادله با استفاده از خاصیت جا‌به‌جایی عمل ردگیری صفر می‌شود در حالی که رد سمت راست این معادله غیر صفر است! از آنجا که این رابطه یکی از بنیادین‌ترین روابط مکانیک کوانتومی است و بسیاری از مفاهیم عمیق فیزیکی مکانیک کوانتوم نظیر اصل عدم قطعیت از آن نتیجه می‌شود، این نتیجه (به ظاهر) متناقض حیرت انگیز به نظر می‌رسد! برای پیدا کردن مشکل بیاید نگاه دقیق‌تری به رابطه جا‌به‌جایی هایزنبرگ و دامنه اعتبار تعریف عمل ردگیری بی‌اندازیم: فرض کنید رابطه جا‌به‌جایی بالا برای دو عملگر P و Q، که روی فضای هیلبرت H با بعد متناهی n تعریف می‌شوند، برقرار باشد. در این صورت، عملگرهای P و Q با ماتریس‌های n*n مختلط داده خواهند شد و عمل ردگیری از آن‌ها خوش‌تعریف است. بنابرین، نتیجه متناقض

نشان می‌دهد که رابطه جا‌به‌جایی هایزنبرگ نمی‌تواند روی فضاهای هیلبرت با بعد متناهی برقرار باشد. در نتیجه مکانیک کوانتومی باید روی‌ فضای هیلبرت با بعد نامتناهی (اما شمارا) تعریف شود: روی چنین فضاهایی عمل ردگیری برای تمام عملگرها خوش‌تعریف نبوده (به طور مشخص رد عملگر واحد روی این فضاها تعریف نشده است) و نمی‌توان تناقض بالا را روی این دسته از فضاها نتیجه‌گیری کرد! با تعمیم تناقض بالا به فضاهای هیلبرت بی‌نهایت بعدی حتی می‌توان نتیجه قوی‌تری نیز درباره عملگرهای تکانه و مکان گرفت ــ حداقل یکی از این عملگرها باید بی‌کران (unbounded) باشد؛ این بدان معنی است که مقادیر ویژه کران‌دار نبوده و این عملگر روی تمام فضای هیلبرت خوش‌تعریف نخواهد بود! این نتیجه خود به آن معنی است که نه عملگرهای خلق و فنا و نه عملگر هامیلتونی (انرژی) روی تمام حالات فضای هیلبرت نوسانگر هماهنگ خوش‌تعریف نیستند (هر چند می‌توان بستار این عملگرها را روی کل فضای هیلبرت تعریف نمود). هر کدام از این نتایج خود منجر به نتیجه‌گیری‌های شگفت‌انگیز دیگری می‌شوند که ما را مجبور می‌سازند در تعریف بسیاری از مفاهیم به نظر بدیهی تجدید نظر کنیم: برای مثال، در فضاهای هیلبرت بی‌نهایت بعدی و در حالتی که تمام عملگر‌های فیزیکی کران‌دار باشند، می‌توان حالتی را متصور شد که فضا هیلبرت شامل هیچ حالت غیر درهمتنیده‌ای بین دو ‍‍‍‍«زیر سیستم» نباشد و در نتیجه نتوان آن را به صورت ضرب تانسوری دو فضای هیلبرت متعلق به هر زیر سیستم نوشت! این مسئله نیاز به تعریف دقیق‌تری از مفهوم «زیر سیستم» در نظریه میدان‌های کوانتومی و تعمیم‌های آن (مانند نظریه گرانش کوانتومی) را نشان می‌دهد که خود می‌تواند به حل شدن بخشی از تناقض‌های عمیق‌تر مانند مسئله اطلاعات سیاه‌چاله‌ها منجر شود! توجه کنید که دقت به دامنه اعتبار رابطه جا‌به‌جایی هایزنبرگ به نوبه خود چگونه می‌تواند ما را در درک بهتر درهمتنیدگی در نظریه میدان‌های کوانتومی و سوالاتی عمیق‌تر از جمله ساختار علی فضا و زمان و یا مسئله اطلاعات سیاه‌چاله‌ها یاری کند! مثال‌هایی از این دست در مکانیک کوانتومی و نظریه میدان‌های کوانتومی به فراوانی یافت می‌شوند که چند مثال دیگر و توضیح مفصل در مورد چگونگی حل آن‌ها را می‌توانید در مقاله آموزشی (و بسیار هیجان‌انگیز) زیر پیدا کنید:

Mathematical surprises and Dirac’s formalism in quantum mechanics

François Gieres 2000 Rep. Prog. Phys. 63 1893

By a series of simple examples, we illustrate how the lack of mathematical concern can readily lead to surprising mathematical contradictions in wave mechanics. The basic mathematical notions allowing for a precise formulation of the theory are then summarized and it is shown how they lead to an elucidation and deeper understanding of the aforementioned problems. After stressing the equivalence between wave mechanics and the other formulations of quantum mechanics, i.e. matrix mechanics and Dirac’s abstract Hilbert space formulation, we devote the second part of our paper to the latter approach: we discuss the problems and shortcomings of this formalism as well as those of the bra and ket notation introduced by Dirac in this context. In conclusion, we indicate how all of these problems can be solved or at least avoided.

در اهمیت مسئله حل کردن!

  • چرا اصلی‌ترین راه یادگیری دست‌ورزی با اون موضوعه؟!
  • چرا مهم‌ترین چیز برای یک دانشجوی علوم پایه مسئله حل کردنه؟!
  • چرا بهترین کتاب، اونیه که مسئله‌های بهتری و مسیر بهتری برای فکر کردن پیشنهاد می‌کنه؟
  • چرا خوندن چندین کتاب پیشنهاد نمیشه، اما خوندن یه کتاب یا رفتن سر یه کلاس کافیه و مهم اینه که تعداد مناسبی مسئله حل کنیم؟

همه این سوال‌ها به این برمی‌گرده که یادگرفتن یک مسیر کشف و شهود شخصیه! هر آدمی باید خودش بکوشه تا درک درستی رو «از آن» خودش کنه و این فقط با تمرین حل کردن ممکنه. گاهی ما فکر می‌کنیم که با خوندن کتاب‌های مختلف یا دیدن کورس‌های دانشگاه‌های معروف دیگه بعضی مطالب رو به درستی فهمیدیم. در حالی که معمولا این حس خوشایند فهمیدن نوعی توهمه! در واقع احساس موقتی در ما شکل می‌گیره که به خاطر بیشتر شدن درکمون نسبت به ناآگاهی کامله. برای همین این دلیل نمیشه که به میزان کافی یادگیری حاصل شده باشه. به‌خاطر همین، مسئله حل کردن به ما کمک می‌کنه که دونه دونه چک کنیم چه چیز‌هایی رو خوب متوجه شدیم و چه چیزهایی رو نیاز به بازآموزی داریم. همیشه یادگیری و درکمون از مطلبی رو با حل مسئله پیرامون اون موضوع باید بسنجیم.

این عکس نشون میده که خوندن کتاب‌های درسی یا سر کلاس رفتن فقط نقاطی رو در ذهن ما روشن می‌کنه در صورتی که این خود ما هستیم که باید اون نقاط رو به هم وصل کنیم تا الگوی درستی رو به خاطر بسپاریم.

علت این که خیلی وقتا دانشجوها مطالب سال‌های قبل رو یادشون می‌ره به این برمی‌گرده که تعداد کمی مسئله حل کردن. معمولا آدمایی که زیاد تمرین حل می‌کنن با یک مرور کوتاه خیلی سریع می‌تونن چیزهایی که توی ذهنشون در حال حاضر نیست رو به خاطر بیارن و ازشون استفاده کنند.

با کتاب خوندن و کورس دیدن میشه نمره خوبی گرفت، حتی شب یک امتحان. کافیه شما به میزان کافی باهوش باشین و مطالعه خوبی قبل از امتحان بکنید. اما این یادگیری نیست! در حقیقت شما برای مقطع کوتاهی از زمان یک سری اطلاعات رو به حافظه کوتاه مدت سپردین! اطلاعاتی که شامل یک‌سری رویه و دانستنی مربوط به موضوع علمیه. اما با مسئله حل کردن شما دانش بیرونی رو تبدیل به دانش شخصی می‌کنید. برای همینه که خیلی‌ها نمره‌های خوبی می‌گیرن و کنکور هم رتبه‌های خوبی می‌گیرن از کارشناسی تا دکتری اما هیچ موقع پژوهشگر‌های خوبی نمیشن! ذهن نیاز داره به تمرین همیشگی، پس تا جایی که می‌تونید تمرین حل کنید و خودتون رو با چالش‌های فکری بیشتری درگیر کنید.

طراحی مدادی دون کیشوت

«تدریس به صورت دنباله‌ای از اعمال و تعاملات و دنباله‌ای از تصمیمات گرفته شده توسط معلم، در زمان اتفاق می‌افتاد. در عوض، یادگیری، به عنوان فرایند بلوغ، حتی در زمان خواب، طی زمان اتفاق می‌افتد. لیکن تنها زمانی یادگیری رخ می‌دهد که یادگیرندگان را به جای این که همیشه تسلیم و موافق باشند به ادعا کردن، حدسیه‌سازی  دفاع از حدسیه‌ها و استفاده از توانایی‌های دیگرشان دعوت کنیم.»

جان میسون

انتگرال لبگ

در شاخه‌ی آنالیز حقیقی، انتگرال ریمانی مفهومی است که در آن به شکلی ارتباط بین یک تابع و مساحت زیر آن را در یک بازه مشخص می‌کند. انتگرال ریمانی کاربردهای فراوانی در علم دارد و البته دچار کاستی‌هایی نیز هست. به منظور رفع کاستی‌های انتگرال ریمانی، ریاضی‌دانان در پی ابداع کردن نظریات انتگرال دیگری برآمدند. یکی از این‌ نظریات، نظریه اندازه‌ و انتگرال لبگ است.

انتگرال ریمانی:

در فضای اعداد حقیقی بازه‌ای چون (a,b) را درنظر بگیرید. انتگرال ریمانی تابع f(x) برروی این بازه، معادل مساحت زیر نمودار تابع است.

مقدار این انتگرال برابر است با:

$ S= \int_{a}^{b}f(x) dx $

ریمان برای محاسبه‌ی مساحت زیر نمودار و معرفی انتگرال ریمانی، از ایده‌ی قسمت‌بندی کردن بازه‌ای که انتگرال بر روی آن محاسبه می‌شود، استفاده کرد.به بیان ریمان اگر بازه‌ها را به قسمت‌های مساوی تقسیم کنیم به‌گونه‌ای که :$ a=x_{0} <x_{1} <… < x_{n} = b $ باشد و $ \Delta x_{i} = x_{i} – x_{i-1}$ . سپس با استفاده از دو مفهوم سوپریمم و اینفیمم (کوچکترین کران بالا و بزرگترین کران پایین) مجموع‌های زیر را تعریف کرد.

$\sum_{i=1}^{n}M_{i} \Delta x_{i} = \sum_{i=1}^{n} \sup f(x) \Delta x_{i} $

$$ \sum_{i=1}^{n}m_{i} \Delta x_{i} = \sum_{i=1}^{n} \inf f(x) \Delta x_{i} $$

یک تابع انتگرال‌پذیر ریمانی است، هرگاه:

$$ \lim_{n\to\infty}\sum_{i=1}^{n} M_{i} \Delta x_{i} = \lim_{n\to\infty}\sum_{i=1}^{n} m_{i} \Delta x_{i} $$

هرگاه دو حد بالا موجود و برابر باشند، تابع انتگرال‌پذیر ریمانی است. انتگرال ریمان در شاخه‌های علم محاسبات را تسهیل کرده است، اما با نارسایی‌هایی مواجه است که در ادامه به آن می‌پردازیم.

۱. انتگرال ریمان، یک انتگرال وابسته به وجود حد است.

به این معنی که برای وجود پاسخ انتگرال ریمانی باید دو حد $$ \lim_{n\to\infty}\sum_{i=1}^{n} \sup f(x) \Delta x_{i} $$ و $$ \lim_{n\to\infty}\sum_{i=1}^{n} \inf f(x) \Delta x_{i} $$ موجود باشد. در غیر این صورت، تابع انتگرال‌پذیر نیست.

۲. انتگرال ریمانی به پیوستگی تابع وابسته است.

توابعی که دچار ناپیوستگی‌های اساسی باشند، انتگرال‌پذیر نیستند. (توابع تکه‌ای پیوسته انتگرال‌پذیرند.)

۳.انتگرال ریمانی از R به R تعریف شده است.

یعنی اگر دامنه انتگرال به جای R ، $R^{2}$ باشد انتگرال ریمانی تعریف نشده است.

انتگرال لبگ و نظریه‌ی اندازه‌ها، کاستی‌های انتگرال لبگ را رفع کرده است و کلاس خاصی از فضای هیلبرت را نیز ساخته است.

اندازه چیست؟

نظریه انتگرال لبگ نیازمند روشی ساختاریافته است که در آن بتواند مفهوم اندازه را معرفی کند. به بیان ساده اندازه تعمیمی از طول، مساحت، و حجم است. بازه‌ی [a,b] را درنظر بگیرید. طول این باز معادل b-a است. حالا دو بازه‌ی کاملا مستقل [a,b] و [c,d] را درنظر بگیرید. به نظر می‌رسد که طول مجموع این دو بازه (b-a)+(d-c) است. اگر بازه‌ها زیرمجموعه‌ی اعداد گنگ باشد چه می‌شود؟ آیا می‌توان به سادگی مفهوم طول را معرفی کرد؟ به نظر می‌رسد این‌جا نیازمند تعاریف دقیق‌تر ریاضی هستیم.

سیگما -جبر

مجموعه‌ای به نام X را درنظر بگیرید. $ \Sigma $ یک مجموعه از زیرمجموعه‌های X است. آن را سیگما-جبر می‌گوییم، هرگاه ویژگی‌های زیر را داشته باشد.

  • X و تهی عضو سیگما باشند.
  • اگر E عضو سیگما بود، متمم آن نیز عضو سیگما باشد.
  • اجتماع تعداد شمارایی از اعضای سیگما، مجددا عضو سیگما باشند.

حال با دانستن تعریف سیگما- جبر به سراغ مفهوم اندازه می‌رویم؛

تابع اندازه ، $\mu (X)$،برروی مجموعه‌ی X تعریف می‌شوند که X سیگما-جبر است. این تابع دارای خواص زیر است.

۱. اگر X مجموعه تهی یا تک‌عضوی باشد، اندازه آن صفر است. در غیر این صورت، اندازه آن همواره مثبت است.

۲.اندازه‌ی مجموع دو مجموعه‌ی بدون اشتراک برابر با مجموع اندازه‌های هرکدام از مجموعه‌هاست. یعنی:

$$ \mu(X_{1} + X_{2})= \mu (X_{1}) + \mu(X_{2})$$

هرگاه

$$ X_{1} \cap X_{2} = \phi$$

اندازه لبگ

مهم‌ترین قسمت انتگرال‌گیری لبگ، یافتن اندازه برروی مجموعه‌ای است که روی آن انتگرال اعمال می‌شود. اگر یک مجموعه شامل ناپیوستگی‌های بسیار باشد، باید راهی پیدا کنیم تا بتوانیم اندازه را بر روی این مجموعه‌ تعریف کنیم. حاصل کار اندازه‌ی لبگ است. با یک مثال ساده، انتگرال لبگ را تعریف می‌کنیم. بازه‌ی بسته‌ [a,b] به طول L را در نظر بگیرید. این بازه را می‌توانیم به دو بازه با اشتراک صفر تقسیم کنیم. مجموعه X شامل نقاطی که عضو [a,b] هستند و ‘X (متمم مجموعهX) شامل نقاطی از [a,b] است که در X وجود ندارد. تصویر زیر را نگاه کنید.

مجموعه X و متمم آن

می‌خواهیم اندازه لبگ را بر روی این دو مجموعه تعریف کنیم. بدین منظور، X را با بازه‌های بدون اشتراک$\Lambda_{i}$نشان می‌دهیم. در بیان نظریه مجموعه‌ها، داریم:

$$ \Lambda_{i} \subset [a,b]$$

$$\Lambda_{i} \cap \Lambda_{j} = \phi$$

$$X \subset (\Lambda_{1} + \Lambda_{2} +…)$$

اگر طول بازه $\Lambda_{k}$ را معادل $l_{k}$ بدانیم، از آنجا که طول بازه [a,b] برابر L است، نامساوی زیر صادق است.

$$ 0 \leqslant \Sigma_{k}l_{k} \leqslant L$$

کمترین مقدار $\Sigma_{k}l_{k}$ را اندازه بیرون می‌نامیم. به بیان دیگر :

$$ \mu_{out}(X) = inf (\Sigma_{k} l_{k} )$$

به همین ترتیب، مجموعه‌های $ \Lambda_{k}^{\prime} \subset [a,b]$ را معرفی می‌کنیم.

$$ X^{\prime} \subset (\Lambda_{1}^{\prime} +\Lambda_{2}^{\prime} +…) $$

$$ 0\leqslant \Sigma_{k} l_{k}^{\prime} \leqslant L$$

و اندازه داخل را به فرم $\mu_{in}(X)= L- \mu_{out}(X^{\prime}) = L- inf(\Sigma_{k} l{k}^{\prime})$ معرفی می‌کنیم. ضمنا

$$ 0 \leqslant \mu_{in}(X) \leqslant \mu_{out} (X) $$

زمانی $\mu_{in}(X) =\mu_{out}(X)$ شود، آنگاه $\mu_{in}(X)=\mu_{out}(X)=\mu(X)$ و $\mu(X)$ اندازه لبگ است.

انتگرال لبگ چیست؟

تابع f(x) را به‌گونه‌ای در نظر بگیرید که از بالا و پایین توسط بیشینه و کمینه خود محدود شده است.

$$ 0 \leqslant f_{min} \leqslant f(x) \leqslant f_{max}$$

تابع f(x) را به دنباله‌ی $ {f_{k}} $ تقسیم می‌کنیم به طوری که، $ f_{1}= f_{min}$ و $f_{n}=f_{max}$ باشد. با توجه به تناظر یک به یک بین x و f(x) مجموعه‌های $ X_{i}$ وجود دارند به گونه‌ای که:

$$ f_{k} \leqslant f(x) \leqslant f_{k+1} , x \in X_{k} , 1 \leqslant k \leqslant n-1 $$

برای هر مجموعه $ X_{k} $، اندازه‌ای درنظر می‌گیریم و اکنون می‌توانیم مجموع لبگ را تعریف کنیم.

$$ \Sigma_{k=1}^{n} f_{k} \mu(X_{k}) $$

اگر در $ n\to \infty$ این مجموع همگرا شود، آنگاه می‌توان انتگرال لبگ را تعریف کرد.

$$\int_{X} f d\mu \equiv lim_{max|f_{k}-f_{k-1}| \to 0} [\Sigma_{k=1}^{n} f_{k} \mu(X_{k})]$$

انتگرال لبگ

انتگرال ریمان و انتگرال لبگ

اکنون قصد دارم انتگرال ریمان را به روش انتگرال لبگ تعریف کنم تا بهتر متوجه شباهت‌ها و تفاوت‌های آنها شویم.

تابع f(x) که در بازه‌ی [a,b] تعریف شده را در نظر بگیرید. اگر $X=[a,b]$ را به بازه‌های بدون اشتراک $X_{i}$ تقسیم کنیم، مجموع ریمان به فرم زیر تعریف می‌شود.

$$ \Sigma_{k=1}^{n} f(\xi_{k})\mu(X_{k}) , \xi_{k} \in X_{k}$$

این مجموع به‌گونه‌ای تعریف شده است که هر گاه $ n\to\infty$ برای هر $X_{k}$ ، $\mu(X_{k}) . . . \to 0$ در صورت وجود حد $\lim_{n \to \infty} \Sigma_{k=1}^{n} f(\xi_{k}) \mu(X_{k})$ این مجموع، انتگرال ریمان تابع f(x) بر X است.

اگرچه تعریف مجموع لبگ با مجموع ریمان که در بالا تعریف کردیم، شباهت‌هایی دارد،اما تفاوت‌های اساسی در این دو مجموع مشهود است. در مجموع ریمان، f(x) را در هر نقطه‌ی دلخواه $\xi_{i} \in X_{i}$ درنظر می‌گیریم. اما در مجموع لبگ مقدار f(x) را در هر زیرمجموعه $X_{k}$ درنظر می‌گیریم. به این‌ترتیب برای وجود انتگرال لبگ نیازی به شرط هموار بودن موضعی تابع نداریم. به دو شکل زیر نگاه کنید تا آنچه که اینجا بیان شده است، بهتر مشخص شود.

مجموع ریمان در هر نقطه از تابع تعریف می‌شود.
مجموع لبگ در هر بازه تعریف می‌شود.

ویژگی‌های انتگرال لبگ

۱. انتگرال لبگ یک تابع صفر است، هرگاه اندازه‌ی مجموعه‌ی آن صفر باشد.

۲. انتگرال لبگ یک تابع متناهی است، لذا زیرمجموعه‌ی $X^{\prime}=\{x| f(x)= \pm\infty\}$ وجود دارد به‌طوری که$\mu(X^{\prime})=0$ به بیان دیگر، زمانی که f(x) همگراست، الزاما اندازه مجموعه‌هایی که در آن f(x) واگراست، صفر است.

۳.$\int_{X} f(x) d\mu$ متناهی است و $X^{\prime} \subset X$. اگر $ \mu(X^{\prime}) \to 0$، آنگاه $ \int_{X^{\prime}} f d\mu \to \infty $.

۴. زمانی که f(x) برروی X مقادیر مثبت و منفی را اختیار کند، انتگرال لبگ به صورت زیر تعریف می‌شود.

$$ \int_{X} f d\mu = \int_{X} f^{+} d\mu + \int_{X} f^{-} d\mu$$

$$\int_{X} |f| d\mu = \int_{X} f^{+} d\mu – \int_{X} f^{-} d\mu$$

برابری تقریبا همه‌جا

در قسمت‌های قبل مشاهده کردیم زمانی که اندازه‌ی مجموعه‌ای صفر باشد، آنگاه آن مجموعه دخالتی در انتگرال لبگ ندارد. همین ویژگی منجر به مفهوم «برابری تقریبا همه‌جا» برای توابع اندازه‌پذیر شد. این ویژگی نقش بسیار مهمی در توسعه آنالیز تابعی دارد.

می‌گوییم دو تابع f(x) و g(x) که برروی مجموعه X تعریف شده‌اند، تقریبا همه‌جا با هم برابرند، هرگاه:

$$\mu \{x \in X : f(x) \neq g(x)\}=0$$

فضای $L^{p}$

فضای $L^{p}$، فضایی است که توسط توابع مختلط f(x) ساخته می‌شود. در این فضا $|f|^{p}$ انتگرال‌پذیرلبگ است. اگر p=2 باشد، $L^{2}$ عضوی از فضاهای هیلبرت است. زمانی که $p \neq 2 $ باشد، فضای $L^{p}$ خاصیت ضرب داخلی خود را از دست می‌دهد، اما $L^{p}$ همچنان فضای کامل است.

منابعی برای یادگیری نظریه اندازه و انتگرال لبگ:

در دانشکده‌های علوم ریاضی برای یادگیری این مباحث، عمدتا کتاب‌های قدیمی و معروف آنالیز حقیقی معرفی می‌شوند. از آنجا که من فکر می‌کنم با تغییر نسل‌ها، منابع آموزشی نیز باید تغییر کنند کتاب‌هایی را معرفی می‌کنم که اولا در دهه‌ی اخیر تالیف شده‌اند. ثانیا، ادبیات و نحوه‌ی روایت آن با ذهن کسانی که کمتر با ریاضیات مجرد آشنایی دارند، قرابت بیشتری دارد.

Functional anlysis for physics and engineering, Shima Hiroyuki 2016

A short course on the Lebesgue integral and measure theory, Steve Cheng

Elementary introduction to the lebesgue integral. Steve G.Krantz 2018

#شرح_پیچیدگی

در توییتر متخصصان حوزه پیچیدگی با هشتگ #ComplexityExplained در مورد مفهوم پیچیدگی توییت کردند و ماحصل توییت‌ها تبدیل به دفترچه‌ای شد در #شرح_پیچیدگی. دفترچه‌ای برای توضیح مفهوم پیچیدگی بر اساس آرا صاحب‌نظران این حوزه!

شما می‌توانید سایت اصلی این پروژه را با رفتن به این نشانی ببینید:
complexityexplained.github.io

این اثر با مجوز زیر منتشر شده است:
CC BY-NC-ND 4.0

این شما و این نسخه فارسی این دفترچه :

ComplexityExplainedFarsi

«مقدمه‌ای بر بازبهنجارش» هفته پنجم: بازبهنجارش در فیزیک انرژی‌های بالا، نظریه گروه‌ها و نظریه نرخ-اعوجاج

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته پنجم: بازبهنجارش در فیزیک انرژی‌های بالا، نظریه گروه‌ها و نظریه نرخ-اعوجاج

در ابتدای این جلسه کمی در مورد بازبهنجارش در فیزیک انرژی‌های بالا صحبت خواهم کرد و سپس با معرفی کوتاهی از نظریه‌ گروه‌ها، سراغ قضیه Krohn–Rhodes می‌روم. در انتها به این پرسش می‌پردازم که آیا برتری بین روش‌های درشت-دانه‌بندی وجود دارد یا خیر. در قسمت انتهایی نظریه نرخ-اعوجاج (Rate–distortion theory) را مطرح می‌کنم.


ویدیوها

۱) بازبهنجارش در فیزیک انرژی‌های بالا

۲) نظریه گروه‌ها

۳) نظریه نرخ-اعوجاج


برای مطالعه بیشتر


اسلایدها

بازبهنجارش-قسمت-آخر

«مقدمه‌ای بر بازبهنجارش» هفته چهارم: مدل آیزینگ

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته چهارم: مدل آیزینگ

مدل آیزینگ، به عنوان معرف‌ترین مدل در فیزیک آماری، یک مدل ساده برای توصیف گذار فاز در مواد مغناطیسی است. این مدل از متغیرهای گسسته (اسپین) به روی یک گراف مشبکه (Lattice) تشکیل شده است. در این قسمت از مجموعه مقدمه‌ای بر بازبهنجارش، نخست مدل آیزینگ را معرفی می‌کنم و سپس به سراغ درشت‌-دانه‌بندی شبکه‌ اسپینی می‌روم. چالش‌های پیش‌رو را مطرح می‌کنم و سرانجام به پدیدارگی جملات مرتبه‌-بالاتر و نقاط ثابت جریان بازبهنجارش می‌پردازم.


ویدیوها

۱) مرور جلسات گذشته و معرفی مدل آیزینگ

۲) درشت-دانه بندی شبکه اسپینی

۳) یافتن نقاط ثابت


برای مطالعه بیشتر

برای بیشتر عمیق شدن

شبیه‌سازی مدل آیزینگ


اسلایدها

بازبهنجارش-آیزینگ1

«مقدمه‌ای بر بازبهنجارش» هفته اول

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

هفته اول: مقدمه

یک تصویر جِی‌پِگ (JPEG) چه ربطی به اقتصاد یا گرانش کوانتومی دارد؟ برای پاسخ به این پرسش باید به این نکته توجه کنیم که هر سه این‌ها در مورد این هستند که چه می‌شود وقتی توصیف‌هایمان از دنیا را ساده‌سازی کنیم!؟ JPEG با دور ریختن ساختار ریز، یک تصویر را به نحوی فشرده می‌کند که با یک نگاه گذرا جزئیات دور ریخته شده قابل شناسایی نباشد. اقتصاددانان هم با چشم‌پوشی از جزئیات روان‌شناسی هر فرد، در مورد رفتار انسان‌ها نظریه‌پردازی می‌کنند. در این میان، یادآوری کنیم که حتی سطح‌بالاترین آزمایش‌های ما در فیزیک نمی‌توانند به ما بنیادی‌ترین عناصر سازنده ماده را نشان دهند و نظریه‌هایمان برای تطابق با آزمایش‌ها ناگزیر به این هستند که برخی از جزئیات در مقیاس‌های بسیار ریز را محو کنند.

ایده بازبهنجارش در مورد همین چیزها است؛
مطالعه نظریه‌ها هنگامی که از مقیاسی به مقیاس دیگر می‌روند.


ویدیوها

هفته اول

۱) اقتصاد و نظریه موثر

۲) دانه‌-درشت‌بندی یک تصویر

۳) آنتروپی شانون


برای مطالعه بیشتر


اسلایدها

بازبهنجارش-مقدمه1