Examples of ball packing, ball covering, and box covering. @wikipedia

«هندسه‌ی فرکتالی، فقط بخشی از ریاضیات نیست، بلکه موضوعی است که به هرکس کمک می‌کند تا این دنیا را متفاوت ببیند.»  بنوا مندلبرو – پدر هندسه‌ی فرکتالی

خیلی وقت پیش در مورد فرکتال‌ها نوشتم که شما می‌تونید اونا رو بخونید: 

این هفته، در مورد هندسه فرکتالی یک سخنرانی در دانشگاه شهید بهشتی داشتم با موضوع «مقدمه‌ای بر هندسه فرکتالی» می‌تونید ویدیوی این سخنرانی رو ببینید. همین‌طور اسلاید‌ها و فایل صوتی:

 

 

 یلدا به زودی فرامیرسه و بعد از اون زمستون شروع میشه. خوبه که ما گیک‌های علوم‌پایه هم به مناسبت اومدن زمستون یه حرکت باحالی بزنیم و چه حرکتی باحال‌تر از درست کردن برف‌دانه‌ی سه فیزیک‌دان و نوبلیست دوست‌داشتنی:‌ آلبرت‌ آینشتین، ماری کوری و اروین شرودینگر.

(منظور از برف‌دانه یه چیزی شبیه برف‌دانه کخ هست که برف‌دانه کخ هم یک موجود ریاضی شبیه برفه دیگه! نگاه کنید به مقدمه‌ی پست فرکتال‌ها)

SnowflakePhysicists

«مجله‌ تقارن – symmetry magazine» به افتخار این سه دانشمند بزرگ (که دنیا رو جای بهتری برای زندگی کردند) کارجالبی کرده و طرح‌واره یا الگوهایی رو برای دانلود گذاشته که بعد از چاپشون با یک سری تا زدن و قیچی کردن – البته با دقت و حوصله کافی! – بتونید برف‌دانه‌های این سه‌ نفر رو بسازید و احتمالا به درخت کریسمستون آویزون کنید یا اینکه مثل من بذاریدش لای دفترتون و هر کسی رو که دیدید با کلی آب‌وتاب براش تعریف کنید که این چیه و چه جوری درست میشه 🙂

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

طرح‌واره‌ی اول، الگوی آلبرت آینشتین:SnowflakeEinstein2

شاید اون رابطه‌ی هم‌ارزی ماده‌و انرژی معروف‌تر از چهره آینشتین باشه ولی ما دوست داریم که از چهره‌ی آلبرت استفاده کنیم! به‌ یاد بیاریم که نسبیت عام، نسبیت خاص، اثر فوتوالکتریک و حرکت براونی حداقل چیزهایی‌ هست که آینشتین برای ما به ارمغان اورده!

برای دانلود طرح‌واره آینشتین کلیک کنید!

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

طرح‌واره‌ی دوم، الگوی ماری کوری:

تصویر ماری کوری همراه علامت خطر «پرتوزایی» به خاطر فعالیت زیادش روی این پدیده عجین شده! پس توی طرح‌واره‌ی ماری کوری هم باید این علامت پیدا بشه! به یاد بیاریم که ماری کوری اولین خانم برنده‌ی جایزه‌ی نوبل دSnowflakeCurie_v3ر فیزیک هست. ایشون علی‌رغم زندگی مشقت باری که داشته تنها کسی هست که علاوه‌بر نوبل فیزیک(۱۹۰۳) برنده‌ی نوبل شیمی(۱۹۱۱) هم شده!  واپاشی هسته‌ای، پولونیم (عنصر) و رادیم (عنصر) حداقل چیزهایی هست که این خانم برای ما به جا گذاشته!

برای دانلود طرح‌واره ماری کوری کلیک کنید!

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

طرح‌واره‌ی سوم، الگوی اروین شرودینگر :

اروین شرودینگره و گربه‌ی معروفش! نگاه کنید به پست «ماجرای گربه‌ی شرودینگر چیه» پس توی طرحواره‌ی شرودینگر باید جایی هم برای گربه‌ش در نظر بگیریم! گربه‌ای که نه معلومه زنده‌ست و نه معلومه مرده‌ست 🙂 SnowflakeSchrodinger2

به یاد بیاریم که شرودینگر مکانیک موجی رو ساخت و سهم عمده‌ای تو پیشرفت مکانیک کوانتومی داشت.

برای دانلود طرح‌واره شرودینگر کلیک کنید!

ــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

به سادگی طرح‌واره‌ها رو دانلود کنید،‌چاپشون کنید و با استفاده الگویی که مشخص کرده تا بزنید. قسمت‌های خاکستری رو جدا کنید. (مطمئین بشید که همه‌ی لایه‌های کاغذ رو جدا کردید.) بعد از اون تاهایی که زدید رو باز کنید و از برف‌دانه‌ی فیزیکی‌تون لذت ببرید. راستی موقع برش زدن مواظب دستاتون باشید!

این ویدیو هم می‌تونید ببینید و البته بیشتر بخندید تا اینکه چیزی یاد بگیرید:

در قسمت‌های قبل در مورد فرکتال‌ها و ویژگی‌هاشون نوشتم. این قسمت و قسمت بعد در مورد مجموعه‌ای از اعداد که اشکال فرکتالی می‌سازند هست.

به عنوان مقدمه،‌ تابع y = x^2\, رو در نظر بگیرید. اگر به عنوان یک نقطه‌ی شروع x=۲ رو به تابع بدیم مقدار تابع میشه ۲ به توان ۲ یعنی ۴. حالا اگر باز این ۴ رو به تابع بدیم، جواب ۱۶ میشه و اگر این روند رو ادامه بدیم به عددهای بزرگتر می‌رسیم. همین طور اگر از نقطه‌ی x=-۳ شروع کنیم، به ۹ و بعد از اون به ۸۱ و مجددا به عددهای بزرگتری می‌رسیم.

نقطه‌ی شروع:۲          ۲ => ۴ =>  ۱۶=>۲۵۶ => … => بی‌نهایت

نقطه‌ی شروع: ۳-         ۳- => ۹ => ۸۱=>۶۵۶۱ => … => بی‌نهایت

هر دوی این نقاط بعد از تکرارهای پی در پی به بی‌نهایت نزدیک میشند. اما اگر این بار یک نقطه از بازه‌ی [۱،۱-] انتخاب کنیم چی؟ مثلا اگر ۰/۵ رو انتخاب کنیم به توان دو که برسه میشه ۲۵/. بعدش ۶۲۵./. و همین طور عددهای بعدی کوچیک و کوچیکتر میشند و به صفر میل کنند.

نقطه‌ی شروع: ۵/.          ۵/. => ۲۵/. => ۶۲۵./.=> ۰۰۳۹۰۶۲۵/. => … => صفر

نقطه‌ی شروع:۱ یا ۱-          ۱یا ۱- => ۱ =>  ۱=>۱ => … => ۱

در حقیقیت هر عددی که انتخاب کنیم در نهایت (پس از تکرارهای پی در پی) سرانجام و عاقبتش دو حالت داره؛ یا خیلی رشد میکنه و به یک حد بی کران می‌رسه یا اینکه در آخر به یک مقدار ثابت همگرا میشه کهj1 برای این تابع اعداد ۱ و ۱- به ۱ همگرا میشند و همه‌ی اعداد حقیقی بین ۱- و ۱ به صفر. اعداد خارج این بازه هم که اصلا همگرا نمیشند!

خب بعد از این مقدمه، به یک تعریف می‌رسیم: «به مجموعه‌ای از شرایط اولیه که پس از تکرارهای پی‌در‌پی توسط یک تابع به بی‌نهایت میل نمی‌کنند، مجموعه‌ی ژولیای آن تابع می‌گویند.» مثلا برای تابع y = x^2\,  شرایط اولیه (اعداد) عضو بازه‌ی [۱،۱-] پس از تکرارهای پی‌در‌پی به بی‌نهایت نمی‌رسند ولی برای خارج از این بازه این طور نیست و همون جوری که دیدید بعد از تکرارهای پی‌در‌پی به بی‌نهایت می‌رسند. در حقیقت به مجموعه [۱،۱-]=S یک «مجموعه‌ی توپور ژولیا» میگند و منظور از مجموعه ژولیا مرز بین دو مجموعه است؛مجموعه شرایط اولیه‌ای که به بی‌نهایت می‌رسند و مجموعه شرایط اولیه‌ای که به بی‌نهایت نمی‌رسند! یعنی برای تابع  y = x^2\, مجموعه ژولیا {J ={-1,1 است که شامل دو عدد ۱+ و ۱- می‌باشد! به عبارت دیگه اگر روی محور xها بخواییم مشخص کنیم فقط دو تا نقطه به عنوان مجموعه‌ی ژولیا تابع y = x^2\,  مشخص میشه؛ x=1 و x= -1!

خب تا اینجا زیاد جذاب نبود و فقط یک تعریف رو مطرح کردیم! حالا برای ایجاد جذابیت بیایید و وارد اعداد موهومی بشیم. تفاوت اعداد حقیقی و موهومی در اینه که اعداد حقیقی روی یک خط هستند ولی اعداد موهومی روی یک صفحه قرار می‌گیرند. هر عدد موهومی به صورت z=a+ib نوشته میشه که a, b هر دو اعداد حقیقی و i واحد موهومی ساز هست جوری که طبق تعریف: i2 = −1 ! اگر با این دسته از اعداد هنوز آشنایی ندارید، سخت نگیرید، ایده‌ی آسونیه، می‌تونید نگاه کنید به صفحه ویکی‌پدیا یا اینکه اگر اشتیاق بیشتری به یادگیری دارید بهتون پیشنهاد میکنم کتاب «متغیرهای موهومی و کاربردها» نوشته‌ی جیمز براون و روئل چرچیل رو یه نگاهی بندازید! الان همون تابع قبلی رو در فضای موهومی می‌نویسیم: j۲

در مورد این تابع، مجموعه‌ی ژولیا، مجموعه نقاطی هست که روی دایره‌ای به شعاع ۱ و به j۳مرکز مبدا مختصات قرار می‌گیرند. یعنی مجموعه نقاط روی دایره و درون دایره r=1 مجموعه‌ی توپور ژولیا رو می‌سازند. این به خاطر اینه که اعداد موهومی روی صفحه مشخص می‌شند. (شما این تعبیر رو با نوشتن صورت قطبی اعداد موهومی بهترین می‌تونید ببینید؛ یادتون باشه که ما دنبال اعدادی هستیم که (z) عضو بازه‌ی [۱،۱-] باشند تا بعد از تکرارهای پی‌در‌پی، اعداد حاصل از به توان ۲ رسوندن به بی‌نهایت میل نکنند! صرفا جهت یادآوری عرض کنم که برای به توان رسوندن یک عدد موهومی z=a+ib مثل به توان رسوندن چند جمله‌ای ها عمل می‌کنیم ولی به این نکته توجه می‌کنیم که طبق تعریف i2 = −1 !)

خب یکمی جالب‌تر شد، از دو نقطه‌ی x=1 و x= -1 توی قسمت قبل این دفعه به یک دایره رسیدیم در فضای j۵موهومی. برای جذابیت بیشتر بیایید و این دفعه تابع رو تغییر بدیم و از این تابع استفاده کنیم و ببینیم که چی میشه! یعنی اون نقاطی رو پیدا کنیم که بعد از تکرارهای متوالی توسط این تابع به بی‌نهایت میل نکنند. راستش این دفعه به سادگی دفعه‌ی قبل نیست که بتونیم سریع کل اون اعداد رو حدس بزنیم و مثلا بگیم که ما دنبال اعدادی هستیم که (z) عضو بازه‌ی [۱،۱-] باشند. خب بیایید و چند تا عدد موهومی رو تست کنیم، روش آزمون و خطا؛
چندتا عدد راحت مثل 0 و i و 1+i و یک عدد یکمی ناراحت ( 😀 ) مثل 0.8 + 0.2i

j۶ j۷ j۸ 

می‌‌بینیم که صفر به طور متناوب به ۱- و صفر میرسه ولیj۹ در مورد بقیه اعداد ما، این طوری نیست و مثلا در مورد 1+i همین طور زیاد و زیاد تر میشه.

خب بقیه اعداد رو باید همین جوری با آزمون و خطا پیدا کرد راستش و خب این قدری رنج آوره! اشکال نداره ما خودمون این کارو انجام نمی‌دیم و میذاریمj۱۱ کامپیوتر بقیه اعداد رو پیدا کنه! من تصویری از نقاطی که مشخص شده رو براتون می‌‌‌ذارم تا ببینید که این دفعه شکل دیگه دایره نمیشه و یه شکل عجیب درست میشه! فکر نمی‌کنم که این شکل رو می‌شد به این راحتی‌ها حدس زد! برای بهتر دیده شدن تصویر، رزولوشنش رو میشه بیشتر کرد،یعنی تعداد نقاط رو بیشتری رو امتحان کرد:

«این یک شکل خودمتشابه هست!»

اجازه بدید تا یک قسمت از شکل که مشخص کردم رو بزرگترش کنم؛ مثل اینکه سر و کله‌ی فرکتال  ها دوبارهj۱۲ پیدا شد!

از حالا به بعد هر تابعی که داشته باشیم رو می‌تونیم مجموعه‌ی ژولیا مربوط به اون رو پیدا کنیم.بین توابع، توابعی که به صورت چندجمله‌ای های مربعی هستند بیشتر معروف هستند!

$$ f(z)=z^2 +c ,$$  c:مقدار ثابت

حتما به صفحه‌ی ویکی‌پدیا مجموعه‌ی ژولیا سر بزنید و شکل‌های جالبی که توسط توابع مختلف ساخته شده رو ببینید. علت استفاده از رنگ هم اینه: بسته به این که نقاط با چه آهنگی رشد می‌کنند به اونها یک رنگ خاص اختصاص میدند، ممکنه یک عدد بعد از صد بار تکرار بیشتر از یک میلیون بشه و یک عدد بعد از هزار بار تکرار، این‌ها باید با هم یک فرقی به هر حال داشته باشند دیگه! به عنوان نمونه من چند تا از تصاویر رو میذارم:

مجموعه‌ی ژولیا برای c=-0.8+0.156i

مجموعه‌ی ژولیا برای c=-0.8+0.156i

مجموعه‌ی ژولیا با رنگ سفید مشخص شده.Continue reading

کنث فالکونر (ریاضی دان) در مورد مفهوم فرکتال ها میگوید:

«به مفهوم فرکتال ها باید همان جوری نگریست که یک زیست شناس به مفهوم زندگی می نگرد.»

توی پست قبلی مقدمه‌ی کوتاهی درباره فرکتال ها و اینکه هندسه ی توصیف گر طبیعت یک هندسه‌ی فرکتالی هست یک توضیحاتی دادم.

رعد و برق ـ پدیده ای با هندسه فرکتالی

صرف نظر از فرکتال های ساختگی (فرکتال هایی که ریاضیدان ها معمولا می‌سازند مثل برف‌دانه کخ) به هر طرف که نگاه کنید می‌تونید یک فرکتال طبیعی رو مشاهده کنید. سر سفره «کلم ترشی (یا بروکلی)»، کنار ساحل «خطوط ساحلی»، «برگ درخت»، «شش ها (ریه)»، «رعد و برق» و …خب این فرکتال ها چه ویژگی دارند؟

فرکتال ها ۳تا ویژگی خاص دارند که بهشون اشاره میکنم:

۱) فرکتال ها خودمتشابه هستند!

یک گل‌کلم یا کلم بروکلی رو در نظر بگیرید؛ اگه با یک چاقوی تیز، یکی از گلچه های گل کلم رو ببرید و جداگانه بهش نگاه کنید:

کلم بروکلی، موجودی با ساختار فرکتالی

کلم بروکلی، موجودی با ساختار فرکتالی – نمونه یک موجود  خودمتشابه 🙂

چیزی که به نظر می‌رسه یک گل کلم کامله، اما کوچکتر! اگه باز برش بدید، دوباره، دوباره، دوباره، …، شما گل‌کلم های کوچکتری بدست می آرید. به تجربه دیده شده که بعضی از اشکال این خاصیت عجیب رو دارند، یعنی هر قسمت از شکل مثل کل شکله با این تفاوت که اندازه کوچکتری داره. به این خاصیت خود متشابهی میگند. توی برف‌دانه کخ هم اگر قسمتی از شکل روجدا کنید میبینید که دقیقا مثل کل شکله و این تشابه هیچ وقت قطع نمیشه و همین طور ادامه داره! ممکنه که شما بگید یک خط راست هم اگر تکه تکه بشه باز هم شکل قسمت اول رو داره پس فرکتاله! اولا اشتباه نکنید یک ویژگی شرط لازمه نه کافی! در ثانی معمولا منظور ما از خود متشابه بودن، خود متشابه بودن در یک الگوی غیرعادی و غیربدیهیه! 

۲) فرکتال ها دارای بعد غیرصحیح هستند!

همیشه ما با ابعاد صحیح روبه رو بودیم! مثلا میگیم خط موجودی ۱بعدی، مربع یک شکل ۲ بعدی و مکعب یک شکل ۳بعدیه (ابعاد اقلیدوسی، همه هندسه ای که ما اول یاد میگیریم اقلیدوسی هست) ! حتی فضا-زمان در نسبیت ۴ بعدیه و نه مثلا ۳/۴۵ بعدی! همین طور نظریه هایی مثل ریسمان هم که فراتر از ۳ بعد رفته اند هنوز تعداد بعد توجیه کننده‌شون صحیحه مثلا ۱۱ نه ۱۱/۲۴! ممکنه بپرسید این غیرصحیح بودن بعد فرکتال ها دیگه چه صیغه ایه! پس اجازه بدید که «بعد» رو تعریف‌ کنیم:

مطابق شکل،‌ dفرض کنید که از یک قطعه شکل سمت چپ میخوایم شکل بزرگتر (با بزرگنمایی ۳ برابر) رو درست کنیم؛ برای این کار به چند قطعه‌‌ی هم اندازه با شکل سمت چپ نیاز داریم؟ برای خط معلومه، اگه همون خط قبلی سه برابر بشه (طولش) شکل جدید حاصل میشه، پس به ۳قطعه هم‌اندازه نیاز داریم. برای مربع هم مثل خط می‌مونه با این تفاوت که هم طولش ۳ برابر میشه و هم عرضش (به شکل نگاه کنید) پس ما به ۹ قطعه‌ی هم‌اندازه نیاز داریم. و وقتی هم که مکعب میشه، بزرگنمایی هم برای طول و هم برای عرض و هم برای ارتفاع اتفاق افتاده و این دفعه به ۲۷ مکعب نیاز داریم. (به شکل نگاه کنید!) خب این عددهای به دست اومده رو دوباره نگاه کنیم. من توی یک جدولی می‌نویسمشون؛

فکر کنم رابطه ای که بین این اعداد هست رو فهمیدید: ۳و ۹ و ۲۷! یک رابطه که یک تصاعد هندسی هست رسما!

«تعداد قطعه هم‌اندازه برای ساخت شکل جدید = بزرگنمایی به توان بعد شکل»

از روی این رابطه با استفاده از لگاریتم گیری از طرفین میشه بعد را بدست اورد، یعنی «بعد» میشه:

«بعد = لگاریتم تعداد قطعه هم‌اندازه برای ساخت شکل جدید تقسیم بر لگاریتم بزرگنمایی»  

daum_equation_1405194334641اگر n تعداد قطعات و m بزرگنمایی باشه:

ما در حقیقت یک تعریف از بعد ارائه کردیم. بعد خودمتشابهی! خب با این تعریف بریم سراغ محاسبه‌ی ابعاد فرکتال ها؛ 

فرض کنید یک برف‌دانه به این شکل میسازیم که مثل شکل قبل از یک مربع با (با بزرگنمایی ۳) یک مربع بزرگتر که شامل ۹ مربع هم اندازه با مربع اولیه هست به وجود میاد. حالا مربع های کوچیک

snow

 بالایی، چپی، راستی و پایینی مربع کوچیک مرکز رو مطابق شکل حذف میکنیم. اگر همین روند رو ادامه بدیم یک برف دانه ساخته می‌شه! (n روی شکل منظور مرحله‌ی ساخت شکله با n تعداد قطعات کوچکتر اشتباه نگیرید!)

daum_equation_1405194713785

بعد این برفدانه همین جور که میبینید یک عدد بین ۱ و ۲ هست! و اینجاست که دیگه بعد، یک عدد صحیح به دست نمیاد. مندلبرو اسم این بعد رو «ناهمواری» میذاشت که تعریف جالب‌تریه مخصوصا برای اجسامی که دارای برآمدگی هم باشند! چیزی که الان مطرح میشه اینه: معنی این ۱/۴۶۴۹۷ چیه؟ ما میدونیم که یک موجود دو بعدی یعنی اینکه توی صفحه جا میشه و یک موجود یک بعدی یعنی یک خط! پس این عدد بین ۱ و ۲ یعنی چی؟! این به همون ماجرا برمیگرده که وقتی ساختن این شکل رو تا بینهایت ادامه بدیم با یک شکل پر از لبه رو به رو میشیم. در ضمن یادآوری کنم که این فقط یک عدد هست! هر چند مفهوم قشنگی پشتش هست ولی یک عدده که ناهمواری شکل رو مطرح میکنه! به هر حال کاری که ریاضیدان ها بکنند قرار نیست واقعا واقعی باشه 🙂 یک نکته ی دیگه اینکه هیچ وقت مطرح نمی‌شه که «اندازه‌ی یک فرکتال» یا «متوسط اندازه یک فرکتال» چقدره بلکه همیشه ما با همین عدد که بعد غیرصحیح یا ناهمواری  فرکتال هست کار میکنیم! شما امروز میتونید یه عدد به عنوان ناهمواری به کامپیوتر بدید و اون در کسری از ثانیه یک شکلی با اون ناهمواری رو  براتون تولید کنه یا یک شکل دلخواه رو با اون ناهمواری بازتولید کنه! به همین سادگی! تقریبا هندسه فرکتالی پیشرفت زیادی کرد چون سر و کله کامپیوتر پیدا شد. در مورد این توی قسمت آخر بیشتر توضیح میدم!

خب بریم سراغ یه مثال دیگه؛ مثلث سیرپینسکی فرض کنید یک مثلث (متساوی الاضلاع برای قشنگی بیشتر!) داریم. وسط هر ضلعش رو مشخص میکنیم و بهم وصلشون میکنیم تا ۴ تا مثلث جدیدتر ساخته بشه. مثلث وسط رو دور می‌ریزیم. این کارو تا ابد انجام میدم. الان ما یک فرکتال داریم که بعدش ۱/۵۸ هست:
daum_equation_1405196329871
این عدد بیشتر از عدد قبل هست، فکر کنم شکل خودش نشون میده که ناهمواری مثلث سیرپینسکی از برف دانه ای که ساختیم بیشتره!

۳) بعد خود متشابهی فرکتال‌ها از بعد توپولوژیک اونها بیشتره!

این که بعد توپولوژیک دقیقا چیه، چیزیه که از حوصله‌ی این پست خارجه! شاید جداگونه در موردش بنویسم (البته ترجیح میدم امید بنویسه :)) ولی فعلا به عنوان آشنایی، عرض کنم خدمتون،‌همین جوری که ما بعد خود متشابهی رو به صورت تقسیم دوتا لگاریتم تعریف کردیم میشه یه جور دیگه با ادبیات و شاید بهتره بگم ریاضیات خوشگل تری بعد رو تعریف کرد و اون موقع یک سری عدد جدید به دست میاریم. این اعداد در مورد فرکتال ها جوریه که با مقدار خودمتشابهی شون فرق دارند و کمتر از اونها هستند مثلا بعد توپولوژیکی مثلث سیرپینسکی ۱ و بعد خودمتشابهیش (همین جوری که حساب کردیم) ۱/۵۸۵ هست که ۱/۵۸۵ > ۱!

خب جمع بندی کنیم؛ فرکتال ها دارای سه ویژيگی: ۱) خودمتشابهی ۲) دارای بعدخودمتشابهی غیرصحیح و ۳) بعدتوپولوژیکی کمتر از بعد خودمتشابهی هستند! پیشنهاد میکنم ویدیو زیر رو حتما ببینید؛ سخنرانی مندلبرو (پدر هندسه فرکتالی) در تد هست. درست چندماه بعد از این سخنرانی، مندلبرو، پیرمرد مهربان دنیای فرکتال ها به خاطر سرطان لوزالمعده ای که داشت از دنیا رفت. روحش قرین آرامش باد!

 

220px-Arabic_script-04.svgقصد دارم تا توی ۵ تا پست در مورد فرکتال‌ها (برخال ها – fractals) بنویسم. این پست رو اختصاص میدم به یک مقدمه و معرفی در مورد این موضوع:

همه ی ما با شکل هایی مثل دایره، مثلث، مربع، خط راست، چندضلعی ها و … آشنا هستیم، اشکال اقلدیسی که ساده ترین هندسه موجود (هندسه اقلدیسی) رو میسازند و ما به کمک اونها میتونیم یک تقسیم بندی برای اشکال محیط دور و برمون داشته باشیم. ولی حقیقت اینه که طبیعتی که ما اون رو توصیف میکنیم اصلا شکل اقلیدوسی نداره! به عبارت دیگه شکل هایی که توی دنیای واقعی هستند اقلیدوسی نیستند! به قول بنوآ مندلبرو، پدر هندسه فرکتالی:

«ابرها کره نیستند، کوها ها مخروط نیستند،‌ خطوط ساحلی دایره نیستند، پوست درخت صاف نیست و همین طور نور روی خط راست حرکت نمی کند!»

در حقیقت هندسه ای که دنیای اطراف ما رو توصیف میکنه یک هندسه پیچیده تری هست به نام هندسه برخالی یا هندسه فرکتالی. اجازه بدید موضوع رو با یک مسئله اندازه گیری ادامه بدم؛ فرض کنید به عنوان یک گردشگر وارد اصفهان -نصف جهان – شدید و میخواهید که فاصله ی بین پل خواجو تا سی و سه پل رو کنار زاینده رود قدم بزنید. از یکی از بومی های اونجا می پرسید که فاصله ی این پل تا اون پل چقدره و احتمالا جوابی حول و حوش ۲ کیلومتر میشنوید که برای یه قدم زدن، مناسب به نظر میرسه. خب این ۲ کیلومتری که جواب شماست چه جوری اندازه گیری شده؟ قریب به یقین مثل اندازه گیری فاصله دوتا شهر بوده. ولی اگه شما بخواهید دقیق این فاصله رو اندازه گیری کنید، یعنی از روی خطوط ساحلی این کارو انجام بدین بسته به این که واحد اندازه گیریتون چی باشه (چه اندازه ای باشه) جواب های مختلفی به دست میارید. فرض کنید با چند تا خط کش با طول های ۱۰۰، ۵۰ و ۱۰ سانتی متری این کارو میخواهید انجام بدین. چون خطوط ساحلی خم های کج و معوجی هستند، هر چقدر خط کش شما کوچیک تر باشه، خط کش شما نزدیک تر به شکستگی ها میشه و شما دقیق تر اندازه گیری میکنید. نکته اینجاست که با کوچیک و کوچیک تر شدن خط کش (واحد اندازه گیری) عدد به دست اومده بزرگ و بزرگتر میشه. بنابراین دقیق ترین اندازه گیری وقتی هست که طول خط کش به صفر میل کنه و مجموع واحدهای اندازه گیری شما (که حالا تبدیل به نقطه شدند) کاملا بر خطوط ساحلی منطبق بشه. ولی خب یه مشکلی هست و اون اینه که در این صورت عدد شما به بینهایت میل میکنه که خوشایند نیست! یعنی شما باید یک مسیر بینهایت طولانی رو قدم بزنید! نه نگران نباشید، چیزی که شما می پیمایید اون خطوط ساحلی نیست! شما موقع قدم زدن یک سری خط راست بهم پیوسته رو می پیمایید که همون ۲ کیلومتر میشه (خدا رو شکر کنید که دقیقا از روی خطوط ساحلی نمیتونید حرکت کنید . و گرنه هیچ وقت نمی رسیدین!) خب شاید این یکمی برای شما عجیب باشه که در یه جای محدود یه خم با طول بینهایت پیدا شده. خب راستش این مفهوم عجیب،‌ مفهوم هندسه فرکتال ها رو داره میگه!

برای روشن شدن قضیه بذارید یه مثال با شهود ریاضی بیشتری بزنم؛

برف دانه کخ

برف دانه کخ

برفدانه ی کخ! یک مثلث (برای راحتی فعلا متساوی الاضلاع) به ضلع یک رو در نظر بگیرید. خب محیط این مثلث (جمع جبری اندازه ی اضلاع) هست ۳ و مساحت این مثلث طبق رابطه ای که برای مثلث های متساوی الاضلاع وجود داره هست رادیکال ۳ تقسیم بر ۴ ضرب در مربع طول یکی از اضلاع. حالا اگر ما توی هر مرحله این بلا

رو سر مثلث بیاریم که هر ضلعش رو مطابق شکل به سه قسمت تقسیم کنیم، قسمت وسطش رو دور بریزیم و دو قسمت هم طول با اون رو بالا بیاریم

اون موقع محاسبات پایین نشون میده (امیدوارم واضح باشه)‌ که بعد از n مرحله محیط و مساحت به چه عددی میل میکنه:

برای محیط:

محیط برای مساحت:

مساحت

این نشون میده که این شکل که از ابتدایی ترین فرکتال ها هست دارای مساحت محدود ولی محیط نامحدود (بی نهایت) هست. که همون ماجرای اندازه گیری طول خطوط ساحلی از پل خواجو تا سی و سه پل هست.  فکر کنم برای مقدمه کافی باشه!