خیلی وقته که از من پرسیده میشه که اگر بخوایم یادگیری سیستم‌های پیچیده رو شروع کنیم باید چیکار کنیم؟! آیا میشه بیرون از دانشگاه این کار رو انجام داد؟ یا اگر من رشته‌م مثلا کیهان‌شناسی، آمار یا ریاضی هست برام مقدوره که یادبگیرم؟ خب جواب اینه: چرا که نه! اما اینکه یک راه خیلی خاص وجود داشته باشه، راستش وجود نداره. در حقیقت آدم‌های مختلفی به این سوال طی سال‌های گذشته جواب‌های متنوعی دادن؛ مثلا  مارک نیومن یک‌بار در مورد موضوعات مطرح و منابع موجود در Complex Systems: A Survey نوشته. با این حال سعی می‌کنم طرحی برای شروع یادگیری سیستم‌های پیچیده در ادامه ترسیم کنم. از هرگونه نظر، انتقاد یا پیشنهاد از صمیم قلب استقبال می‌کنم، به‌ویژه از طرف متخصصان. راستی  قبل‌تر نوشته‌ای با عنوان «چگونه یک‌ فیزیک‌دان نظری خوب شویم؟» از خِراردوس توفت، نوبلیست، ترجمه کرده بودم.

یکی از کتاب‌های عامه‌پسند برای پیدا کردن درکی از سیستم‌های پیچیده

پیش‌فرض این نوشته اینه که خواننده به حساب دیفرانسیل و انتگرال، معادلات دیفرانسیل و فیزیک پایه مسلط هست و علاقه شدیدی به ورود به حوزه بین‌رشته‌ای داره! اصلی‌ترین پیش‌نیاز برای یادگیری سیستم‌های پیچیده شهامت و حوصله کافی برای ورود به دنیایی تازه و هیجان‌انگیزه! اگر به دنبال کتابی هستین که حس کلی از «سیستم‌های پیچیده» به شما بده نگاه کنید به کتاب «سیری در نظریه پیچیدگی» نوشته ملانی میچل با ترجمه رضا امیر رحیمی.  همین‌طور کورس مقدماتی در Complexity Explorer وجود داره برای این که یک آشنایی کلی از سیستم‌های پیچیده پیدا کنید. لیستی که در ادامه اومده، بسته به هر موضوع، از ابتدایی به پیشرفته مرتب شده و تقریبا سعی کردم ترتیب معنی‌داری برقرار کنم. به این معنی که شما می‌تونید به‌ترتیب موضوعات مطرح شده یادگیری اون‌ها رو شروع کنید و بسته به زمانی که دارین توی هر کدوم عمیق و عمیق‌تر بشین!

۱) جبر خطی و ماتریس‌ها

برای شروع نیاز به مفاهیم‌ و تکنیک‌های جبرخطی دارین. باید بتونید با ماتریس‌ها خوب کار کنید.

  1. کورس جبر خطی Vector and Matrix Algebra by Anthony D. Rhodes
  2. ویدیوهای Essence of linear algebra
  3. کورس و کتاب جبرخطی Gilbert Strang

۲) مکانیک کلاسیک

بخش زیادی از سیستم‌های پیچیده توسط فیزیک‌دانان توسعه داده شده، پس باید با ادبیات ابتدایی فیزیک آشنا بشید!

  1. کورس مکانیک کلاسیک لنرد ساسکیند
  2. کتاب Classical Mechanics: Systems of Particles and Hamiltonian Dynamics; Walter Greiner

۳) آمار، احتمالات و فرایندهای تصادفی

ایده‌های اصلی آمار و احتمالات رو باید بدونید. یعنی هرکسی که در دنیای امروز زندگی می‌‌کنه باید بدونه!

  1. کتاب An Introduction to Random Vibrations, Spectral & Wavelet Analysis by D. E. Newland
  2. کتاب Probability Theory: The Logic of Science by E. T. Jaynes

۴) فرکتال‌ها و مفاهیم مقیاسی

  1. مقدمه‌ای بر هندسه فرکتالی: ویدیو
  2. کتاب Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies by Geoffrey West
  3. کورس Fractals and Scaling by David Feldman
  4. این ویدیو رو ببینید:

۵) فیزیک آماری و پدیده‌های بحرانی

مکانیک آماری رو خیلی خوب باید بدونید! از ایده‌های ابتدایی تا مباحث پیشرفته. مدل آیزینگ رو خیلی جدی بگیرین!

  1. کورس مکانیک آماری لنرد ساسکیند
  2. کورس و کتاب فیزیک آماری ذرات، مهران کاردر
  3. کتاب Statistical Mechanics Entropy, Order Parameters, and Complexity by James P. Sethna
  4. کورس کوتاه  Introduction to Renormalization by Simon DeDeo
  5. کتاب Lectures On Phase Transitions And The Renormalization Group by Nigel Goldenfeld
  6. کتاب David Tong: Lectures on Kinetic Theory

۶) دینامیک غیرخطی و آشوب

  1. کورس Introduction to Dynamical Systems and Chaos by David Feldman
  2. کورس و کتاب Nonlinear Dynamics and Chaos by Steven H. Strogatz
  3. کورس Nonlinear Dynamics: Mathematical and Computational Approaches by Liz Bradley

۷) شبکه‌ها (علم شبکه)

  1. ویدیو «ظهور علم شبکه»
  2. مقاله مروری The shortest path to complex networks by S. N. Dorogovtsev and J. F. F. Mendes
  3. کتاب علم شبکه باراباشی
  4. کتاب Networks: An Introduction by Mark Newman
  5. این ویدیو رو ببینید:

۸) روش‌ها و تکنیک‌های محاسباتی و شبیه‌سازی

  1. کورس پایتون برای همه
  2. کورس پایتون برای پژوهش
  3. کتاب Monte Carlo Simulation in Statistical Physics: An Introduction by Kurt Binder, Dieter W. Heermann
  4. کتاب Complex Network Analysis in Python by Dmitry Zinoviev
  5. کورس Introduction to Agent-Based Modeling by William Rand

۹)  نظریه اطلاعات و محاسبه

  1. کورس Introduction to Computation Theory by Josh Grochow
  2. کتاب Information, Physics, and Computation by Marc Mézard and Andrea Montanari

۱۰) نظریه بازی‌‌ها

  1. کورس Game Theory I – Static Games by Justin Grana
  2. کورس Game Theory II- Dynamic Games by Justin Grana
  3. کتاب Strategy: An Introduction to Game Theory by Joel Watson

۱۱) یادگیری ماشین

  1. کورس Fundamentals of Machine Learning by Brendan Tracey and Artemy Kolchinsky
  2. مقاله مروری A high-bias, low-variance introduction to Machine Learning for physicists
  3. ویدیو Bayesian Inference by Peter Green

به طور کلی، دوره‌های آموزشی Complexity Explorer رو دنبال کنید. موسسه سن‌تافه (سانتافه!)  یک کورس مقدماتی روی پیچیدگی داره. همین‌طور پیشنهاد می‌کنم عضو کانال Complex Systems Studies در تلگرام بشین. فراموش نکنید که اینترنت پره از منابع خوب برای یادگیری ولی چیزی که کمه، همت! در آخر دیدن این ویدیو رو با زیرنویس فارسی پیشنهاد می‌کنم:

 

 

 

 

«در ۱۹۸۱ میلادی، مدل تورم توسط آلن گوت، برای پاسخ به چند مشکل اساسی در نظریه مهبانگ داغ، ارایه شد.»

 

نظریه مهبانگ داغ از جهات زیادی، یک نظریه‌ی موفقیت‌آمیز بوده و هم‌خوانی زیادی با مشاهدات رصدی داشته است که به‌طور خلاصه می‌توان به موارد زیر اشاره کرد:

  • گسترش کیهان
  • وجود تابش زمینه کیهانی و توصیف طیف آن
  • فراوانی عناصر سبک در کیهان(دوران هسته سازی)
  • اینکه سن پیش بینی شده‌ی کیهان، قابل مقایسه با اندازه‌گیری‌های مستقیم انجام شده روی سن اجرام درون آن است
  • و اینکه با وجود داشتن بی‌نظمی‌های موجود در تابش زمینه‌ی کیهانی، میتوان توصیف قابل قبولی برای رشد ساختار در کیهان به وسیله‌ی رمبش گرانشی داشت.

مسأله‌ افق

اما با وجود این موفقیت‌ها، نظریه‌‌‌‌ی مهبانگ داغ نمی تواند به چند پرسش اساسی پاسخ دهد؛ اول آن‌که چرا کیهان در مقیاس‌های بزرگ تا این اندازه همگن و همسانگرد است؟ با نگاه کردن به طیف تابش زمینه‌ی کیهانی می‌توان دریافت که نقاط مختلف آسمان، با دقت زیاد(از مرتبه‌ی یک در صد هزار)، در همه‌ی جهات دارای ویژگی‌های کاملا یکسان هستند. به طور معمول برای آنکه دو جسم شبیه به هم باشند، باید زمانی با یکدیگر در تماس بوده باشند تا اصطلاحا به تعادل گرمایی برسند. به عنوان مثال وقتی یک لیوان چای داغ را در محیط اتاق قرار دهید، پس از مدتی با محیط هم‌دما شده و به تعادل گرمایی می‌رسند. اما دو نقطه‌ در جهت مقابل یک‌دیگر در آسمان که نورشان از دوران واجفتیدگیِ نور و ماده به ما می‌رسد، نمی‌توانند روزی در تماس با هم بوده باشند؛ چرا که نور هر یک، از آن زمان تا به حال در راه بوده تا تنها به نقطه‌ای که ما قرار داریم برسد.

مسأله‌ی افق. فوتون‌هایی که از دو لبه‌ی کیهان به ما می‌رسند، زمان کافی برای این‌که در گذشته به تعادل ترمودیناکی برسند را نداشته‌اند. نگاره از ویکی‌پدیا

حال آن‌که حداقل به همان اندازه زمان نیاز بوده است تا بتواند با نقطه‌ی دیگر برهم‌کنش داشته باشد. البته با انجام محاسبات، می‌توان نشان داد که حتی دو نقطه‌ در فاصله‌ی زاویه‌ای حدود دو درجه در آسمان نیز زمان کافی برای رسیدن به تعادل گرمایی را نداشته‌اند؛ زیرا دو نقطه، باید پیش از دوران واجفتیدگی به تعادل گرمایی رسیده باشند. دوره‌ی واجفتیدگی به دوره‌ای گفته می‌شود که به علت گسترش فضا و در نتیجه کاهش دمای کیهان، انرژی فوتون‌ها به اندازه‌ای کاهش یافته است که از آن پس، فوتون‌ها دیگر با هسته‌های اتم برهم‌کنش نداشته و آزادانه در فضا منتشر شده اند. تا پیش از آن، فوتون‌ها به علت پراکندگی زیاد از هسته‌ها، قادر به طی کردن مسافت‌های طولانی نبودند. بنابراین از آن‌‌جایی که برای برهم‌کنش دو نقطه با یک‌دیگر، نور باید مسافت بین‌شان را بپیماید، نسبت به حالت عادی بعد از این دوره، زمان بیشتری نیاز است تا به تعادل گرمایی برسند. این پرسش که چرا طیف تابش زمینه‌ی کیهانی در همه‌ی جهات تقریبا یکسان است، معروف به مسأله‌ی افق می‌باشد.

مسأله تخت بودن

پرسش دیگر موسوم به مسأله‌ی تخت بودن، در مورد هندسه‌ی کیهان است. طبق مشاهدات رصدی به خصوص تابش زمینه‌ی کیهانی، جهان تقریبا تخت است. در واقع هندسه‌ی فضا ـ زمان با همان هندسه‌ی آشنای اقلیدسی یا به بیان دیگر متریک مینکوفسکی توصیف می‌شود؛ طبق نظریه‌ی نسبیت عام انیشتین، فضا ـ‌ زمان میتواند بسته به توزیع چگالی ماده‌ي (یا انرژی) درون آن، دارای انحنا باشد.

هندسه محلی جهان با توجه به اینکه چگالی نسبی Ω کوچکتر،بزرگتر یا برابر با یک باشد، تعیین می گردد. از بالا به پایین: یک جهان کروی با چگالی بیشتر از چگالی بحرانی (Ω>1, k>0)؛ جهان هایپربولیک با چگالی کمتر از چگالی بحرانی (Ω<1, k<0)؛ و یک جهان تخت با چگالی دقیقا برابر با چگالی بحرانی (Ω=1, k=0). جهان ما برخلاف این نمودار ها، سه بعدی است. نگاره از ویکی‌پدیا

اگر چگالی ماده در جهان کمتر از مقدار معینی موسوم به چگالی بحرانی باشد، انحنا منفی بوده و جهان باز است؛ در واقع کیهان تا ابد به گسترش خود ادامه خواهد داد. اگر چگالی کل ماده از چگالی بحرانی بیشتر باشد، انحنا مثبت بوده و اصطلاحا جهان بسته است؛ به عبارت دیگر، گسترش کیهان پس از مدتی متوقف شده و شروع به رمبش می‌کند تا به نقطه‌ی تکینگی یا مه‌رُمب برسد. در حالتی که چگالی ماده در کیهان با چگالی بحرانی برابر است، با جهانی تخت رو به رو هستیم که انحنای آن صفر می‌باشد. همچنین به نسبتِ چگالی کل کیهان به مقدار چگالی بحرانی آن در هر زمان، پارامتر چگالی گفته می‌شود. طبق تعریف های بالا می‌توان به سادگی دریافت، در صورتی که این پارامتر برابر یک باشد، جهان تخت است و اگر بزرگ‌تر یا کوچک‌تر از یک باشد، به ترتیب انحنای فضا ـ زمان، مثبت و منفی خواهد بود. طبق آخرین داده‌های رصدی، مقدار پارامتر چگالی در حال حاضر بسیار به یک نزدیک بوده و جهان با دقت نیم درصد تخت است. با حل معادلات می‌توان نشان داد که با گذشت زمان، انحراف از تخت بودن افزایش می‌یابد، به‌طوری‌که کوچک‌ترین انحراف از تختی در دوران اولیه‌ی کیهان، خیلی زود به جهانی با انحنای غیر صفر می‌انجامد. بنابراین با توجه به مقدار کنونیِ پارامتر چگالی، هر چه به زمان‌های عقب‌تر برویم، مقدار این پارامتر به یک نزدیک‌تر شده و جهان به تخت بودن، نزدیک و نزدیک‌تر می‌شود.

مسأله تخت بودن و تنظیم ظریف.

مثلا در دوران واجفتیدگی (سیصد و هشتاد هزار سال بعد از مهبانگ)، اختلاف پارامتر چگالی از عدد یک، از مرتبه‌ي یک در صد هزار است. در دوران هسته سازی (یک ثانیه پس از مهبانگ)، این مقدار از مرتبه‌ی یک در یک میلیارد میلیارد بوده و در مقیاس‌های انرژی الکتروضعیف (یک هزار میلیاردم ثانیه بعد از مهبانگ)، کیهان با دقتِ یک در هزار میلیارد میلیارد میلیارد، تخت بوده است!

پرسشی که در اینجا مطرح می‌شود این است که چرا کیهان باید با مقدار اولیه‌ای تا این اندازه نزدیک به تخت بودن، آغاز شده باشد. گویی که کیهان دارای تنظیمی ظریف است. هر اختلاف ناچیزی از این مقدار اولیه، می‌توانسته به تفاوتی فاحش منجر شده و کیهان را به شکلی دیگر درآورد.

مسأله ذرات یادگاره

این دو پرسش یعنی مسأله‌ی افق و مسأله‌ی تخت بودن، توسط یاکوف بوریسوویچ زلدوویچ، در اوایل دهه‌ی ۱۹۷۰ میلادی مطرح شد. وی چند سال بعد، در ۱۹۷۸ میلادی، مسأله‌ی دیگری با عنوان مسأله‌ی تک‌قطبی مغناطیسی را مطرح کرد که در واقع نوع دیگری از همان مسأله‌ی افق است که در فیزیکِ ذراتِ بنیادین مطرح می‌شود. طبق پیش‌بینی نظریه‌های مدرنِ ذرات، یک سری از ذرات یادگاره‌ که در دوران آغازین کیهان تولید شده‌اند، باید در کیهان امروزی نیز وجود داشته باشند. این یادگاره‌ها شامل موارد زیر هستند:

هر چند که در ابتدا، مسأله‌ی تک‌قطبی‌های مغناطیسی که از نتایج نظریه‌ی وحدت بزرگ هستند مطرح شد، اما این بحث برای بقیه‌ی یادگاره‌ها نیز برقرار است. تک‌قطبی‌ مغناطیسی نسبت به ذراتی مانند پروتون‌ بسیار سنگین‌تر بوده و به‌همین‌خاطر باید در زمان‌های نزدیک به ما به صورت غالب در کیهان ما حضور داشته باشند. این در حالی است که تا به امروز هیچ تک‌قطبی مغناطیسی در جهان مشاهده نشده است!

مدل تورم

نگازه از edge.org

آلن گوث، نگازه از edge.org

سه سال بعد، آلن گوت، مدل تورم را برای پاسخ به مسأله‌ی تک‌قطبی مغناطیسی پیشنهاد داد. اما خیلی زود مشخص شد که این مدل می‌تواند پاسخ‌گوی بقیه‌ی پرسش‌ها نیز باشد. ایده‌ی مدل تورم بسیار ساده است؛ جهانِ خیلی آغازین، دست‌خوش گسترشی بسیار بزرگ شده است. در واقع در بازه‌ی زمانی ۱۰−۳۶ تا حدود ۱۰−۳۲ ثانیه پس از مهبانگ، کیهان به صورت نمایی گسترش یافته، به‌طوری که در این بازه‌ی زمانی بسیار کوتاه، از چیزی بسیار کوچک‌تر از یک اتم تا حدود اندازه‌ی یک توپ بسکتبال، افزایش حجم پیدا کرده است! گسترش بسیار سریع کیهان در دوره‌ی تورم، موجب شد تا ذرات یادگاره رقیق شوند؛ بدین ترتیب، مقدار آن‌ها در کیهان امروزی قابل اغماض خواهد بود. هم‌چنین دو نقطه‌ای که در حال حاضر در فاصله‌ي زیاد از یک‌دیگر قرار دارند، در زمان پیش از تورم، قادر بوده‌اند در تماس با یک‌دیگر باشند؛ چرا که تورم باعث دور افتادن آنها از یک‌دیگر با سرعتی بسیار بیشتر از سرعت نور شده است. بنابراین دو نقطه‌‌ی به ظاهر غیر مرتبط با یک‌دیگر در زمان کنونی، پیش از تورم در تعادل گرمایی بوده‌اند. در مورد مسأله‌ی تخت بودن نیز این‌طور می‌توان بیان کرد که به علت کش‌آمدگی زیادِ کیهان در این دوره، هر گونه انحنای اولیه‌ی فضا ـ زمان، به جهانی بسیار نزدیک به جهانِ تخت منجر شده تا آن‌جا که امروز نیز کیهان تقریبا تخت است. تنها در آینده‌ای دور است که بار دیگر پارامتر چگالی از مقدار یک فاصله خواهد گرفت.

علاوه بر موارد یاد شده، امروزه می‌دانیم مدل تورمی، نقش مهمی در توصیف منشأ ساختارها در کیهان و وجود ناهمسانگردی‌های موجود در طیف تابش زمینه‌ی کیهانی دارد؛ همانطور که پیشتر اشاره شد، طیف تابش زمینه‌ی کیهانی کاملا همگن نیست، بلکه افت و خیزهای دمایی ناچیزی از مرتبه‌ی یک در صد هزار، در آن مشاهده می‌شود. احتمالا این افت و خیزها توسط نیروی گرانش تقویت شده‌ و بنابراین مناطقی با چگالی بیشتر و بیشتر به وجود آمده‌اند که هسته‌های اولیه برای اولین ستارگان را تشکیل داده و بعدها منجر به ساختِ ساختارهای بزرگ‌تر مانند کهکشان‌ها، خوشه‌های کهکشانی و نهایتاً ابرخوشه‌ها در کیهان شده‌اند.

نمایش تعمیم نظریه مه‌بانگ توسط مدل تورم

طبق مدل تورم، طی این دوره، افت و خیزهای کوانتومی اولیه در خلأ، با کش‌ آمدن کیهان، تبدیل به افت و خیزهای کلاسیک شدند و ناهمسانگردی‌های موجود در طیف تابش زمینه‌ی کیهانی را به وجود آوردند.

در پایان، باید به این نکته توجه داشت که مدل تورم به عنوان رقیبی برای نظریه‌ی مه‌بانگ داغ نیست، بلکه در دوران خیلی آغازینِ کیهان اتفاق افتاده و نظریه‌ی مهبانگ داغ، برای زمان‌های بعد از این دوره، با تمام موفقیت هایش در توصیف کیهان، صادق است.

 

این روزها در سراسر ایران، برنامه‌های ترویجی زیادی به مناسبت روز جهانی نجوم برپا شده. برنامه‌های مختلفی که با یک جستجوی ساده در گوگل می‌شود از جزئیاتشان باخبر شد. مثل برنامه‌ فردای مرکز علوم و ستاره‌شناسی تهران یا برنامه‌هایی که جمعه در برج میلاد تهران و رصدخانه زعفرانیه برگزار می‌شوند. در مورد مهم بودن نجوم، اهل فن به قدر کافی نوشته‌اند ([۱]، [۲] و [۳]) و به نظرم نیازی نیست با وجود این همه کتاب خوب به زبان فارسی، نگران این باشیم که اینجا در مورد نجوم به‌طور مفصل بنویسیم. از طرف دیگر، ۱۷ سالی است که در ایران مردم به شیوه‌های مختلف مشغول کارهای ترویجی پیرامون نجوم هستند؛ از برنامه‌های مناسبتی نهادهای مختلف مردمی و غیرمردمی گرفته تا برنامه‌های تلوزیونی مثل آسمان شب. وقت آن است که به همه‌ این عزیزان دست‌مریزاد بگویم! دم برادران صفاریان‌پور گرم که بسیاری علاقه‌شان به نجوم را وام‌دار کارهای حرفه‌ای این دو عزیز هستند. تشکر ویژه از دکتر خواجه‌پور به‌خاطر ترجمه کتاب نجوم به زبان ساده. ممنونیم از دکتر میرترابی به‌خاطر سخنرانی‌های فوق‌العاده‌شان. از همه کسانی که این مدت هر قدمی در راه ترویج و روایتگری در علم برداشته‌اند تشکر می‌کنیم. اصلا مگر می‌شود از بابک امین‌ تفرشی به‌خاطر عکس‌های فوق‌العاده‌اش یا از پوریا ناظمی به خاطر نوشته‌هایش تشکر نکرد؟! یا مگر میشود این حجم از فعالیت‌های مجله نجوم طی این مدت را نادیده گرفت؟! قدردان زحمات همه کسانی که راه را هموار ساخته‌اند هستیم. 

اما در کجای راه هستیم؟

علی‌رغم همه تلاش‌های صورت گرفته، به‌عنوان یک دانشجوی فیزیک، از وضع کنونی نجوم چندان دل خوشی ندارم! ۱۷ سال است که مشغول کارهای ترویجی پیرامون نجوم هستیم! ۱۷ سال! وقت آن است که به‌طور جدی بپرسیم، از این همه وقت و سرمایه چه چیزی عایدمان شده؟! چقدر به چشم‌اندازی که تصور می‌کردیم برای نجوم رسیدا‌یم؟ راستی اصلا چشم‌اندازی در کار بوده؟!

جاستین بیبر ( Justin Drew Bieber) (زادهٔ ۱ مارس ۱۹۹۴)؛ خواننده، ترانه‌سرا، آهنگساز، نوازنده، بازیگر و سرگرمیساز کانادایی است. نگاره از ویکی‌پدیا.

بدون تعارف، از نظر من «امروز نجوم در ایران، جاستین بیبر علوم شده است!». مشهور است، دخترها برایش هورا می‌کشند، کیف پسرها پر است از پیکسل‌های نجومی، اردوهای رصدی کماکان از پرطرفدارترین برنامه‌های دانشگاهی است، در بین پربازدیدترین مستند‌ها، مستندات نجومی در صدر هستند، در بین صفحات مختلف اجتماعی، صفحاتی که به نجوم می‌پردازند پر از دنبال‌کننده هستند، برای برخی کارل سیگن از بزرگترین فیزیک‌دانان قرن اخیر است و چه بسیار کسانی که نیل دگراس تایسون را یک منجم بزرگ می‌دانند بی‌آنکه فرق بین نجوم، اخترفیزیک و کیهان‌شناسی را بدانند! این وسط عده‌ای هم خود را صاحب فن می‌نامند بی‌آنکه دو خط مکانیک سماوی بدانند!  خب شاید بگویید این که اشکالی ندارد! عده‌ای هستند که می‌خواهند از آسمان زیبای شب لذت ببرند و با دیدن مستندات علمی به وجد آیند! اصلا به شما چه؟! فرمایش شما متین، ولی این برای ۱۷ سال تلاش برای ترویج علم دستاورد خوبی نیست! برنامه‌های ترویجی برای آشنا کردن مردم کوچه و بازار با علم است. به بیان دیگر، می‌خواهیم به بهانه‌های مختلف، کاری کنیم که مردم در زندگی روز‌مره‌شان روش علمی را به کار برند و قاعدتا بازخوردی از این کار را در سطوح بالاتر جامعه ببینیم! مثلا به‌طور جدی باید بپرسیم که پس از گذشت ۱۷سال ترویج نجوم، چقدر مردم به طالع‌بینی اعتقاد دارند؟! راستی به این دقت کرده‌اید که وقتی مهران مدیری در برنامه دورهمی، هر شب از مهمان خود می‌پرسد متولدین فلان ماه چه ویژگی‌هایی دارند، هیچ واکنشی مبنی بر یاوه‌ای که می‌گوید از مردم دریافت نمی‌کند؟! ۱۷سال تلاش‌کرده‌ایم ولی هنوز در تلگرام دنبال این هستیم که ببینیم اگر دوستمان متولد مردادماه است به چه چیزهایی علاقه دارد! اولین هدف در برنامه‌های ترویجی و روایتگری در علم، بالابردن فرهنگ علمی مردم است که انگار چندان هم در آن موفق نبوده‌ایم! فراموش نکنیم که هنوز کسانی هستند که فکر می‌کنند زمین تخت است و هیچ‌گونه دست‌بردار این ایده نیستند! برایش تبلیغ می‌کنند، سمینار برگزار می‌کنند و هوررررا می‌کشند!

در دانشگاه‌های ما چه خبر است؟

دل‌نگرانی بعدی من به این خاطر است که پس از گذشت تقریبا دو دهه، ما فعالیت‌های حرفه‌ای را به نجوم آماتوری کاهش داده‌ایم! هیچ خبری از فعالیت‌های حرفه‌ای در مقیاس بزرگ نیست! انگیزه‌ی قسمتی از کارهای ترویجی در نجوم این است که افراد علاقمند را به سمت تحصیل و پژوهش در رشته نجوم سوق دهیم. چقدر در این کار موفق بوده‌ایم؟! برای تحصیل نجوم، در مقطع کارشناسی باید وارد رشته فیزیک شوید و اگر در یکی از دانشگاه‌های خوب کشور باشید و خیلی خوش‌شانس، شاید یک درس ۳ واحدی برای نجوم بگذرانید! خب تا اینجای کار زیاد بد نیست. به‌هرحال، همین که در رشته فیزیک هستید اصول اولیه نجوم را یاد می‌گیرید. نکته اینجاست که در چندتا از دانشگاه‌های کشور، گرایش نجوم در مقطع تحصیلات تکمیلی وجود دارد؟! چند استاد در کل دانشگاه‌های ایران هستند که حرفه‌شان نجوم باشد؟! دقت کنید، نجوم، و نه اخترفیزیک یا کیهان‌شناسی! آیا می‌دانستید برخی از اساتید که به‌طور حرفه‌ای کارشان نجوم بوده، در حال کوچ کردن به سمت کیهان‌شناسی یا سایر گرایش‌ها هستند؟! مردم، باور کنید که حال نجوم حرفه‌ای این روزها خوب نیست! راستی، از رصدخانه ملی‌مان چه خبر؟! فراموش نکنید که یکی از هدف‌های برنامه‌های ترویجی این است که پیشرفت علم را به یک دغدغه برای مردم کند! اصلا پس از ۱۷ سال جشن و بزک، آیا مطالبه مردمی برای زودتر به سرانجام رسیدن پروژه رصدخانه ملی وجود دارد؟! ۱۷ سال گذشت، دولت و مجلس برای نجوم چه کرده‌اند؟! فیزیک، علمی تجربی است و آزمایشگاه می‌خواهد، آزمایشگاه نجوم، رصدخانه است! بدون رصدخانه حرفه‌ای خبری از تربیت نسل جوانی از منجمین نیست. مگر یک سری کار با داده‌های وارداتی!

خلاصه این که…

کویر مرنجاب – برنامه رصد اردیبهشت ۹۳

تقریبا دو دهه است که تمرکز عجیبی روی برنامه‌های ترویجی برای نجوم داشته‌‌ایم. علی‌رغم همه تلاش‌ها و خون‌دل‌ها هنوز کارهای زیادی برای انجام دادن وجود دارد. مردم و مسئولین ما هنوز متقاعد نشده‌اند که علم، قدرت‌آفرین است! هنوز با مفهوم توسعه شوخی می‌کنیم! علم را نشناخته‌ایم، هدف دانشگاه‌ را فراموش کرده‌ایم و نیروی انسانی ارزشمند خود را دو دستی صادر می‌کنیم و به جای آن خروار خروار مواد آرایشی وارد کشور می‌کنیم! منجمین حرفه‌ایمان را مجبور به مهاجرت می‌کنیم و نجوم را به عنوان یک تفریح بزک می‌کنیم و به مردم به عنوان یک فعالیت حرفه‌ای در علم نشانش می‌دهیم. بسیاری از علاقمندان به نجوم و حتی خیل زیادی از کسانی که خود را منجم آماتور می‌دانند، پس از ورود به رشته فیزیک شدیدا از رشته فیزیک و نجوم حرفه‌ای متنفر می‌شوند! علتش این است که آن نجوم بزک‌شده، در دانشگاه صورت خود را شسته و اکنون چهره‌ واقعی نجوم برای دانشجوی بیچاره یک چهره خشن و زشت است! نجوم حرفه‌ای را دریابیم!

«النّاسُ ثَلاثَةٌ: فَعالِمٌ رَبّانِىٌّ، وَ مُتَعَلِّمٌ عَلى سَبيلِ نَجاة، وَ هَمَجٌ رَعاعٌ، اَتْباعُ كُلِّ ناعِق، يَميلُونَ مَعَ كُلِّ ريح، لَمْ يَسْتَضيئُوا بِنُورِ الْعِلْمِ، وَ لَمْ يَلْجَاُوا اِلى رُكْن وَثيق. مردم سه گروهند: دانشمند ربّانى، دانشجوى بر راه نجات، و مگسانى ناتوان که به دنبال هر صدایى مى روند، و با هر بادى حرکت مى کنند، به نور دانش روشنى نیافته، و به رکنى محکم پناه نبرده‌اند.» چقدر از هر دسته در جامعه ما وجود دارد؟!

دست همه عزیزانی که طی ۱۷ سال گذشته در توسعه نجوم نقش داشته‌اند را به گرمی می‌فشاریم. اما اکنون باید تلاش کنیم برنامه‌های ترویجی هدف‌مندتری برگزار کنیم!

در سال ۱۹۲۹ ادوین هابل، با کشف جنجالی که انجام داد، درک بشر از جهان پیرامونش را دست‌خوش تغییراتی اساسی کرد. در قرن نوزدهم میلادی، اخترشناسان اجرام سماوی را بسته به این‌که به نظر، شبیه نقطه می‌رسند یا لکه‌ای محو و یا در حال حرکت هستند یا ساکن، به چهار دسته تقسیم و نام‌گذاری می‌کردند:

متحرک ساکن
لکه‌ی محو دنبالهدار سحابی
نقطه‌‌ای سیاره ستاره

در آن زمان تصوری از کهکشان‌های دیگر نبود و همه‌ی جهان قابل مشاهده، محدود به کهکشان راه شیری می‌شد. در این دسته‌بندی، کهکشان‌های امروزی نیز جزو سحابی‌ها به‌شمار آمده‌اند.

در سال ۱۹۱۲ میلادی، وِستو اسلیفر که در پی کشف مواد تشکیل دهنده‌ی چندی از درخشان‌ترین سحابی‌های مارپیچی به‌وسیله‌ی طیف‌سنجی بود، متوجه انتقال در طیف این اجرام شد. این انتقال مربوط به اثر دوپلر بوده و بدین معنی است که جسم مورد نظر نسبت به ناظر در حال حرکت است. اگر این انتقال به سمت طول موج‌های بلندتر باشد، به آن «انتقال به سرخ» گفته می‌شود و جسم در حال دور شدن است. بالعکس، اگر انتقال طیف به سمت طول موج‌های کوتاه‌تر باشد، «انتقال به آبی» گفته می‌شود و جسم در حال نزدیک شدن به ناظر است. از میزان این جابجایی میتوان به سرعت جسم پی برد. اسلیفر با محاسبه‌ی سرعت این سحابی‌های مارپیچی دریافت که آنها با سرعتی بسیار بیشتر از سرعت ستارگانی که قبلا اندازه‌گیری شده بود در حال حرکت بوده و اغلب آنها، در حال دور شدن از ما هستند.

در سال ۱۹۲۳ میلادی، ادوین هابل، ستاره‌شناس آمریکایی، با استفاده از تلسکوپ ۲٫۵ متری هوکر در رصدخانه‌ی ویلسن، متغیرهای قیفاووسی واقع در چندین سحابی مارپیچی که از آن جمله سحابی آندرومدا بود را مورد بررسی قرار داد. (متغیرهای قیفاووسی نوعی از ستارگان متغیر هستند که می‌توان با دانستن دوره تناوب درخشندگی‌شان، فاصله‌ی آنها تا زمین را محاسبه کرد.) هابل دریافت که این فواصل خیلی بیشتر از آنست که بتوانند درون کهکشان راه شیری باشند. درواقع این کشف، اثباتی بود برای این موضوع که کهکشان ما با تمام شکوهش تنها یکی از کهکشان‌های سرگردان در هستی است.

نمودار سرعت برحسب فاصله. Copyright 1929, The Huntington Library, Art Collections and Botanical Gardens

 

دو سال بعد، وی با کمک داده های اسلیفر، نمودار سرعت بر حسب فاصله‌‌ی کهکشان‌ها را رسم کرد و به نتیجه‌ای شگفت‌انگیز رسید: سرعت با فاصله، رابطه‌ای خطی و مستقیم دارد(قانون هابل)؛ درواقع کهکشان‌ها هرچه دورتر باشند با سرعت بیشتری از ما دور می‌شوند و این یعنی جهان در حال انبساط است!

ضریب تناسبی که در قانون هابل وجود دارد، معروف به ثابت هابل یا به بیانی بهتر، پارامتر هابل است. این کمیت جزو مهم‌ترین پارامترهای کیهان‌شناسی است که برای تعیین نرخ انبساط جهان و ویژگی‌های اساسی تحول کیهان نقش ایفا می‌کند. امروزه نیز دانشمندان به دنبال افزایش دقت آزمایش‌ها برای اندازه‌گیری پارامتر هابل هستند تا بتوانند مدل‌های کیهان‌شناسی را بهتر ارزیابی کنند. به عنوان مثال، در ماه ژانویه‌ی امسال، دانشمندان ناسا و اسا(ESA) اعلام کردند که طبق مشاهدات تلسکوپ فضایی هابل، کیهان با سرعتی ٪۵ تا ۹٪ بیشتر از چیزی که انتظار می‌رفت در حال انبساط است.

در سال ۱۶۸۷ میلادی، آیزاک نیوتن، در کتاب معروف خود موسوم به اصول ریاضی فلسفه طبیعی” برای اولین بار بطور مشخص اصل کیهان‌شناسی را مطرح کرد. طبق این اصل، جهان همگن و همسانگرد است؛ به این معنی که اولا جهان در همه‌ی جهات یکسان است(همسانگرد). ثانیا برای هر نقطه‌ای در جهان این ویژگی صدق می‌کند(همگن). در واقع این اصل مبین دیدگاه جهان‌بینی کوپرنیکی است که ما در عالم، حداقل بطور متوسط، هیچ جایگاه خاصی نداریم. امروزه با استفاده از مشاهدات رصدی، علی‌الخصوص تابش زمینه کیهانی، می‌دانیم که این اصل برای مقیاس‌های به اندازه کافی بزرگ، کاملا صادق است.

توصیف انبساط. نگاره از goo.gl/kPQJSA

شاید قانون هابل به نظر با اصل کیهان‌شناسی در تضاد باشد؛ چرا که همه کهکشان‌ها در حال دور شدن از ما هستند و گویی که ما در مرکز جهان قرار داریم. در پاسخ باید گفت که انبساط کیهان نه تنها برای ما، بلکه برای هر نقطه‌ دیگری در جهان اتفاق می‌افتد. برای روشن شدن موضوع، بادکنکی را در نظر بگیرید که مورچه هایی روی آن در حال حرکت هستند. اگر این بادکنک را باد کنیم، هر کدام از مورچه ها اینطور احساس می‌کند که مابقی مورچه‌ها در حال دور شدن از آن هستند. با بیشتر شدن فاصله‌‌ی مورچه‌ها از یکدیگر، اثر انبساط بادکنک بیشتر شده و با سرعت بیشتری از یکدیگر دور می‌شوند.

در سال ۱۹۸۸ میلادی، دو تیم تحقیقاتی که به‌طور هم‌زمان در حال مطالعه بر روی انتقال به سرخِ ابرنواخترهای نوع Ia بودند، به کشفی بزرگ دست یافتند. (ابرنواخترهای نوع Ia نوع خاصی از ابرنواخترها هستند که برای تعیین فواصل کیهانی تا چند صد مگا پارسک مورد استفاده قرار می‌گیرند). آنها هر یک بطور مستقل دریافتند که کیهان، در حال انبساط شتابدار است. درواقع نه‌تنها عالم در حال منبسط شدن است، بلکه سرعت این انبساط نیز در حال افزایش است. به خاطر این کشف بزرگ، جایزه نوبل فیزیک سال ۲۰۱۱ به‌صورت مشترک به سه نفر از نمایندگان این پروژه، به نام‌های آدام ریس، سل پرلموتر و برایان اشمیت، داده شد.

مدل لامبدا-سی دی ام. نگاره از ویکی‌پدیا

تا قبل از کشف این موضوع، کیهان‌شناسان تصور می‌کردند که انبساط جهان کند شونده بوده و رفته رفته از سرعت انبساط کاسته می‌شود تا سرانجام به سمت صفر میل کند. برای جهانی با انبساط تندشونده در چارچوب نظریه نسبیت عام، می‌توان به وسیله‌ یک مقدار مثبت از ثابت کیهان‌شناسی که معادل با انرژی خلا مثبت یا همان انرژی تاریک است، آن را توصیف کرد. این مدل موسوم به «مدل لاندا سی دی ام» می‌باشد. البته مدل‌های دیگری نیز می‌توان در نظر گرفت. با این وجود، این مدل به‌دلیل هم‌خوانی با داده‌ها، تاکنون با اقبال بیشتری روبرو بوده است.

 

در این مقاله سعی شده است تا با مروری کوتاه بر سیر تاریخی کیهان‌شناسی نوین، گوشه‌ای از تلاش‌های کیهان شناسان و فیزیکدانان، برای ارایه‌ی توصیفی از تحول کیهان، نمایش داده شود.

به یاد آنان که راه را هموار ساختند…

آلبرت آینشتین – نگاره از ویکی‌پدیا

در سال ۱۹۱۵ میلادی، آلبرت انیشتین با ارایه نظریه‌ی نسبیت عام، فصلی تازه در علم کیهان‌شناسی رقم زد و در واقع کیهان‌شناسی مدرن را پایه‌ریزی نمود. در آن زمان انیشتین بر این باور بود که عمر کیهان بی‌نهایت است و جهان در طول زمان تغییری نمی‌کند. این درحالی است که جواب‌های معادلات نسبیت عام، جهانی را توصیف می‌کردند که در حال تحول بود. بدین ترتیب انیشتین در مقاله‌‌اش در سال ۱۹۱۷ میلادی، برای توصیف جهان ایستای خود، با فرض برقراری اصل کیهان‌شناسی، عددی ثابت به نام «ثابت کیهان‌شناسی» را در معادلات خود وارد کرد تا این اثر را خنثی کند. طبق اصل کیهان‌شناسی، جهان در مقیاس‌های به‌اندازه کافی بزرگ، همگن و همسانگرد (در همه جهات یکسان) است. البته بعدها با کشف انبساط کیهان، انیشتین اضافه کردن این ثابت در معادلاتش را بزرگترین اشتباهش خواند.

در همان سال، ویلیام دو سیتر جواب دیگری از معادلات را برای جهانی با فضای غیر تخت و خالی از ماده اما شامل ثابت کیهان‌شناسی، ارایه داد. اگرچه ممکن است این مدل غیر واقعی و بی‌اهمیت به‌نظر بیاید، اما جالب است بدانید که امروزه این مدل در نظریه تورم که مربوط به کیهان آغازین است، نقشی اساسی ایفا می‌کند. در مدل دوسیتر جهان به‌صورت نمایی منبسط می شود.

چگونگی انتقال به سرخ و آبی بسته به (به‌ترتیب) دور یا نزدیک شدن منبع. نگاره از ویکی‌پدیا

الکساندر فریدمان (۱۸۸۸-۱۹۲۵)، ریاضیدان و فیزیکدان روسی، در سال ۱۹۲۲ میلادی، مدل دیگری ارایه داد که در واقع می‌توان آن را حد وسطی از مدل انیشتین و مدل دوسیتر دانست. اگرچه این مدل در آن زمان چندان مورد اقبال واقع نشد، اما پنج سال بعد در حالی‌ که فریدمان از دنیا رفته بود، این جواب ها توسط ژرژ لومتر، کشیش و فیزیکدان بلژیکی، بطور مستقل به‌دست آمدند. وی تلاش کرد تا پیش‌بینی‌های این مدل مبنی بر انبساط کیهان را با نتایج رصدی که به تازگی انجام گرفته بود، مرتبط سازد. این مشاهدات حاکی از آن بود که در طیف کهکشان‌های دوردست، اثری موسوم به «انتقال به سرخ» دیده می‌شود که می‌توان آن‌ را در نتیجه‌ی دور شدن کهکشان‌ها و در واقع انبساط کیهان دانست. البته فردی به نام فریتس تسوئیکی نظر دیگری داشت. وی مدلی موسوم به «نور خسته» را پیشنهاد داد که در آن ادعا می‌شد که نور به دلیل برهم‌کنش با موادی که بر سر راهش هستند، مقداری از انرژی خود را از دست می‌دهد و طول موجش افزایش می‌یابد. بنابراین طیف کهکشان‌های دور دست به سمت طول موج‌های بلندتر منتقل می‌شود. امروزه می‌دانیم که این مدل با داده های رصدی مغایرت داشته و فاقد اعتبار است.

در سال ۱۹۳۱ لومتر مقاله‌ای منتشر کرد که در آن ادعا شده بود که در مدل فریدمان، کیهان باید از یک حالت اولیه تکامل پیدا کرده باشد که شامل مقدار بسیار زیادی از پروتون‌ها، الکترون‌ها و ذرات آلفا بوده است که همگی با چگالی از مرتبه‌ی هسته‌ی اتم در کنار یکدیگر قرار داشته‌اند. وی این حالت را «اتم قدیم: Primaeval Atom» نامید. لومتر را می‌توان در واقع پدر نظریه مه‌بانگ دانست. عبارت «مه‌بانگ» را اولین بار فرد هویل در سال ۱۹۴۹ میلادی، هنگامی‌که در یک برنامه‌ی رادیویی بی‌بی‌سی در مورد این مدل صحبت می‌کرد، به حالت طعنه آمیزی بکار برد. اما این تعبیر خیلی زود رایج شده و مورد استفاده قرار گرفت.

گیرنده‌ای که پنزیاس و ویلسون با آن تابش زمینه کیهانی را کشف کردند. نگاره از ویکی‌پدیا

یکی از مباحث داغی که در سال های ۱۹۴۰ میلادی وجود داشت، موضوع منشأ عناصر شیمیایی بود. در سال ۱۹۴۶ جرج گاموف، فیزیکدان هسته‌ای، با الگوگیری از نظرات لومتر مقاله‌ای منتشر کرد مبنی بر این‌که فازهای اولیه‌ی مدل فریدمان می‌توانند محتمل‌ترین مکان برای هسته‌سازی عناصر شیمیایی باشند. گاموف ادعا کرد که اگر در مدل فریدمان به عقب برگردیم می‌توانیم به نقطه‌ای به اندازه‌ی کافی چگال و پر انرژی برسیم که در آن فرآیندهایی غیر تعادلی مربوط به هسته سازی امکان‌پذیر باشند. در همان سال رالف آلفر،‌ دانشجوی گاموف، نیز به او پیوست تا روی محصولات ناشی از این هسته‌سازی کار کند. دو سال بعد گاموف و آلفر به همراه هانس بیته، مقاله‌ای منتشر کردند و در آن به جزییات موضوع پرداختند. اهمیت این مقاله بر این بود که نشان داد اگر عناصر طبیعی منشأیی کیهانی داشته باشند، نیاز به فازی بسیار داغ و چگال در کیهان اولیه ضروری خواهد بود. در همان سال آلفر و رابرت هرمان محاسبات را دقیق‌تر کرده و این بار تحولات کیهان اولیه‌‌ای که در حال انبساط بود هم در نظر گرفتند و به نتیجه‌ای جالب و مهم رسیدند؛ بقایای سرد شده‌ی فازهای داغ اولیه‌، هنوز هم باید در کیهان امروزی وجود داشته باشند. آنها دمای این بقایا را در حدود پنج کلوین پیش‌بینی کردند. امروزه این بقایا با عنوان «تابش پس زمینه کیهانی» شناخته می‌شوند.

طبق محاسباتی که توسط آلفر و هرمان انجام شد، در دوران هسته‌سازی حدود ۲۵٪ از اتم‌های هیدروژن اولیه به اتم هلیوم تبدیل شده و تنها مقدار بسیار ناچیزی (حدود ۰/۰۰۰۰۱٪ )، تبدیل به اتم‌های عناصر سنگین‌تر شدند. این درحالی بود که مشاهدات نشان می‌دادند که مقدار عناصر سنگین در جهان، خیلی بیشتر از مقدار پیش بینی شده است. بدین ترتیب نظریه مهبانگ با مشکل بزرگی برای توجیه میزان اتم‌های سنگین روبرو بود. (البته چند سال بعد معلوم شد که عناصر سنگینی مانند کربن، اکسیژن و آهن، در دل ستارگان پرجرم و انفجارهای ابرنواختری تولید می‌شوند.) این موضوع موجب شد تا در سال ۱۹۴۸ میلادی، فرد هویل، توماس گلد و هرمان بوندی، «نظریه حالت پایدار» را به‌عنوان جایگزینی برای مدل مهبانگ ارائه دهند. در این نظریه ادعا شده است که جهان، هم در فضا و هم در زمان، همگن و همسانگرد است.(اصل کیهان‌شناسی کامل) در واقع جهان، همواره به همین شکل و شمایل امروزی وجود داشته است.

«به یک معنا، شاید به‌توان گفت که نظریه حالت پایدار در شبی شروع شد که بوندی، گلد و من، مشتری یکی از سینماها در کمبریج شدیم. اگر درست خاطرم باشد، اسم فیلم «مرگ تاریکی» بود؛ فیلم دنباله‌ای از چهار داستان از ارواح بود که همان‌طور که چند تن از شخصیت‌ها در فیلم می‌گفتند، به نظر می‌رسید که ربطی میانشان نباشد اما با یک ویژگی جالب که انتهای داستان چهارم به طرز غیرمنتظره‌ای به ابتدای داستان اول مربوط بود. در نتیجه به‌موجب آن، پتانسیل برای یک چرخه‌ی بی پایان وجود داشت. وقتی آن شب سه نفرمان به اتاق‌های بوندی در دانشگاه ترینیتی برگشتیم، ناگهان گلد گفت: چه می‌شود اگر عالم نیز شبیه این باشد!؟ شاید این‌طور تصور شود که حالت‌های بدون تغییر، لزوما ساکن و راکد هستند. کاری که فیلم داستان ارواح برای ما انجام داد این بود که خیلی سریع این تصور اشتباه را از هر سه نفرمان برطرف کرد. می‌توان حالت‌های بدون تغییری داشت که پویا باشند. مانند یک رودخانه‌ی آرام در حال جریان. عالم باید پویا باشد؛ چرا که قانون انتقال به سرخ هابل این را اثبات می‌کند… از این‌جا می‌توان به سادگی دریافت که نیاز است که خلق پیوسته‌ی ماده وجود داشته باشد.»

هویل نرخ خلق ماده را یک ذره در سانتی متر مکعب در هر ۳۰۰۰۰۰ سال، به‌دست آورد. برخلاف بوندی و گلد که رهیافتی فلسفی به نظریه حالت پایدار داشتند، هویل فرضیه خود را از دیدگاه نظریه‌ی میدان بنا نهاد و میدانی به نام «میدان سی: C-Field» را برای خلق ماده در نظر گرفت. این نظریه در همان سال نخست توانست نظر بسیاری از ستاره‌شناسان و حتی مردم عامه را به خود جلب کند. نظریه حالت پایدار از آنجایی برای ستاره شناسان دارای اهمیت بود که می‌توانست توضیح جایگزینی از منشأ عناصر ارایه دهد.

این نگاره، نمایشی هنری از انبساط متریک فضاست که در آن فضا (که شامل قسمت‌های فرضی غیرقابل مشاهده جهان هم هست) را در هر لحظه از زمان را می‌توان با برشی قرصی از نمودار نمایش داد. توجه کنید که در سمت چپ شکل می‌توانید انبساط دراماتیک فضا در دوره تورمی را ببینید. نگاره از ویکی‌پدیا

تا مدتی، کیهان‌شناسان به دو گروه که هریک طرف‌دار یکی از نظریه‌های حالت پایدار یا مه‌بانگ بودند، تقسیم شده بودند. تا آنکه شواهد رصدی‌ای مانند «شمارش منابع رادیویی: the Counts of Radio Sources»، بر اعتبار نظریه مهبانگ افزود و سرانجام در سال ۱۹۶۵ میلادی هنگامی‌که آرنو پنزیاس و رابرت ویلسون بر روی امواج رادیویی کار می‌کردند، توانستند به طور کاملا اتفاقی، تابش زمینه کیهانی که از پیش بینی‌های مهم نظریه مه‌بانگ بود را کشف کنند. در واقع این کشف، مهر تأییدی بود بر نظریه مه‌بانگ که موجب شد تا این نظریه به عنوان نظریه‌ای مورد توافق همگان در بیاد.

البته نظریه مهبانگ قادر نبود تا به بعضی از سوالات اساسی مانند مسئله‌ی افق یا مسئله‌ی تخت بودن جهان و یا مسئله تک‌قطبی‌های مغناطیسی پاسخ بدهد. به همین خاطر در سال ۱۹۸۱ میلادی، آلن گوت، با معرفی مدلی موسوم به «مدل تورم» توانست پاسخگوی این سوالات باشد. مدل تورم ادعا میکند که کیهان در بازه‌ی زمانی بین۱۰−۳۶ تا حدود ۱۰−۳۲ثانیه بعد از نقطه‌ی تکینگی اولیه، دستخوش انبساطی با نرخ نمایی شده است! امروزه با استفاده از ابزارهای دقیق رصدی می‌توانیم شواهدی دال بر وجود دوران تورم را به ویژه در تابش زمینه‌ی کیهانی مشاهده کنیم.

پیشرفت های رصدی و همچنین پیشرفت‌هایی که از لحاظ نظری در زمینه رشد ساختارهای بزرگ مقیاس در اواخر قرن بیستم میلادی صورت گرفت، منجر به نتایج زیر شد:

  • اولا احتمالا به‌مقدار نسبتا قابل توجهی ماده‌ی تاریک غیر نسبیتی (ماده‌ی تاریک سرد) وجود دارد.
  • ثانیا باید یک ثابت کیهان‌شناسی غیر صفر (لامبدا) وجود داشته باشد.

سرانجام این نتایج موجب شد تا مدل لامبدا سی‌دی‌ام: ΛCDM Model، در سال ۱۹۹۵، توسط جرمی اوستریکر و پائول استینهاردت پیشنهاد شود. چهار سال بعد، با کشف این‌که جهان به صورت شتاب‌دار در حال انبساط است، این مدل به عنوان مدل پیشرو مورد توجه قرار گرفته و خیلی زود توسط مشاهدات دیگر نیز تأیید شد.

یک مقدمه اندوهناک

راستش را بخواهید نوشتن از این مسئله در همین شروع کار، برایم بسیار سخت به‌نظر می­رسد. حتی نمی‌­دانم باید از کجا شروع کنم. فکر کنم آخر آخرش چیزی بهتر از یک درد دل ساده به روال نق زدن‌­های معمول از آب در نیاید، اما نق زدن هم گاهی مفید است. دیگر کم کمش این است که آدم خالی می‌­شود. در کمدی الهی دانته می‌­خوانیم که: «ما به دنیا نیامدیم که مانند حیوانات زندگی کنیم، بلکه آمده‌­ایم تا علم و راه حق را دنبال کنیم.» جالب است که ادیبان بسیاری از فردوسی و سعدی و مرحوم شاملوی خودمان گرفته، تا گوته و دانته، همیشه به ضرورت نگرش علمی بشر پرداخته و از آن سخن­‌ها گفته‌­اند. نویسندگان بزرگی هم از راه رسیده‌­اند و دستاورد­های علمی را جان­‌مایه‌ی کارشان قرار داده‌اند و گاه بسیار الهام­‌بخش بوده‌­اند. چه برای کسانی که کار علمی می‌­کنند و چه برای کودکانی که جهان را با نگاه معصومانه و کنجکاوشان جستجو می­کنند. فکر می‌­کنم کودکی همه‌ی هم­‌نسلان ما و پدرانمان با نام ژول ورن عجیبن شده است. شکار شهاب، بیست هزار فرسنگ زیر دریا، سفر به ماه و یا سفر به مرکز زمین. مهم نبود که کتاب را بخوانید یا کارتون آن را در سیمای کودک شبکه یک نگاه کنید! به هر حال جذب زیبایی داستان و در واقع جذب هیجان سفر به جهان‌­های ناشناخته می‌­شدید.

قصه آفرینش (آغازی با مه‌بانگ)

حالا اینکه این چه ربطی به عنوان و درد دل­‌های من دارد، توضیح خواهم داد! از زمان پیدایش­مان بر این سیاره‌ی بی‌­نظیر، تلاش کردیم بهتر بفهمیم و بیشتر ببینیم. مطالعه‌ی طبیعت نیاز ما بوده و هست. هرچه محیط اطرافمان را بهتر شناختیم، با خطراتش بهتر و بیشتر آشنا شدیم و توانستیم منابع­ش را به نفع خودمان استخراج کنیم. از طرفی پس از گالیله و نیوتون، ابزار ریاضیات را به طور سیستماتیک برای مطالعه‌­مان بر روی طبیعت استفاده کرده­‌ایم. پس از دوران طلایی فیزیک، یعنی اواخر قرن نوزده و قرن بیست، دستاوردهای بزرگی بدست آوردیم که نه تنها عطش ما را برای دانستن ارضا نکرد، بلکه متوجه شدیم چقدر جهان ما عجیب‌­تر و مرموزتر از آن است که تصور می‌­کردیم. حالا با ابزار بی‌­نظیر ریاضیات، تجربه‌ی گذشتگان و تلاشی بی‌­وقفه به دنبال پاسخ سوالاتمان در حرکتیم. نظریات کوانتوم و نسبیت، یعنی دو دستاورد مهم و بزرگ ذهن بشر، دریچه‌ه­ایی از صدها سوال پیش رویمان گشوده‌اند. به لطف پیشرفت تکنولوژی، تا اعماق کیهان را رصد می‌­کنیم، دست‌­سازه­‌هایی به سیارات دیگری ازجمله مریخ، زحل و مشتری می‌فرستیم، ذرات با انرژی­‌های بالا را به‌هم برخورد می‌­دهیم و سعی می­‌کنیم نزدیک شویم به لحظات اولیه‌ی آفرینش (مه‌بانگ). چرا که هنوز می‌­خواهیم جهان­مان را بشناسیم. اینکه از کجا آمده‌­ایم؟ چرا وجود داریم؟ جهان­مان چه سرنوشتی خواهد داشت؟ ما، این موجودات کوچک، روی سیاره‌­ای کوچیک، ساخته شده از اتم­‌هایی که روزی در دل ستاره‌ای در کیهان گرم و کوچکتر از آنچه امروز هست تشکیل شده‌­اند، به کمک نیروی اندیشه به دنبال پاسخ این پرسش­‌هاییم. پس علم، این نیاز به دانستن ما را تا اینجا پیش آورده است. هنر هم دیگر نیاز مغز بشر را! ببینید چه زیبایی‌­هایی به این جهان اضافه کرده. مگر می‌­شود آن همه سمفونی و صدای زیبا، نقاشی­‌های بی‌نظیر و تابلو­های فرش را ندید؟

اندوه برای چه؟!

خب با این مقدمه‌ی طولانی بیایید برگردیم به موضوع اصلی. از صحبت‌­های بالا اینطور برداشت می‌­شود که خب پس همه چیز خوب و شاد است. اما نیست! هنر و علم در کنار یکدیگر ترکیب فوق‌­العاده‌­ای تشکیل داده­‌اند. اغلب ما با جنگ ستارگان خاطره داریم. نبرد بین امپراطوری کهکشان و این جور صحبت­‌های مهیج. لابد همه هم فیلم­های آدم فضایی­ها و جنگ دنیاها را دیده‌­ایم و کلی کیف کرده­‌ایم که یک عده بیگانه آمده‌­اند آدم­‌ها را نابود کنند و ما برای نجات سیاره­‌مان تلاش می‌­کنیم. خیلی هم قشنگ و خوب و شیرین است که ما، آدم­‌هایی که تا همان دو دقیقه قبل فیلم حتی سر یک بازی فوتبال بدترین ناسزاها را نثار هم می‌­کنیم، چه برسد به مسائل سیاسی و نفت و جنگ و فقر، در این فیلم‌­ها یک تنه از جان‌گذشتگی می‌کنیم برای نجات سیاره عزیزمان اما در پس ذهنمان می‌­دانیم که فعلا این چیزها هیچ حقیقتی ندارند و صرفا داریم سرگرم می‌­شویم. می‌­دانیم هیچ موجود فضایی تا کنون مشاهده نشده و ناسا کسی را در یخچال‌­هایش در زیر زمین زندانی نکرده و ما مورد حمله‌ی تمدن­‌های غریب نیستیم که بیایند خورشیدمان را بدزدند و ببرند. برای همین هم روی سخن هم اصلا این قسم فیلم‌­ها و کتاب­‌ها نیست. تازه بماند که شاهکارهایی نظیر «میان‌ستاره‌­ای» نولان، به یمن حضور کیپ تورن، از پایه‌ی علمی قویی هم برخوردارند.

درد چیست؟!

درد از آنجا ناشی می‌­شود که عده‌­ای به اسم ادیب، شاعر و یا نویسنده‌ی علمی، به قلمروهایی وارد می‌­شوند که ذره‌­ای تخصص در آن­ها ندارند. خیلی خوشبینانه می‌­شود فکر کرد که صرفا این زمینه‌­های علمی جذاب هستند و هرکسی دلش می‌­خواهد از سر سادگی درباره­‌شان نظر دهد و بنویسد. اما متاسفانه کار به همین یک نظر ساده دادن ختم نمی‌­شود. کانال‌­های تلگرامی، صفحات فیس‌­بوک و اینستاگرام، وبسایت­‌های متعدد و برخی مکان­‌ها در سطح شهر دست به کلاهبرداری علنی و آشکار به نام علم زده‌­اند، و از این راه بسیار پول‌دار هم شده­‌اند. از «اسرار کوانتومی اشرف مخلوقات» صحبت می­کنند، «عرفان­‌های کوانتومی» می‌­سازند و با علم کوانتوم می‌­خواهند افسردگی و روان‌­پریشی را درمان کنند. بسته­‌های درمانی-آموزشی درست کرده­‌اند و ماهیانه حراج­‌های استثنایی میگذارند. این کار کلاه­برداری و دزدی آشکار است. هرگز علم به چنین قلمروهایی وارد نشده است. این گروه‌­ها هرچه هستند و هرکه هستند، قصد و نیت­شان تنها فریب و پول درآوردن از راهی کاملا غیر قانونی(؟!) و غیر اخلاقی­ست. فیزیک کوانتومی حتی برای فیزیکدان‌­ها، هنوز پر از سوال و رمز و راز است. استفاده از دستور زبان سنگین علمی برای پول درآوردن و سود جویی چیزی جز شیادی نیست. گروه دیگری هم به قلمرو نسبیت و کیهان­‌شناسی و نجوم تاخته‌اند و در قرن بیست‌و‌یکم ادعا می‌­کنند که زمین تخت است. ناسا و تمام کشفیات رصدی به ما دروغ می‌­گویند. این‌­ها همه و همه توطئه‌ی غرب است تا ذهن­‌های ما را فاسد کند. حالا اینکه چه نفعی دارد یک کمپانی عظیم مانند ناسا عکس و فیلم­‌های تقلبی بسازد که مغز عده­‌ای را در یک کشور جهان‌سومی آن سوی جهان فاسد کند بماند. این عزیزان هم ادعا می­کنند اصلا ماهواره‌­ای ساخته نشده، جاذبه و نسبیت چرت است، زمین هم تخت است و همه در اشتباه محض هستند

خب این هم یک نوعش است. اما یادمان باشد، برای مطرح کردن خود و یا پرپول کردن جیب‌­هایمان، دست به هر کاری نزنیم. یادمان باشد انسان‌­های بزرگی قرن­‌ها زحمت کشیده­‌اند. علم میوه‌ای نیست که یک شبه به ثمر رسیده باشد. یادمان باشد برای نفع شخصی، روی چه دستاورده‌ایی پا می‌­گذاریم. امروز در کشور ما، دانشجویان رشته­‌های علوم پایه و علوم انسانی، با سختی و مشقت زیاد شبانه‌­روز مطالعه می­‌کنند، بدون داشتن حتی ذره­‌ای امید برای داشتن شغلی با اندک حقوق در آینده. درست نیست با رواج این قسم خزعبلات، تنها امیدشان را با خاک یکسان کنیم. این گروه­‌ها از واژگان زیبای علمی استفاده می‌­کنند، اما مطالب غلطی را گسترش می‌­دهند. به همین دلیل، عنوان این نوشته را خرافه‌ی قرن بیست‌ویک گذاشتم. حقیقتا این مطالب با خرافات تفاوت چندانی ندارد. در جوامع خرافه‌باور با سطح مطالعه و اطلاعات بسیار کم، قطعا کار این انسان­‌ها راحت­‌تر و آسوده­‌تر خواهد بود. شدیدا خواندن کتاب «چرندیات پست مدرن» را به شما پیشنهاد می‌کنم! پیش از اینکه سخن پایانیم را بنویسم، پست اینستاگرامی دکتر فیروز نادری را اینجا به اشتراک می­گذارم که بسیار قابل تامل است؛

Use your Heads — Don’t believe everything you read on Internet, YouTube, Telegram Channel or you hear in Masjed or from your cousin. You are more likely to die in a car crash than be hit by an asteroid on Feb 2019. HAARP is not the cause of Earthquakes in Iran or elsewhere. And, Moon landing was not faked and Earth is not flat and saints don’t live in wells.

و اما سخن پایانی

نگارنده این متن 🙂

می‌­شود به جای باور هر مزخرفی از جانب گروه­‌های معلوم‌­الحال، به کتابفروشی‌­ها رفت و کتاب­‌های علمی معتبر و خوبی که برای فهم عموم نوشته شده ‌است را تهیه کرد. حتی می‌­شود همان کتاب‌­ها را به صورت الکترونیکی هم تهیه کرد و از مطالعه‌­شان روی تبلت و گوشی هم لذت برد. می­شود مجلات علمی مانند نجوم و دانشمند و غیره را خرید و مطالعه کرد، تا هم از چنین موسسات علمی حمایت شود، هم اطلاعات معتبر علمی دریافت کرد. می‌­شود در سمینارها و سخنرانی‌­هایی که هر هفته در گوشه و کنار شهر برگزار می‌­شود استفاده کرد و … . امروز عصر ارتباطات است. پس بیایید اطلاعات معتبر و دقیق بگیریم، تفکر کنیم و از هر لحظه برای یادگیری استفاده کنیم. قطعا نتیجه برای خودمان، فرزندانمان و آینده‌ی مملکتمان درخشان­‌تر خواهد بود تا برای «عرفان کوانتومی» و «اسرار اشرف مخلوقات» و «زمین تخت گرایان». کشور ما قربانی قرن­‌ها خرافه است. بیایید با مطالعه، جلوی رشد این سرطان فکر را بگیریم. این بار هم به جای پایان دادن به نوشته‌­ام با جمله‌­ای از هاوکینگ، فاینمن، اینشتین و یا نیوتون، به نظرم خیلی بهتر است مخلص کلام را با این بیت فردوسی بیان کنم و این نق­نامه و درددل را تمام کنم:

ز دانش بِه اندر جهان هیچ نیست/ تن مرده و جانِ نادان یکی­ست

 

اگر از دنبال‌کنندگان سیتپور هستین لابد با فاینمن تا حالا آشنا شدین. ریچارد فاینمن بدون اغراق یکی از بزرگترین فیزیک‌دانان قرن ۲۰ام و یکی از تاثیرگذارترین فیزیک‌دانان کل تاریخه. پیش‌تر از این، در مورد فاینمن نوشته بودم (۱) (۲) (۳) (۴) (۵). طی این چند روز، دوستان ویدیویی از یکی از مصاحبه‌های فاینمن رو برام فرستادن که ازش می‌پرسن آیا هرکسی می‌تونه فاینمن بشه؟ و فاینمن با خونسردی خاصی می‌گه آره! متن مصاحبه از این قراره:

شما از من می‌پرسی که آیا یه آدم معمولی با سخت درس خوندن می‌تونه چیزهایی که من تصور می‌کنم رو تصور کنه؟ البته! من یه آدم معمولی بودم که سخت درس خوندم. هیچ آدم افسانه‌ای وجود نداره! داستان از این قراره که این جور آدما به این جور چیزا علاقمند میشن و همه چیزای مربوط به اون رو یاد می‌گیرن. اونا هم آدم هستن! توانایی خارق‌العاده‌ای برای درک مکانیک کوانتومی یا تصور  امواج الکترومغناطیس به دست نمیاد مگه از راه تمرین و مطالعه و یادگیری و ریاضیات! پس، اگه شما یه آدم معمولی رو در نظر بگیرین که وقت بسیار زیادی رو وقف مطالعه و فکر کردن و ریاضیات و این جور چیزا می‌کنه. اون موقع اون شخص خب یه دانشمند میشه!

فاینمن، ابرچهره مردمی!

احتمالا هر کسی که قدری فیزیک یا ریاضی خونده باشه، با دیدن این ویدیو کمی جا می‌خوره. واقعا مگه میشه مثل فاینمن شد؟ من نمی‌دونم، ولی خود فاینمن میگه میشه! نابغه‌ها دو دسته هستن. دسته اول، اونایی که اگه مدتی وقت بذاری متوجه کارشون می‌شی و با اینکه کارشون  قابل تقدیره، ولی این حس رو پیدا می‌کنی که اگر کس دیگه‌ای هم وقت کافی صرف اون موضوع کرده بود، می‌تونسته اون نتایج رو به دست بیاره. اما دسته دوم، نابغه‌هایی هستن که وقتی آدم کارشون رو دنبال می‌کنه و ایده‌های بکری که به کار بردن رو متوجه میشه، همه‌ش از خودش می‌پرسه، مگه میشه!؟ آخه چه‌طور به ذهنش رسیده این چیزا! چه‌طور یه نفر تونسته توی این سن و سال این مسیر عجیب و غریب رو دیده باشه! آقای کاتس (Mark Kac) توی مقدمه کتاب Enigmas of Chance گفته که فاینمن از اون دسته‌ای هست که حتی دانشمندان تراز اول هم بهش غبطه می‌خورن! آدم‌هایی که نبوغشون جادوییه! با این وجود، این چیزی نیست که فاینمن در مصاحبه گفته! فاینمن معتقده که هر کسی که تلاش کنه می‌تونه فاینمن بشه! راستش گروه باراباشی سال گذشته نشون دادن که موفقیت در مسیر علمی به شانس هم بستگی داره و صدالبته اینکه وقتی شما شانس بیشتری پیدا می‌کنی که همیشه در حال تلاش باشی و پرکار و پویا! به‌هرحال ما نمی‌تونیم انکار کنیم که کار زیاد و خون جگر خوردن بی‌ثمر می‌مونه، همین‌طور که نمی‌تونیم عظمت جناب فاینمن رو انکار کنیم!

چه کسی محبوبه؟ نابغه‌ترین؟!

چیزی که برای من جالبه اینه که چرا بین همه فیزیکدانان رده بالای قرن ۲۰ام، چهره‌هایی مثل آینشتین، فاینمن و هاوکینگ تبدیل به ابرچهره شدند؟! چهر‌ه‌هایی که نه تنها جامعه فیزیک‌دان‌ها اونا رو ستایش می‌کنه بلکه مردم هم اونا رو می‌شناسن، بهشون احترام می‌ذارن و بهشون به عنوان قهرمان/الگو/اسطوره نگاه می‌کنند! راستی، برای اینکه دانشمندی تبدیل به چهره‌ای مردمی بشه فقط به نبوغ سرشار نیاز داره؟

جواب این سوال منفیه! یقینا در قرن گذشته بزرگانی وجود داشتن که از فاینمن یا هاوکینگ بزرگتر بوده باشن. بزرگانی که حتی دانشجوهای لیسانس فیزیک هم ممکنه با شنیدن اسمشون احساس آشنایی پیدا نکنن! مثلا همین جناب شویینگر که به همراه فاینمن در سال ۱۹۶۵ نوبل QED رو گرفته یا عالی‌مقام دیراک! سوال اینجاست که چرا این فاینمنه که ورد زبان‌هاست و نه جان ویلر (استاد فاینمن)؟! بدون تردید جان ویلر قله‌ای استوار در فیزیک به حساب میاد. (شاید از کم‌ترین دستاورهای جان ویلر این باشه که دو تا از دانشجوهاش نوبلیست شدن: فاینمن در سال ۱۹۶۵ و کیپ ثرون در ۲۰۱۷.) یا مثلا اکثر مردم آینشتین رو به عنوان نمادی از نبوغ میشناسن ولی با ماکس پلانک یا هنری پوانکاره عزیز هیچ آشنایی ندارن چه برسه به کسانی مثل چاندراسخار یا لینوس پاولینگ! یا مثلا آقای بیل‌ گیتس، فاینمن را به خوبی می‌شناسه ولی لابد اسمی از دیوید بهم هیچ موقع نشنیده! پس ماجرا چیه؟!

فاینمن، روایتگر بزرگ علم!

چیزی که فاینمن رو تبدیل به یک نماد و ابرچهره کرده فقط نبوغ سرشار و بی‌نظیرش نیست. به قول فریمن دایسون،

فاینمن در حال گفتگو با TA خود پس از کلاس درس. April 29, 1963. حق نشر متعلق به کلتک: feynmanlectures.caltech.edu

برای اینکه یک دانشمند بتونه تبدیل به یک ابرچهره یا نماد برای مردم بشه، علاوه بر نبوغ زیاد، باید توانایی ارتباط با مردم رو داشته باشه. باید بتونه با مردم حرف بزنه و به زبون خودشون بهشون اتفاقات دنیای علم رو توضیح بده. مردم به امثال آینشتین یا فاینمن با روی خوش نگاه می‌کنند چون مثل خودشون هستن! فاینمن یک بذله‌گو تمام عیار بود، یک دلقک حتی! مردم کسایی که خشک و عصا قورت داده هستن رو دوست ندارن! فاینمن همون‌قدر که دانشمند تراز اولی بود، موقع تدریس یک شومن فوق‌العاده هم بود! همون قدر که دقت علمی در گفتگوهاش داشت، همون‌قدر هم در روایتگری ید بیضایی داشت! مردم قصه‌گوها رو دوست دارن و به قصه‌ها گوش می‌دن. به نظر من، فاینمن بزرگترین روایتگر علم در دو قرن گذشته است!

فاینمن، انسان بود، درد رو می‌فهمید!

فاینمن فرد عاقل و خرمندی بود! فاینمن در مورد مسائل زندگی حرف برای گفتن داشت. حرف‌های درست و حسابی! فاینمن زندگی رو می‌شناخت و سختی‌های زیادی رو طی زندگی تحمل کرده بود. اگر کتاب «حتما شوخی می‌کنید آقای فاینمن!» رو خونده باشین، در جریان بیماری Arline همسر فاینمن هستین. فاینمن، علی‌رغم مشغله‌های کاریش به خاطر پروژه منهتن (پروژه ساخت بمب هسته‌ای)، با تمام وجود از همسرش پرستاری کرد و اجازه نداد که آب توی دلش تکون بخوره! فاینمن همسر جوانش رو خیلی زود از دست داد و این داغ هیچ موقع از دل و ذهن فاینمن بیرون نرفت. ما فاینمن رو به عنوان یک معلم بزرگ فیزیک می‌شناسیم. لکچرنوت‌های فاینمن پرآوازه‌ترین کتاب‌هایی هستن که برای یادگیری فیزیک توی بازار میشه پیدا کرد و از صدقه سر این مجموعه فوق‌العاده ما بعد اجتماعی فاینمن رو به خوبی می‌شناسیم. در مورد بعدی فردی فاینمن، چندسال پیش، مجوعه‌ای از نامه‌های فاینمن منشتر شد به اسم «Perfectly Reasonable Deviations: The Letters of Richard P. Feynman» که جلوه‌های جدیدی از زندگی فاینمن رو به ما نشون میده.

فاینمن باتمام وجود از همسرش پرستاری می‌کرد. درست زمانی که مشغول پروژه بمب اتم بود!

پیشنهاد می‌کنم نامه‌ای که فاینمن پس از مرگ همسرش نوشته رو حتما بخونید! فریمن دایسون میگه پشت تمام شادمانی‌های فاینمن، یک تراژدی نشسته بوده و با تمام شور و نشاطی که مردم از فاینمن سراغ دارن، اون خیلی خوب می‌دونسته که زندگی کوتاهه! فاینمن در سال‌های آخر عمرش از دو سرطان نادر رنج می‌برد: لیپوسارکما و بیماری والندشتروم. بعد از یک عمل جراحی کوتاه برای درمان بیماری والندشتروم، فاینمن در ۱۵ فوریه ۱۹۸۸ تو سن ۶۹ سالگی در مرکز پزشکی یو سی ال ای در گذشت. آخرین کلماتش این بود: «از این که دو بار بمیرم متنفرم، خیلی کسل‌کننده است.» 🙁

فاینمن «انسان» بود، درد رو حس کرده بود و برای فرزندان، دانشجوها و حتی همکارانش یک «راهنمای دلسوز» بود. مجموعه نامه‌های منتشر شده فاینمن، گواه دغدغه‌های فاینمن و احساسش نسبت به مردم اطرافشه. فاینمن به عنوان یک نوبلیست، با تمام مشغله‌های آکادمیک به نامه‌های مردم از سراسر جهان با حوصله جواب می‌داده، برای مردم وقت می‌ذاشته و سعی می‌کرده راهنماییشون کنه! راستش، فاینمن عجیب منو یاد این عبارت از اسرارالتوحید ابوسعید ابوالخیر می‌ندازه: «مرد آن بود که در میان خلق بنشیند و برخیزد و بخسبد و بخورد و در میان بازار در میان خلق ستد و داد کند و با خلق بیامیزد و یک لحظه، به دل، از خدای غافل نباشد.»

حواسمون باشه:

  • در انتها به نظرم باید به این نکته اشاره کنم که فراموش نکنیم که ما در علم به دنبال چهره‌ها نیستیم! علم مستقل از عالمه! افراد مهم نیستن، بلکه حرف مردمه که مهمه. درگیر اشخاص نشیم و از دانشمندا بت نسازیم! نظر ساسکیند در مورد فاینمن رو بشنویم، نگاه کنیم که پس از مرگ فاینمن، شووینگر در رثای اون چی گفت! همین‌طور به ماری‌ گل-مان هم گوش کنیم که میگه: «فاینمن بخشی از وقتش رو صرف پرداختن به قصه‌های می‌کرد که خودش قهرمان اون‌ها بود!»
  • یه نکته جالب دیگه اینه که مشهور بودن لزوما معنای مثبتی نداره! ارنست آیزینگ معروف‌ترین دانشمند در فیزیک آماری به حساب میاد ولی این به این معنا نیست که بزرگترین فرد در این زمینه هم باشه! راستی زیاد دل‌خوش به اسم قضیه‌ها و قانون‌ها هم نباشیم! بخش زیادی از اکتشافات، قضیه‌ها، روابط و قوانین به اسم کسانی معروف شدن که هیچ ربطی به اون قضیه یا قانون ندارن. به‌هرحال روزگار زیاد مطابق میل و اراده ما هم پیش نمیره!
  •  فاینمن عزیز، روحت در آرامش باد.

‌فایل صوتی: ریچارد فاینمن، چهره‌ترین چهره!

—————————————————–

این نوشته رو تقدیم می‌کنم به علی فرنود به خاطر نوشته‌های فوق‌العاده‌ش.