رفتن به نوشته‌ها

سیتپـــــور مطالب

انتگرال لبگ

در شاخه‌ی آنالیز حقیقی، انتگرال ریمانی مفهومی است که در آن به شکلی ارتباط بین یک تابع و مساحت زیر آن را در یک بازه مشخص می‌کند. انتگرال ریمانی کاربردهای فراوانی در علم دارد و البته دچار کاستی‌هایی نیز هست. به منظور رفع کاستی‌های انتگرال ریمانی، ریاضی‌دانان در پی ابداع کردن نظریات انتگرال دیگری برآمدند. یکی از این‌ نظریات، نظریه اندازه‌ و انتگرال لبگ است.

انتگرال ریمانی:

در فضای اعداد حقیقی بازه‌ای چون (a,b) را درنظر بگیرید. انتگرال ریمانی تابع f(x) برروی این بازه، معادل مساحت زیر نمودار تابع است.

مقدار این انتگرال برابر است با:

$ S= \int_{a}^{b}f(x) dx $

ریمان برای محاسبه‌ی مساحت زیر نمودار و معرفی انتگرال ریمانی، از ایده‌ی قسمت‌بندی کردن بازه‌ای که انتگرال بر روی آن محاسبه می‌شود، استفاده کرد.به بیان ریمان اگر بازه‌ها را به قسمت‌های مساوی تقسیم کنیم به‌گونه‌ای که :$ a=x_{0} <x_{1} <… < x_{n} = b $ باشد و $ \Delta x_{i} = x_{i} – x_{i-1}$ . سپس با استفاده از دو مفهوم سوپریمم و اینفیمم (کوچکترین کران بالا و بزرگترین کران پایین) مجموع‌های زیر را تعریف کرد.

$$ \sum_{i=1}^{n}M_{i} \Delta x_{i} = \sum_{i=1}^{n} \sup f(x) \Delta x_{i} $$

$$ \sum_{i=1}^{n}m_{i} \Delta x_{i} = \sum_{i=1}^{n} \inf f(x) \Delta x_{i} $$

یک تابع انتگرال‌پذیر ریمانی است، هرگاه:

$$ \lim_{n\to\infty}\sum_{i=1}^{n} M_{i} \Delta x_{i} = \lim_{n\to\infty}\sum_{i=1}^{n} m_{i} \Delta x_{i} $$

هرگاه دو حد بالا موجود و برابر باشند، تابع انتگرال‌پذیر ریمانی است. انتگرال ریمان در شاخه‌های علم محاسبات را تسهیل کرده است، اما با نارسایی‌هایی مواجه است که در ادامه به آن می‌پردازیم.

۱. انتگرال ریمان، یک انتگرال وابسته به وجود حد است. به این معنی که برای وجود پاسخ انتگرال ریمانی باید دو حد $$ \lim_{n\to\infty}\sum_{i=1}^{n} \sup f(x) \Delta x_{i} $$ و $$ \lim_{n\to\infty}\sum_{i=1}^{n} \inf f(x) \Delta x_{i} $$ موجود باشد. در غیر این صورت، تابع انتگرال‌پذیر نیست.

۲. انتگرال ریمانی به پیوستگی تابع وابسته است. توابعی که دچار ناپیوستگی‌های اساسی باشند، انتگرال‌پذیر نیستند. (توابع تکه‌ای پیوسته انتگرال‌پذیرند.)

۳.انتگرال ریمانی از R به R تعریف شده است. یعنی اگر دامنه انتگرال به جای R ، $R^{2}$ باشد انتگرال ریمانی تعریف نشده است.

انتگرال لبگ و نظریه‌ی اندازه‌ها، کاستی‌های انتگرال لبگ را رفع کرده است و کلاس خاصی از فضای هیلبرت را نیز ساخته است.

اندازه چیست؟

نظریه انتگرال لبگ نیازمند روشی ساختاریافته است که در آن بتواند مفهوم اندازه را معرفی کند. به بیان ساده اندازه تعمیمی از طول، مساحت، و حجم است. بازه‌ی [a,b] را درنظر بگیرید. طول این باز معادل b-a است. حالا دو بازه‌ی کاملا مستقل [a,b] و [c,d] را درنظر بگیرید. به نظر می‌رسد که طول مجموع این دو بازه (b-a)+(d-c) است. اگر بازه‌ها زیرمجموعه‌ی اعداد گنگ باشد چه می‌شود؟ آیا می‌توان به سادگی مفهوم طول را معرفی کرد؟ به نظر می‌رسد این‌جا نیازمند تعاریف دقیق‌تر ریاضی هستیم.

سیگما -جبر

مجموعه‌ای به نام X را درنظر بگیرید. $ \Sigma $ یک مجموعه از زیرمجموعه‌های X است. آن را سیگما-جبر می‌گوییم، هرگاه ویژگی‌های زیر را داشته باشد.

۱. X و تهی عضو سیگما باشند.

۲. اگر E عضو سیگما بود، متمم آن نیز عضو سیگما باشد.

۳.اجتماع تعداد شمارایی از اعضای سیگما، مجددا عضو سیگما باشند.

حال با دانستن تعریف سیگما- جبر به سراغ مفهوم اندازه می‌رویم.

تابع اندازه ، $\mu (X)$،برروی مجموعه‌ی X تعریف می‌شوند که X سیگما-جبر است. این تابع دارای خواص زیر است.

۱. اگر X مجموعه تهی یا تک‌عضوی باشد، اندازه آن صفر است. در غیر این صورت، اندازه آن همواره مثبت است.

۲.اندازه‌ی مجموع دو مجموعه‌ی بدون اشتراک برابر با مجموع اندازه‌های هرکدام از مجموعه‌هاست. یعنی:

$$ \mu(X_{1} + X_{2})= \mu (X_{1}) + \mu(X_{2})$$

هرگاه

$$ X_{1} \cap X_{2} = \phi$$

اندازه لبگ

مهم‌ترین قسمت انتگرال‌گیری لبگ، یافتن اندازه برروی مجموعه‌ای است که روی آن انتگرال اعمال می‌شود. اگر یک مجموعه شامل ناپیوستگی‌های بسیار باشد، باید راهی پیدا کنیم تا بتوانیم اندازه را بر روی این مجموعه‌ تعریف کنیم. حاصل کار اندازه‌ی لبگ است. با یک مثال ساده، انتگرال لبگ را تعریف می‌کنیم. بازه‌ی بسته‌ [a,b] به طول L را در نظر بگیرید. این بازه را می‌توانیم به دو بازه با اشتراک صفر تقسیم کنیم. مجموعه X شامل نقاطی که عضو [a,b] هستند و ‘X (متمم مجموعهX) شامل نقاطی از [a,b] است که در X وجود ندارد. تصویر زیر را نگاه کنید.

مجموعه X و متمم آن

می‌خواهیم اندازه لبگ را بر روی این دو مجموعه تعریف کنیم. بدین منظور، X را با بازه‌های بدون اشتراک$\Lambda_{i}$نشان می‌دهیم. در بیان نظریه مجموعه‌ها، داریم:

$$ \Lambda_{i} \subset [a,b]$$

$$\Lambda_{i} \cap \Lambda_{j} = \phi$$

$$X \subset (\Lambda_{1} + \Lambda_{2} +…)$$

اگر طول بازه $\Lambda_{k}$ را معادل $l_{k}$ بدانیم، از آنجا که طول بازه [a,b] برابر L است، نامساوی زیر صادق است.

$$ 0 \leqslant \Sigma_{k}l_{k} \leqslant L$$

کمترین مقدار $\Sigma_{k}l_{k}$ را اندازه بیرون می‌نامیم. به بیان دیگر :

$$ \mu_{out}(X) = inf (\Sigma_{k} l_{k} )$$

به همین ترتیب، مجموعه‌های $ \Lambda_{k}^{\prime} \subset [a,b]$ را معرفی می‌کنیم.

$$ X^{\prime} \subset (\Lambda_{1}^{\prime} +\Lambda_{2}^{\prime} +…) $$

$$ 0\leqslant \Sigma_{k} l_{k}^{\prime} \leqslant L$$

و اندازه داخل را به فرم $\mu_{in}(X)= L- \mu_{out}(X^{\prime}) = L- inf(\Sigma_{k} l{k}^{\prime})$ معرفی می‌کنیم. ضمنا

$$ 0 \leqslant \mu_{in}(X) \leqslant \mu_{out} (X) $$

زمانی $\mu_{in}(X) =\mu_{out}(X)$ شود، آنگاه $\mu_{in}(X)=\mu_{out}(X)=\mu(X)$ و $\mu(X)$ اندازه لبگ است.

انتگرال لبگ چیست؟

تابع f(x) را به‌گونه‌ای در نظر بگیرید که از بالا و پایین توسط بیشینه و کمینه خود محدود شده است.

$$ 0 \leqslant f_{min} \leqslant f(x) \leqslant f_{max}$$

تابع f(x) را به دنباله‌ی $ {f_{k}} $ تقسیم می‌کنیم به طوری که، $ f_{1}= f_{min}$ و $f_{n}=f_{max}$ باشد. با توجه به تناظر یک به یک بین x و f(x) مجموعه‌های $ X_{i}$ وجود دارند به گونه‌ای که:

$$ f_{k} \leqslant f(x) \leqslant f_{k+1} , x \in X_{k} , 1 \leqslant k \leqslant n-1 $$

برای هر مجموعه $ X_{k} $، اندازه‌ای درنظر می‌گیریم و اکنون می‌توانیم مجموع لبگ را تعریف کنیم.

$$ \Sigma_{k=1}^{n} f_{k} \mu(X_{k}) $$

اگر در $ n\to \infty$ این مجموع همگرا شود، آنگاه می‌توان انتگرال لبگ را تعریف کرد.

$$\int_{X} f d\mu \equiv lim_{max|f_{k}-f_{k-1}| \to 0} [\Sigma_{k=1}^{n} f_{k} \mu(X_{k})]$$

انتگرال لبگ

انتگرال ریمان و انتگرال لبگ

اکنون قصد دارم انتگرال ریمان را به روش انتگرال لبگ تعریف کنم تا بهتر متوجه شباهت‌ها و تفاوت‌های آنها شویم.

تابع f(x) که در بازه‌ی [a,b] تعریف شده را در نظر بگیرید. اگر $X=[a,b]$ را به بازه‌های بدون اشتراک $X_{i}$ تقسیم کنیم، مجموع ریمان به فرم زیر تعریف می‌شود.

$$ \Sigma_{k=1}^{n} f(\xi_{k})\mu(X_{k}) , \xi_{k} \in X_{k}$$

این مجموع به‌گونه‌ای تعریف شده است که هر گاه $ n\to\infty$ برای هر $X_{k}$ ، $\mu(X_{k}) . . . \to 0$ در صورت وجود حد $\lim_{n \to \infty} \Sigma_{k=1}^{n} f(\xi_{k}) \mu(X_{k})$ این مجموع، انتگرال ریمان تابع f(x) بر X است.

اگرچه تعریف مجموع لبگ با مجموع ریمان که در بالا تعریف کردیم، شباهت‌هایی دارد،اما تفاوت‌های اساسی در این دو مجموع مشهود است. در مجموع ریمان، f(x) را در هر نقطه‌ی دلخواه $\xi_{i} \in X_{i}$ درنظر می‌گیریم. اما در مجموع لبگ مقدار f(x) را در هر زیرمجموعه $X_{k}$ درنظر می‌گیریم. به این‌ترتیب برای وجود انتگرال لبگ نیازی به شرط هموار بودن موضعی تابع نداریم. به دو شکل زیر نگاه کنید تا آنچه که اینجا بیان شده است، بهتر مشخص شود.

مجموع ریمان در هر نقطه از تابع تعریف می‌شود.
مجموع لبگ در هر بازه تعریف می‌شود.

ویژگی‌های انتگرال لبگ

۱. انتگرال لبگ یک تابع صفر است، هرگاه اندازه‌ی مجموعه‌ی آن صفر باشد.

۲. انتگرال لبگ یک تابع متناهی است، لذا زیرمجموعه‌ی $X^{\prime}=\{x| f(x)= \pm\infty\}$ وجود دارد به‌طوری که$\mu(X^{\prime})=0$ به بیان دیگر، زمانی که f(x) همگراست، الزاما اندازه مجموعه‌هایی که در آن f(x) واگراست، صفر است.

۳.$\int_{X} f(x) d\mu$ متناهی است و $X^{\prime} \subset X$. اگر $ \mu(X^{\prime}) \to 0$، آنگاه $ \int_{X^{\prime}} f d\mu \to \infty $.

۴. زمانی که f(x) برروی X مقادیر مثبت و منفی را اختیار کند، انتگرال لبگ به صورت زیر تعریف می‌شود.

$$ \int_{X} f d\mu = \int_{X} f^{+} d\mu + \int_{X} f^{-} d\mu$$

$$\int_{X} |f| d\mu = \int_{X} f^{+} d\mu – \int_{X} f^{-} d\mu$$

$$f^{+}(x) = \bigg\{ f(x) \{x: f(x)\geqslant0\} \\ 0 \{x: f(x)< 0\}$$

$$f^{-}(x) = \bigg\{ 0 \{x: f(x)\geqslant0\} \\ f(x) \{x: f(x) < 0\}$$

برابری تقریبا همه‌جا

در قسمت‌های قبل مشاهده کردیم زمانی که اندازه‌ی مجموعه‌ای صفر باشد، آنگاه آن مجموعه دخالتی در انتگرال لبگ ندارد. همین ویژگی منجر به مفهوم «برابری تقریبا همه‌جا» برای توابع اندازه‌پذیر شد. این ویژگی نقش بسیار مهمی در توسعه آنالیز تابعی دارد.

می‌گوییم دو تابع f(x) و g(x) که برروی مجموعه X تعریف شده‌اند، تقریبا همه‌جا با هم برابرند، هرگاه:

$$\mu \{x \in X : f(x) \neq g(x)\}=0$$

فضای $L^{p}$

فضای $L^{p}$، فضایی است که توسط توابع مختلط f(x) ساخته می‌شود. در این فضا $|f|^{p}$ انتگرال‌پذیرلبگ است. اگر p=2 باشد، $L^{2}$ عضوی از فضاهای هیلبرت است. زمانی که $p \neq 2 $ باشد، فضای $L^{p}$ خاصیت ضرب داخلی خود را از دست می‌دهد، اما $L^{p}$ همچنان فضای کامل است.

منابع مفید برای یادگیری نظریه اندازه و انتگرال لبگ:

در دانشکده‌های علوم ریاضی برای یادگیری این مباحث، عمدتا کتاب‌های قدیمی و معروف آنالیز حقیقی معرفی می‌شوند. از آنجا که من فکر می‌کنم با تغییر نسل‌ها، منابع آموزشی نیز باید تغییر کنند کتاب‌هایی را معرفی می‌کنم که اولا در دهه‌ی اخیر تالیف شده‌اند. ثانیا، ادبیات و نحوه‌ی روایت آن با ذهن کسانی که کمتر با ریاضیات مجرد آشنایی دارند، قرابت بیشتری دارد.

  • Functional anlysis for physics and engineering, Shima Hiroyuki 2016
  • A short course on the Lebesgue integral and measure theory, Steve Cheng
  • Elementary introduction to the lebesgue integral. Steve G.Krantz 2018

#شرح_پیچیدگی

در توییتر متخصصان حوزه پیچیدگی با هشتگ #ComplexityExplained در مورد مفهوم پیچیدگی توییت کردند و ماحصل توییت‌ها تبدیل به دفترچه‌ای شد در #شرح_پیچیدگی. دفترچه‌ای برای توضیح مفهوم پیچیدگی بر اساس آرا صاحب‌نظران این حوزه!

شما می‌توانید سایت اصلی این پروژه را با رفتن به این نشانی ببینید:
complexityexplained.github.io

این اثر با مجوز زیر منتشر شده است:
CC BY-NC-ND 4.0

این شما و این نسخه فارسی این دفترچه :

ComplexityExplainedFarsi

«مقدمه‌ای بر بازبهنجارش» هفته پنجم: بازبهنجارش در فیزیک انرژی‌های بالا، نظریه گروه‌ها و نظریه نرخ-اعوجاج

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته پنجم: بازبهنجارش در فیزیک انرژی‌های بالا، نظریه گروه‌ها و نظریه نرخ-اعوجاج

در ابتدای این جلسه کمی در مورد بازبهنجارش در فیزیک انرژی‌های بالا صحبت خواهم کرد و سپس با معرفی کوتاهی از نظریه‌ گروه‌ها، سراغ قضیه Krohn–Rhodes می‌روم. در انتها به این پرسش می‌پردازم که آیا برتری بین روش‌های درشت-دانه‌بندی وجود دارد یا خیر. در قسمت انتهایی نظریه نرخ-اعوجاج (Rate–distortion theory) را مطرح می‌کنم.


ویدیوها

۱) بازبهنجارش در فیزیک انرژی‌های بالا

۲) نظریه گروه‌ها

۳) نظریه نرخ-اعوجاج


تمرین‌ها

به زودی

برای مطالعه بیشتر


اسلایدها

بازبهنجارش-قسمت-آخر

«مقدمه‌ای بر بازبهنجارش» هفته چهارم: مدل آیزینگ

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته چهارم: مدل آیزینگ

مدل آیزینگ، به عنوان معرف‌ترین مدل در فیزیک آماری، یک مدل ساده برای توصیف گذار فاز در مواد مغناطیسی است. این مدل از متغیرهای گسسته (اسپین) به روی یک گراف مشبکه (Lattice) تشکیل شده است. در این قسمت از مجموعه مقدمه‌ای بر بازبهنجارش، نخست مدل آیزینگ را معرفی می‌کنم و سپس به سراغ درشت‌-دانه‌بندی شبکه‌ اسپینی می‌روم. چالش‌های پیش‌رو را مطرح می‌کنم و سرانجام به پدیدارگی جملات مرتبه‌-بالاتر و نقاط ثابت جریان بازبهنجارش می‌پردازم.


ویدیوها

۱) مرور جلسات گذشته و معرفی مدل آیزینگ

۲) درشت-دانه بندی شبکه اسپینی

۳) یافتن نقاط ثابت


تمرین‌ها

به زودی

برای مطالعه بیشتر

برای بیشتر عمیق شدن

شبیه‌سازی مدل آیزینگ


اسلایدها

بازبهنجارش-آیزینگ1

«مقدمه‌ای بر بازبهنجارش» هفته سوم: اتوماتای سلولی

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته سوم: اتوماتای سلولی

یک اتوماتای سلولی شامل یک شبکه منظم از سلول‌های خاموش و روشن است. تحول این سلول‌ها توسط قواعد ثابتی که فقط وابسته به وضعیت قبلی آن سلول و همسایگانش است مشخص می‌شود. در این جلسه ابتدا اتوماتای سلولی را معرفی می‌کنم و به مفاهیمی چون «کامل بودن تورینگ» و «نمودارهای جابه‌جاشوند»  می‌پردازم. سپس سراغ درشت-دانه‌بندی اتوماتای سلولی و مقاله ۲۰۰۴ و ۲۰۰۵ گلدنفلد می‌روم و در نهایت در مورد شبکه‌‌های بازبهنجارش بحث خواهم کرد.


ویدیوها

۱) معرفی اتوماتای سلولی

۲) درشت-دانه بندی اتوماتای سلولی

۳) شبکه‌های بازبهنجارش


تمرین‌ها

به زودی

برای مطالعه بیشتر


اسلایدها

بازبهنجارش-اتوماتای-سلولی5

«مقدمه‌ای بر بازبهنجارش» هفته دوم: زنجیره‌های مارکف

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته دوم: زنجیره‌های مارکف

در این قست به سراغ زنجیره‌های مارکف می‌روم و در مورد درشت‌دانه‌بندی کردن سری‌های زمانی صحبت خواهم کرد. به فضای مدل‌ها و تغییرات پارامترها پس از بازبهنجارش خواهم پرداخت و به نقاط ثابت، کاهش ابعاد فضا و تغییر کلاس‌ها اشاره خواهم کرد.


ویدیوها

۱) سری‌های زمانی و زنجیره‌های مارکف

۲) ریاضیات زنجیره‌های مارکف

۳) مدل بنیادی‌تر برای داده ریز-دانه‌بندی شده


تمرین‌ها

به زودی

برای مطالعه بیشتر


اسلایدها

بازبهنجارش-زنجیره‌های-مارکوف2-4

پیشنهادهایی برای دانشجویان تحصیلات تکمیلی سیستم‌های پیچیده

تجربه من از دوران کارشناسی ارشد سیستم‌های پیچیده در دانشگاه شهید بهشتی چیزهای مختلفی بهم یاد داد. شاید بعضی از این تجربه‌ها به کار شما هم بیاد اگر که به تازگی دوران کارشناسی ارشد یا دکتری خودتون رو در زمینه سیستم‌های پیچیده در یکی از مراکز آموزش عالی شروع کرده باشید.

تا جایی که می‌تونید با سواد بشید.

در هر دانشگاهی، یک سری درس ارائه میشه که شما موظف هستید که بخشی از اون‌ها رو بگذرونید. به نظرم چندان در برابر عناوین اون درس‌ها مقاومت نکنید. این‌که من قراره سیستم‌پیچیده بخونم پس نباید کوانتوم پیشرفته بگذرونیم یا درس ماده چگال پاس کنم یا نظریه میدان به من چه اصلا، حرف‌هایی هست که زیاد شنیده میشه و به نظر من همه‌شون نگاه‌های اشتباهی رو معرفی می‌کنند. تا جایی که میشه سعی کنید از این فرصت‌ها برای یادگیری چیزهای مختلف استفاده کنید. خوبه که آدم یک‌بار برای همیشه خیلی عمیق مکانیک کوانتومی رو یادبگیره و بدونه فیزیک ماده چگال سراغ چه چیزه‌هایی میره. اصلا اشکالی نداره که یک بار با نظریه میدان روبه‌رو بشید؛ اگه الان روبه‌رو نشید شاید دیگه هیچ موقع این فرصت رو پیدا نکنید که این مطالب رو با حوصله یادبگیرید. حواستون باشه سواد آدم‌ها با کتاب‌خوندن و سر کلاس رفتن و تمرین حل کردن به دست می‌آد. وقت زیادی بذارید در ترم‌های اول دوره‌تون برای این‌که باسواد بشید. اگر فکر می‌کنید که استادتون خوب درس نمیده یا به هر دلیلی از کلاسی راضی نیستید سعی کنید از اینترنت استفاده کنید.

مستقل از حرف‌های بالا، یه سری چیزها رو باید خوب بدونید:

برنامه‌نویسی و شبیه‌سازی رو جدی بگیرید.

احتمال زیاد در دوره لیسانس هیچ موقع شما درست حسابی کد نزدید. اما از الان به بعد نه تنها باید زیاد کد بزنید بلکه باید «درست» هم کد بزنید؛ کد شما باید بهینه و خوانا باشه! لطفا به جای غر زدن و بازگو کردن این حقیقت که ای بابا ما قبلا کلاس برنامه‌نویسی نداشتیم و این جور حرفا بچسبید به زندگی علمی‌تون و تلاش کنید که از فرصت‌های پیش اومده برای بهتر شدن استفاده کنید تا بد و بیراه گفتن به زمانه! پیشنهاد می‌کنم با پایتون شروع کنید و بعدا سراغ زبان‌های دیگه برید. گویا زبان‌ علمی آینده،‌ ژولیا است! کورس پایتون برای همه و کورس پایتون برای پژوهش برای شروع خوبه. سعی کنید این مدت جوری کد بزنید که بعد از فارغ‌التحصیلی اگه خواستید از دانشگاه فاصله بگیرید، توی بازار دیتا کار گیرتون بیاد!

عمیق بشید.

بالاخره شما موضوعی خواهید داشت و مسئله‌ای برای پژوهش. تا جایی که می‌تونید در مورد اون حوزه اطلاعات کسب کنید. مطالب پیرامونش رو یادبگیرید، چهره‌های شاخص اون حوزه رو بشناسید،‌کنفرانس‌های مربوط در سراسر دنیا رو دنبال کنید و مراقب مسیر تحول موضوع پژوهشتون باشید. لزومی نداره شما وفادار باشید به جریان‌های اصلی، ولی همیشه جریان‌های اصلی ارزش خودشون رو دارن. مقاله‌های مروری کلیدی رو پیدا کنید. زمانی که مقاله‌ی می‌خونید، سعی کنید گزاره‌ها رو دونه به دونه بفهمید. روابط رو اثبات کنید و شبیه‌سازی‌ها رو انجام بدین خودتون. هیچ موقع خودتون رو گول نزنید!

دانشجوی خوب کارشناسی ارشد بعد از تموم شدن دوره‌ش می‌دونه که کجا باید دنبال موقعیت دکتری باشه. اگه به جای این‌که حرفه‌ای عمل کرده باشین، سر خودتون رو شیره مالیده باشید اون موقع سرتون حسابی بی‌کلاه می‌مونه. اگه هم دانشجوی دکتری در این وضعیت باشه که دیگه وای به حالش!

تماشاچی نباشید!

مثل عمده دانشجوها بی‌تفاوت نباشید! فعال باشید، سوال بپرسید، خودتون و بقیه رو به چالش بکشید. جو گیر نباشید ولی در کنفرانس‌های مختلف شرکت کنید. سعی کنید توی جلسات هفتگی فعالانه شرکت کنید. ژورنال کلاب راه بندازین. با بچه‌هایی که سرشون به تنشون می‌ارزه جمع بشین و هفتگی مقالات مهم رو بخونید. در موردشون بحث کنید، حرف بزنید و تلاش جدی داشته باشید که خودتون رو جزوی از جامعه جهانی بدونید!

این جزئیات هم مهمه:

  • یه سری چیزها هم هست که باید بهشون توجه کنید. مثلا انتظار از شما اینه که دیگه بتونید خوب انگلیسی حرف بزنید و خوب بنویسید. برای همین به فکر باشید! راه‌های مختلفی هم هست، سرچ کنید.
  • نوشتن مهمه. گاهی باید به استاد راهنماتون گزارش بدین، گاهی باید مقاله بنویسید و در نهایت پایان‌نامه خواهید داشت. جوری بنویسید که مردم احساس خوبی از نوشته شما پیدا کنند.
  • یاری ساراماکی نکته‌های جالبی در مورد این چیزها داره، وب‌سایتش رو ببینید. در مورد ارائه دادن هم سعی کنید حرفه‌ای باشید؛ هم از نظر ظاهر و هم از نظر محتوا. این نوشته رو بخونید.
  • تری تائو یک مجموعه نوشته خوب در مورد شروع تحصیلات تکمیلی داره که پیشنهاد می‌کنم بهشون نگاه کنید حتما.
  • قبل از تموم شدن درستون، به دنبال کار باشید.
  • و اینکه حواستون باشه که یک‌سری از کارها رو انجام ندین!