رفتن به نوشته‌ها

سیتپـــــور مطالب

کمی درباره‌ «ارتباط‌‌گری» و «روایتگری» در علم

سوال مهم من این بود که آیا راهی وجود داره که بشه برمبنای اون دیگران رو از فعالیت‌های متخصصان آگاه کرد؟چرا این سوال برام به وجود اومد؟ چون من خیلی در فضای مجازی می‌گردم و مطالب رو دنبال می‌کنم. فضای مجازی پر بود از شایعاتی که پشت سر هم پراکنده میشد، متخصصانی که به جای تعامل و گفت‌وگو، نگاه از بالا به پایین داشتند و مردمی که باور خودشون رو به حرف‌های متخصصان از دست دادند. بخشی از فضای حاکم بر کشور در فضای مجازی بازتاب می‌شد و به نظر هیچ‌ چیزی خوب نبود. من همیشه در دوران دانشجوییم وقتی که پیش میومد و کار ترویج علم میکردم به این فکر می‌کردم که امکانش هست از مسائل خیلی تخصصی هم با مردم حرف زد یا در همین حد که آونگ نیوتون و آونگ موجی به مردم نشون بدیم کافیه؟ این حرف‌ها رو زدم تا بگم که بعد از این‌که دنبال پاسخ سوالاتم گشتم، متوجه شدم که در دنیا افراد زیادی وجود دارند تحت عنوان ارتباط‌ گران علم و البته پژوهشکده‌های زیادی درباره ارتباط‌ گری علم وجود داره که اتفاقا برای همه‌ی سوال‌های من پاسخ داره.

تصویری نمادین از حوزه ارتباط‌گری در علم. از نظر Carsten Könneker. نگاره از ویکی‌پدیا

ارتباط‌ گری علم چیه و هدفش چیه؟ ارتباط‌‌گری علم درواقع ارتباط عمومی بین متخصصان، یا متخصصان و غیر متخصصان مثلا شهروندان درباره موضوعات علمیه. ارتباط‌گران علم موظفند با مردم از اتفاقاتی که در حوزه‌های مختلف علمی می‌افته صحبت کنند. علم رو به معنی ساینس در نظر نگیریم. محدودیتی وجود نداره. ارتباط گری علم طیف وسیعی از علوم پایه تا اقتصاد، مهندسی، پزشکی، جامعه‌شناسی و… رو در برمیگیره. درواقع هر متخصصی میتونه با افراد جامعه چه به صورت مستقیم و بی‌واسطه و یا غیرمستقیم و باواسطه در ارتباط باشه. سال ۲۰۱۴ مقاله‌ای منتشر شد توسط دو نفر از دانشمندان اهل کشور رومانی که در اون مقاله به اهمیت ارتباط‌گری علم اشاره‌هایی کرده بودند. یکی از مواردی که در اون مقاله نام برده بودند این بود که ارتباط‌گری علم باعث افزایش اعتماد عمومی جامعه میشه. درواقع ارتباط‌گری علم فرصت گفت وگو بین مردم جامعه رو به خوبی فراهم می‌کنه و در فضایی که امکان گفت وگو به راحتی وجود داره، امکان رشد شایعه و داده‌های غلط در جامعه کمتر میشه. تابستانی که گذشت رو به یاد بیارید. افزایش نرخ تورم و نرخ ارز چه بر سر روان جامعه آورد؟ من اون روزها هرقدر دنبال یک تحلیل قابل فهم از شرایط اقتصادی از زبان یک اقتصاددان گشتم، چیزی پیدا نکردم. در همین توییتر فارسی تحلیل‌های متفاوت زیاد بود و البته به هیچ کدامشون هم نمی‌تونستم اعتماد کنم. ویدیویی از وزیر قبلی بهداشت درباره‌ی عدم اختصاص بودجه درمانی برای بیماران  اِس اِم اِی در فضای مجازی منتشر شد و واکنش مردم نسبت به این ماجرا واکنش اخلاقی بود. واکنش پزشکان چه بود؟ صادقانه این بود که بیشتر پزشکانِ فعال در توییتر با به سخره گرفتن واکنش‌های مردم، کمترین توضیحی درباره‌ی سلامت عمومی و نحوه‌ی اختصاص منطقی بودجه به درمانِ بیماری‌ها ندادند. مدتی قبل وزیر جوان در توییتی اعلام کرد که برای مردم خبرهای خوشی داره. فردای اون روز با اعلام موفقیت‌آمیز نبودن پرتاب ماهواره‌ی پیام، مردم رو در جریان پرتاب ماهواره قرار داد. عمده‌ی واکنش مردم در توییتر فارسی تمسخر این ماجرا بود. من این‌طوری فکر می‌کنم که عمده‌ی این واکنش‌های تمسخرآمیز به دلیلِ آگاه نبودنِ مردم به اهمیت وجود فناوری در کشوره.

این مثال‌ها رو زدم تا بگم به نظر میاد که ارتباط‌‌گری علم راهی رو جلوی ما قرار میده که بتونیم از دستاوردهای علمی، اهمیت پژوهش، اصولی که برمبنای اون کشور و جامعه اداره میشه با همدیگه صحبت کنیم. آخرای این مقاله یک جمله خیلی دقیق بیان میکنه. میگه کسی که تحصیلات رایگان داشته در کشوری، اخلاقا موظفه مردم رو از کارش آگاه کنه. چون با هزینه‌ی مردم در دانشگاه درس خونده. حالا اگر هم این پیشفرضِ اخلاقی رو در مورد تمام کسانی که تحصیلات رایگان داشتن کنار بذاریم، ارتباط‌گری علم در جامعه منجر به گسترش علم در جامعه میشه. و به سبب این گسترش اتفاق خوبی که میفته بالاتر رفتن سطح آگاهی عمومی‌ه. در جامعه‌ای که مردم هرروز اطلاعاتِ تازه و قابل درکی از اقتصاد، ریاضیات، زیست شناسی، پزشکی و … کسب میکنن،مجالِ اندکی برای سو استفاده افراد فراهم میشه. ارتباط‌ گری علم باعث تقویت اعتماد در جامعه میشه. مادامی که یک متخصص نتونه به زبان مردم باهاشون صحبت کنه و اطلاعاتش رو منتقل کنه، جامعه بهش اعتماد نخواهد کرد.


مادامی که یک متخصص نتونه به زبان مردم باهاشون صحبت کنه و اطلاعاتش رو منتقل کنه، جامعه بهش اعتماد نخواهد کرد.

 فکر کنم الان کمی واضح شد که در ایران چرا هنوز بخش قابل توجهی از مردم رفتن پیش عطار رو به مراجعه به پزشک ترجیح میدن، در مقابل هشدارهای ایمنی توجهی نمی‌کنن و پشت در صرافی‌ها صف می‌کشن. هر حرف شبه علمی و نادرستی رو با یه پسوند کوانتومی باور میکنن، تاریخِ تحریف‌شده رو می‌پذیرند و… حلقه‌ی مفقود همین جاست. عدم ارتباط‌گری علمی. خب الان فکر می‌کنم اهمیت ارتباط‌گری علم تا حدی روشن شد.ارتباط‌گری علم به شیوه‌های مختلفی در جریانه. روزنامه‌نگاری، مستند سازی، روایتگری و سرگرمی و… .

من قصد دارم اینجا کمی درباره‌ی روایتگری (قصه‌گویی) در علم صحبت کنم.در کتاب بهترین قصه‌گو برنده است کمی درباره‌ی معنی قصه‌اندیشی صحبت شده. بخونیم با هم:

روزی روزگاری قبل از اینکه یاد بگیرید نگاه عینی و واقع‌بینانه‌تر داشته باشید، فکر می‌کردید آدم مهمی هستید و اطرافیان‌تان هم آدم‌های مهمی‌اند. احتمالا سوال‌هایی می‌پرسیدید که دیگران را معذب می‌کرد. برای اینکه دچار خودشیفتگی و بی‌ثباتی عاطفی نشوید، شما را فرستادند مدرسه تا یاد بگیرید چه‌طور انسان مفیدی باشید. روش علمی را یاد گرفتید. فهمیدید که آدم مهمی نیستید. در واقع فقط نقطه‌ای هستید بر روی یک منحنی زنگی شکل. اگر خوش‌شانس باشید، نقطه‌ی شما دو درجه از معیار انحراف داشته و بهتان میگویند «بااستعداد» که در اصل خیلی شبیه مهم بودن است. بعد یاد گرفتید هیچ چیزی تا نتوانید آزمایشش کنید و تا نتوانید درستی‌اش را با آزمایش‌های مکرر ثابت کنید، درست نیست. تفکر انتقادی، تحلیل عقلانی و تفکر عینی شما را آماده کرد تا احساسات را کنار بگذارید و تصمیم‌های بهتری بگیرید. از آن زمان تاکنون تصمیم‌های عینی و به دور از احساسات خیلی به دردتان خورده. با استفاده از تحلیل‌های هزینه/ فایده و مدل‌ها و نمودارهای ستونی، می‌توانید درستی ِ چیزی را ثابت کنید و به بقیه نشان دهید که حق با شماست و توصیه‌هایتان درست است. ولی حرف درست دیگر جذابیت چندانی ندارد. مثل یک دانشمند خوب اطلاعاتی جمع کرده‌اید که ثابت می‌کند درست گفته‌اید ولی درست گفتن باعث نمی‌شود دیگران به حرفتان گوش کنند. حتی ممکن است کم‌کم به این نتیجه برسید که همکارانتان هم دو درجه از معیار انحراف دارند منتها در جهت ِ عکس بااستعدادها. درواقع به نظر می‌رسد حرف درست زدن و پیروی دیگران از حرف درست هیچ ربطی به هم ندارند. شما هم مثل بیشتر ما که در قرن بیستم درس خوانده‌اید به این نتیجه رسیده‌اید که ارتباط‌های شفاف، تفکر عینی و تصمیم‌گیری‌های عقلانی در دنیای غیر شفاف و ذهنی‌ای که تکثر عقلانی در آن بی‌داد می‌کند با محدودیت‌هایی مواجه است. زبانِ ذهنی همان زبانِ قصه است. قصه‌گویی کمک می‌کند افراد از جهات مختلف به موضوع نگاه کنند و در نتیجه بتوانند برداشتی را که از واقعیات شما دارند از نو تفسیر کنند یا شکل بدهند.

چند دقیقه فکر کنید که در جایگاه یک متخصصِ تراز اول قرار دارید و قصد دارید مهم‌ترین دستاوردهاتون رو برای عموم مردم که عمدتا کمترین دانشی از تخصصِ شما ندارند، بیان کنید. بهترین راه چیه؟ آیا میشه با مردم از زبان اعداد و ارقام و تخصصی‌ترین اطلاعات سخن گفت؟ آیا این امکان وجود داره که به اندازه‌ی سالهایی که شما تحصیل کردید مردم رو معطل کرد و تمام دانشی که در طی سالهای عمرتون کسب کردید رو به مردم منتقل کنید؟ قطعا جواب منفی‌ه. باید راه مطمئنی پیدا کرد که همزمان به هرکسی خارج از دایره‌ی تخصص شما مفاهیم رو به سادگی و دور از تکلف عالِمانه آموزش داد. راه حلی که به ذهن خیلی از دانشمندان بزرگ تا امروز رسیده قصه‌گویی یا روایتگری در علم‌ه. بالاتر گفتم زبان ذهنی افراد همان زبان قصه است. پس به نظر میاد که اگر مفاهیم علمی رو از پشت نقاب اعداد خارج کنیم و رنگ و بوی قصه بهش بدیم میتونیم اون رو در اختیار هرکسی خارج از دایره‌ی تخصص خودمون بذاریم.


اگر مفاهیم علمی رو از پشت نقاب اعداد خارج کنیم و رنگ و بوی قصه بهش بدیم میتونیم اون رو در اختیار هرکسی خارج از دایره‌ی تخصص خودمون بذاریم.

چند وقت قبل آقای کرولویچ که یک خبرنگار علمیه به جشن دانش‌آموختگی دانشجویان دانشگاه کلتک دعوت میشه. کرولویچ در سخنرانی‌اش شروع میکنه به حرف زدن درباره‌ی اهمیت بیان قصه‌ها در علم.

کرولویچ میگه شما از این دانشگاه فارغ‌التحصیل شدید و میخواهید برای پدربزرگ، مادربزرگ‌تون بگید در این سالها چه کردید، چی میگید؟ آیا باهاشون با کلمات عجیب و غریب و تخصصی حرف میزنید یا تلاش میکنید قصه بگید؟ کرولویچ از ای. او .ویلسون نقل می‌کنه که علم مثل بقیه‌ی فرهنگ بر ساخت قصه‌ها استواره. ما با قصه‌ها زندگی می‌کنیم. کرولویچ میگه که در دنیای امروز، قصه ها با هم رقابت می کنند. یک لحظه تلویزیون رو روشن می‌کنید و آقای کرولویچ داره تمام سعیش رو می‌کنه که سخت‌ترین مفاهیم فیزیک رو برای عموم توضیح بده، و لحظه بعد برنامه ایست نه فقط غیرعلمی که ضدعلم. آقای کرولویچ می‌گه که در دنیای رقابت قصه‌ها، کدوم قصه می خواهید که بمونه و پایدار باشه؟ بعد میگه از این در که رفتید بیرون، برای اون عمه و خاله و مادربزرگ از کوارک و انواع پروتئین که گفتید، یه قصه هم بگید. حرف تون رو با قصه باز کنید و جزییاتش رو با قصه توضیح بدید. اگر نه، قصه‌های زیادی آماده جایگزین کردن قصه‌هایی هستند که شما می تونستید بگید و نگفتید.


علم مثل بقیه‌ی فرهنگ بر ساخت قصه‌ها استواره. ما با قصه‌ها زندگی می‌کنیم.

ترمودینامیک و مکانیک آماری رو جدی‌تر بگیرید!

قبل‌تر برای بچه‌های سال‌های اول، دوم و سوم لیسانس فیزیک، یک سری کتاب و کورس برای درس‌های مختلف معرفی کرده بودم. اما هیچ‌وقت در مورد ترمودینامیک و مکانیک آماری ننوشتم. راستش دلیل اصلیم هم این بود که هیچ کتابی رو پیدا نکردم که اکثر موضوعات رو به خوبی توضیح داده باشه و همین‌طور اون ایده‌های درخشان و جذاب ترمودینامیک رو هم به خوبی مطرح کرده باشه. از طرف دیگه، یه کتاب خوب از نظر من کتابیه که مسئله‌های چالش برانگیز و جدی هم داشته باشه. به همین خاطر همیشه از این‌که پیشنهادی در مورد ترمودینامیک یا مکانیک آماری داشته باشیم دوری کردم.

با این وجود، اکثر صاحب‌نظران معتقدند که ترمودینامیک و مکانیک آماری خیلی مهمه! خیلی! به قول ساسکیند تمام کله‌گنده‌های فیزیک، استادبزرگ فیزیک آماری بودند؛ از آینشتین گرفته تا فاینمن تا خود ساسکیند 🙂 ترمودینامیک پر از مفاهیم نابه که معمولا توی دوره لیسانس پشت حجم انبوه ابزارها مخفی میشه و دانشجوها اون درک لازم رو نمی‌تونند پیدا کنند. برای همین هم کاملا طبیعیه که بچه‌ها از این درس خوششون نیاد. تجربه شخصی خودم از روبه‌رو شدن با ترمودینامیک برای اولین مرتبه لااقل چیز خوبی نبود! بدون تعارف، دانشجوی فیزیک نیومده فقط یه مشت ابزار یادبگیره و سعی کنه مثل یک مهندس فکر کنه. شخصا متنفرم از این‌که درس ترمودینامیک در دانشکده فیزیک به همون شکلی ارائه بشه که در دانشکده شیمی یا مهندسی مواد ارائه میشه! چیزی که توی ترمودینامیک مهمه این نیست که یه ماشین گرمایی با فلان بازده طبق بهمان چرخه کار می‌کنه یا این‌که طی چه سازوکاری میشه فلان‌قدر گرما از این طرف اتاق به اون طرف اتاق منتقل کرد. یعنی این‌ها مهم هستند، ولی چیزهای بسیار مهم‌تری هم وجود داره. چیزهایی که ارزش ترمودینامیک رو به عنوان جامع‌ترین نظریه فیزیک مشخص می‌کنه. فراموش نکنید که ما برای یک پیستون گاز، یک غشا سلولی و یک سیاه‌چاله ترمودینامیک می‌نویسیم.

مفاهیمی مثل انتروپی و اطلاعات امروز معانی خیلی خیلی گسترده‌تری نسبت به قبل پیدا کردن. کلاس خوب ترمودینامیک کلاسی هست که شخص درک درستی از این مفاهیم پیدا کنه. معمولا توی کلاس‌های ترمودینامیک به سادگی از کنار پارادوکس‌های هیجان‌انگیز ترمودینامیک گذشته میشه، در صورتی که تمام بامزگی ماجرا همین پارادوکس‌ها و راه‌های برطرف کردنشونه.

🎶 فایل صوتی «آشوب، پیچیدگی و انتروپی» در کافه فیزیک دانشگاه شهیدبهشتی

با وجود همه چیزهایی که گفتم، به نظر من ترمودینامیک مهمه چون برای اولین بار دانشجوی فیزیک با یک «نظریه موثر» آشنا می‌شه و یاد میگیره که توی فیزیک میشه بدون این‌که جزئیات ریز سیستم رو دونست، در مورد مشاهده‌پذیرهای بزرگ‌مقیاس صحبت کرد. یادآوری کنم که توی ترمودینامیک یک گاز رو به عنوان یک سیستم در نظر می‌گیریم، به عنوان یک «کل» و با سه تا پارامتر دما، فشار و حجم در موردش صحبت می‌کنیم. به عبارت دیگه برامون مهم نیست که این گاز از چه اجزائی ساخته شده و این اجزا با همدیگه چه‌طور و با چه جزئیاتی برهمکنش می‌کنند. کل این سیستم بس‌ذره‌ای رو به کمک سه تا پارامتر که معمولا توسط یک قید مثل معادله حالت بهم وابسته شده‌ توصیف می‌کنیم، نظریه هم به خوبی کار می‌کنه والسلام! به‌همین خاطر اگه فرد این نوع نگاه رو به ترمودینامیک بفهمه اون موقع انتظار می‌ره که درک کنه که چرا یک اقتصاد خرد داریم و یک اقتصاد کلان و ربطشون بهم چیه!

بعدها به‌طور مفصل در مورد مفهوم نظریه موثر خواهم نوشت، انشالله! فعلا با این مقدمه بد نیست که یک سری پیشنهاد برای یادگیری ترمودینامیک و مکانیک آماری داشته باشیم. خوشحال میشم که تجربه‌های شما رو هم بدونم.

به نظرم اگر با مفاهیم پایه آشنایی دارید در حد چیزی که توی کتاب‌های فیزیک پایه در مورد ترمودینامیک نوشته شده اون موقع احتمالا روند زیر می‌تونه به درکتون از ترمودینامیک و مکانیک آماری کمک کنه. توی ویکی‌پدیا هم لیستی از کتاب‌های ترمودینامیک و مکانیک آماری وجود داره.

🎬 داستان پیچیدگی: «چرا بیشتر، متفاوت است؟»

در کنفرانس سار، پاییز ۹۷ که ایده‌ش مشابه با کنفرانس‌های TEDx هست در مورد نظریه پیچیدگی حرف زدم. یک سخنرانی عمومی برای مردم!«داستان پیچیدگی: چرا بیشتر، متفاوت است؟»

🎞 دانلود ویدیو 🔊 دانلود صوت 🔖 اسلایدها 🎬 در آپارات

🔗 فایل‌ها در تلگرام

داستان پیچیدگی: «چرا بیشتر، متفاوت است؟» عباس کریمی، کنفرانس سار

نگاهی بر مسئله تاشدگی پروتئین‌ها

شاید در سال ۱۹۶۲ که ماکس پروتز آلمانی و سر جان کندرو انگلیسی جایزه نوبل شیمی را برای مطالعه در باب پروتئین ها و ساختارکروی‌شان دریافت کردند هرگز تصور نمی‌کردند که دنیای پروتئین‌ها پر از رموز کشف نشده و جذاب باشد. اما اکنون با گذشت بیش از ۵۰ سال از از آن روزها دنیای پروتئین‌ها جذاب تر از چیزی به نظر می‌رسد که دانشمندان بدان فکر می‌کردند. یکی از بحث‌های جالبی که امروز در دنیای علم بسیار هم مورد توجه قرار گرفته‌است، فیزیک پروتئین‌‌هاست به ویژه مساله‌ی تاشدگی پروتئین‌‌ها یا همان پروتئین فولدینگ. تو این پست بنا داریم یکمی بیشتر با اتفاقاتی که توی سلول‌های بدنمون توسط پروتئین‌ها رقم میخوره آشناشویم.

وقتی اسم پروتئین به وسط می‌آید اولین چیزی که به ذهنمان می‌رسد احتمالا گوشت و مرغ و ماهی است. ما گوشت و مرغ مصرف می‌کنیم که پروتئین لازم برای بدن تأمین شود غافل از اینکه مونومر آمینواسیدهای بدنمون قابلیت ساخت بسیاری از پروتئین‌‌ها رودارند. اما یکی از مسائلی که بسیار مورد توجه محققان میان‌رشته‌ای قرار گرفته مساله‌ی پروتئین‌ فولدینگ است. اما چه شد که این مساله مهم شد. اصلاً پروتئین فولدینگ یعنی چه؟ این فرآیند یک فرآیند فیزیکی است که در آن پلیپپتایدها(Polypeptide) که همان پلیمرهایی هستند که از به هم پیوستن آمینواسیدها حاصل می‌شوند، به یک ساختار مشخص سه بعدی می‌رسند. پلیپپتایدها زنجیره‌ای از اسیدهای آمینه هستند و درواقع پروتئین‌ها در آغاز یک ساختار نامشخصی دارند. برای درک بهتر شکل زیر را ببینید که یک پلیپپتاید را قبل و بعد از فرآیند فولدینگ که تبدیل به پروتئین شده است نشان می‌دهد.

https://en.wikipedia.org/wiki/Protein_folding

سه سوال مهم ذهن فیزیک‌دان‌ها رو مشغول کرد و موجب تولد فیزیک پروتئین ها شد.

۱- از نقطه نظر علم فیزیک زنجیره‌ی آمینواسیدها که پروتئین‌ها رو دیکته می‌کنند چه حرفی برای ما دارند، آیا با برهمکنش خاصی روبه‌رو هستیم؟

۲- چطور می‌توان فولدینگ را سرعت بخشید؟

۳- آیا الگوریتم کامپیوتری وجود دارد که بتواند ساختار پروتئین‌ها رو از ترتیب آمینواسیدها پیش‌بینی کند؟

یکی از مهمترین نتایجی که اطلاعات موجودات زنده به ما نشان داده این هست که پروتئین‌ها حرکت‌های گرمایی تصادفی دارند. وقتی صحبت از این حرکت می‌کنیم یعنی مقیاس دیدمون رو کوچک کردیم و میخو‌اهیم ساختار و عملکردی که پروتئین‌ها دارند رو دنبال کنیم. اینجا همون جایی هست که علم بیوفیزیک مولکولی متولد می‌شود. اما براستی پروتئین‌ها چی هستند؟ در علم بیو به ساختار سه بعدی که از هم به پیوستن آمینواسیدهای یک بعدی درست میشه پروتئین می‌گویند. فیزیک مساله کجاست؟ بله درسته رفتار کل سیستم مجموع رفتار اجرا نیست. پس یک سیستم پیچیده روبه‌روی ماست. همه و همه مارو به یک سوال رهنمون می‌کند. چطور می‌توان ساختار پروتئین‌ها رو بر اساس مفاهیم فیزیکی توصیف کرد؟ رمز پاسخ چیزی نیست جز اونی که تو سلول‌های بدنمون داریم. دو ویژگی مهم سلول‌های بدنمون که در پروتئین‌ها هم می‌بینیم. پیچیدگی و عدم تقارن اولین راهنمای ما برای مطالعه‌ی فیزیک پروتئین‌ها هستند. اطلاعات موجود در این زمینه نشان می‌دهد رفتار پروتئین‌ها گاهی بسیار پیچیده‌تراز آن چیزی هست که دانشمندان قبلا پیش‌بینی می‌کردند. نگاهی کوتاه بیندازیم بر نحوه توصیف پروتئین‌ها:

www.eb.mpg.de

همانطور که در شکل می‌بینید ساختار کلی به ۴ دسته تقسیم می‌شود که ساده‌ترین آمینواسیدها هستند و پیچیده‌ترین ساختار چهارتایی که از به هم پیوستن زنجیره‌ی پلیپپتایدها تشکیل می‌شود. اما این جمع شدن چگونه است؟ آیا یک جمع ساده یا یک حرکت جمعی پیچیده؟

امامیخواهیم برگردیم به سه سوالی که در بالا پرسیدیم:

۱– چه ارتباطی بین فیزیکی که ما آموختیم و تاشدگی پروتئین ها وجود دارد؟ بهتره این سوال رو طوردیگری بپرسم. چه مکانیزمی یا فرآیندی وجود دارد که بتواند هدایتگر عمل فولدینگ باشد؟ حالا میتوانیم سوالمون روکمی فیزیکی‌تر کنیم. چه نیرو یا نیروهایی می‌توانند موجب تاشدگی و ایجاد ساختار سه بعدی پروتئین‌ها شوند. شاید شگفت‌انگیز به نظر بیاید که بانک اطلاعاتی پروتئین‌ها امروزه وجود حدود ۸۰۰۰۰ هزار ساختار پروتئینی رو اعلام می‌کند که این بسیار شگفت‌انگیزاست. ساختار پروتئین‌های آلفا و بتا در بین خودشون پیوند هیدروژنی دارند و این پیوند وظیفه حفظ ساختار سه بعدی رو دارد.

همچنین در ساختار برخی پروتئین‌ها برهمکنش واندروالسی وجود دارد. جالبه که بدونید پروتئین‌های تاشده به شدت در هم‌پکیده هستند و به نوعی ساختار تنگ‌پکیده‌ای که از فیزیک حالت جامد میشناسیم رو تداعی می‌کنند. مانند بسیاری دیگر از پلیمرها در انتخاب همسایه‌هاشون ترجیح فضایی دارند. این یعنی هر مونومر آمینواسیدی ممکن است متصل شدن به یک مونومر خاص رو به مونومری دیگر برای تشکیل ساختار پروتئینی رو ترجیح بدهد. پس می‌توانیم بگوییم با یک شبکه روبه‌رو هستیم. بسیاری از آمینواسیدها قابلیت جذب و دقع همدیگر را دارند و این به خاطر برهمکنش الکتروستاتیکی هست که در بین آن‌ها وجود دارد. مجموعه‌ای از این نیروها و بسیاری عوامل خارجی دیگر رو تحت عنوان نیروهای میدانی در فیزیک پروتئین‌ها یاد می‌کنند که این اجازه رو به ما می‌دهند تا برهمکنش، دینامیک، نحوه اتصالات و در کل اتفاقاتی که بین پروتئین‌ها جاری است را با مفاهیم فیزیکی توصیف کنیم. نکته جالب اینکه شناخت بسیاری از خواص آماری و ترمودینامیکی پروتئین‌ها هنوز جزئی از مسائل باز فیزیک هستند.

۲- در سال ۱۹۶۸ این سوال پیش آمد که آمینواسیدها علی رغم انتخاب‌های بسیاری که دارند چرا در کسری از میکروثانیه زنجیره خود را پیدا می‌کنند و هیچگاه دنبال یافتن و کاوش بیشتر سایر زنجیره‌های دیگر نیستند. این سوال منجر به انجام آزمایش‌های بسیاری بر روی حرکت‌شناسی پروتئین‌ها شد به طوری که در این آزمایشات اعلام شد می‌توان مسیر فولدینگ پروتيئین‌ها رو پیدا کرد. اما دشواری‌های بسیاری پیش روبود. اینکه در ابعاد مولکلول باید دربازه‌های زمانی میکروثانیه از حرکت پروتئین‌ها عکس گرفت. پس طبعا به ابزار قدرتمند آزمایشگاهی برای این کار نیاز داریم. اما دنبال چه چیزی هستیم. آیا جز اینکه میخواهیم به یک سری خواص این پلیمرها پی ببریم. بله ترمودینامیک آماری پلیمرها در اینجا متولد شد. مطالعه‌ی آنتروپی در زنجیره‌ی مونومرها و چشم انداز وضعیت انرژی آمینواسیدها ابزار کلیدی ما در شناخت خواص این دسته مواد هستند. اما آیا با همه‌ی این تفاسیر مکانیزم تاشدگی را شناخته‌ایم. اصولا منطورمان از مکانیزم چیست؟ ما به دنبال تحول زمانی آمینواسیدها هستیم تا زمانی که تبدیل به پروتئین‌های حلال می‌شوند. اتفاقات بسیاری ممکن است در این مسیر بیفتد، عوض شدن اتصالات آمینواسیدها، افزایش و کاهش پایداری ساختارها، تغییر مسیر برخی مونومرها با اعمال قیدهایی مثل دمای محیط واینکه در زنجیره‌ی تشکیل ممکن است برخی مسیرها پرجمعیت تر باشند، پس نمودی از شبکه را بازهم می توانیم احساس کنیم. در کل میخواهم بگویم با یک سیستم کاملا غیرتعادلی روبه‌رو هستیم. اما راه حل چیست؟ بله حدس شما درست است. آزمایشگاه، دریافت اطلاعات و پردازش اطلاعات با استفاده از کامپیوتر.

۳- اما شاید بزرگترین چالش طراحی کد کامپیوتری جهت پیش‌بینی ساختار سه بعدی پروتئین باشد. برای این کار جدای از شناخت نسبی کار با کامپیوتر و اطلاعات پروتئین‌ها باید مکانیزم بیولوژیکی آن‌ها رو هم درک کنیم. برای مثال باید درک دقیقی از برهمکنش بین آمینواسیدها داشته باشیم تا بتوانیم آن‌ها رو به بهترین شکل مدل کنیم. خوشبختانه در این زمینه پیشرفت‌های بسیاری انجام شده و مهمترین منبعی که میتواند اطلاعات مفیدی در اختیار ما قرار بدهد وبسایت ncbi هست. یکی از مهمترین اتفاقاتی که بعد از سال 1972 افتاد این بود که متخصصان متوجه شدند که ویروس‌ها و باکتری‌های حامل آلودگی فقط در بین DNA و RNA گذار نمی‌کنند. بلکه عامل شیوع برخی بیماری‌ها می‌تواند پروتئین‌های فولد نشده باشند مثل دیابت نوع دو و همچنین آلزایمر و پارکینسون. با توجه به شبیه‌سازی های اخیر در مورد مدل کردن بیماری‌ها می‌توان گفت این نوع دیتا و مدل‌سازی می‌تواند موضوع جالبی برای تحقیق و پژوهش باشد. در نهایت میتوانیم بگوییم، هدف پیش‌بینی ساختار نهایی از زنجیره‌های اولیه مونومر هاست. از موضوعات دیگر دینامیک پروتئین‌ها، رفتار جمعی به خصوص در پروتئین‌های نامنظم و همچنین تحلیل شبکه‌های مختلف که از برهمکنش پروتئین‌ها و آمینواسیدها می‌باشند هستند.

مسائل حل نشده:

مسائل بسیار زیادی در این زمینه و به خصوص بیوفیزیک مولکولی هست که هنوز باز هستند و قابلیت پرداخته شدن دارند. بنا داریم به چندتایی از اونها اینجا اشاره کنیم.

– چشم انداز تجربی هنوز از وضعیت تبادل انرژی بین پروتئین‌ها وجود ندارد.

– هنوز مدل دقیقی برای پیش‌بینی رفتار پروتئین‌ها ارائه نشده است که دقت بالایی داشته باشد.

– هنوز به طور ریاضی فهمی از رفتار میکروسکوپی آمینواسیدها به طور دقیق حاصل نشده است.

– پیش‌بینی برای انبوه‌شدگی پروتئین‌ها که در ایجاد برخی بیماری‌ها مهم است هنوز ارائه نشده است.

– هیچ الگوریتمی هنوز نمی‌تواند به صورت دقیق وابستگی و همبستگی بین مولکول‌‌های کوچک دارو‌ها رو با پروتئین‌ها تبیین کند.

-به طور سیستماتیک هنوز شبکه‌ای از رفتارآمینواسیدها و پروتئین‌ها تدوین نشده است.

– رفتار جمعی پروتئین‌ها در مقیاس‌های مختلف می‌تواند نتایج متفاوتی داشته باشد که هنوز به طور دقیق بررسی نشده است.

این ایده ‌ها و بسیاری ایده‌های دیگر همواره می‌توانند فرصتی خوب را برای انجام پروژه‌های علمی مختلف فراهم کنند که البته با توجه به بعد آزمایشگاهی کار برای شروع هر پروژه باید بودجه کافی و متناسب با آن فراهم بشود.

برای آشنایی بیشتر می‌توانید به دو مقاله زیر رجوع کنید که البته پایه‌ی اصلی این نوشته نیز می‌باشند.

منابع:

همچنین در صورتی که خیلی علاقمند به این موضوعات هستید و علاقه دارید یک درس خیلی خوب رو در اینترنت دنبال کنید می‌توانید به درس بیوفیزیک مولکولی دانشگاه ایلینوی رجوع نمایید.

آیا فیزیک می‌تواند شبکه‌های اجتماعی مانند فیس‌بوک را تحلیل کند؟!

در همایش پیوند در تابستان گذشته در مورد این حرف زدم که چگونه ایده‌های برگرفته شده از فیزیک می‌تونن درک بهتری از شبکه‌های اجتماعی مثل فیس‌بوک به ما بدن. ویدیو این ارائه رو به همراه اسلایدها و فایل صوتی رو اینجا می‌ذاریم. ما بقیه ارائه‌ها رو هم در قسمت «سخنرانی‌ها، دوره‌های آموزشی و کلاس درس» می‌تونید پیدا کنید!

ویدیو:

یلدا از جنس انقلابی زمستانی!

شب یلدا رو همه به عنوان طولانی‌تر شب سال می‌شناسیم. توی این پست شب یلدا (انقلاب زمستانی) رو از نظر نجومی بررسی می‌کنیم و درمورد علت به‌وجود اومدن فصل‌ها و تغییر طول روز و شب بحث می‌کنیم. امیدوارم شب یلدا بهتون خوش بگذره و آغاز زمستونی پر برکت برای همه باشه :))

چرا فصل‌های مختلفی رو تجربه می‌کنیم؟

مدار زمین به شکل بیضی هست و خورشید توی یکی از کانون‌های این بیضی قرار داره. درواقع زمین طی حرکت سالینه خودش نسبت به خورشید فاصله‌اش تغییر میکنه. اما مقدار اون در مقابل فاصله متوسط زمین تا خورشید خیلی ناچیز هست؛ زمین در حضیض مداری خودش حدود ١۴٧ میلیون کیلومتر، و در اوج مداری حدود١۵٢ میلیون کیلومتر از خورشید فاصله داره. یعنی حدودا ٢ درصد اختلاف از فاصله میانگین. به بیان دقیق‌تر، خروج از مرکز مدار بیضوی زمین ٠.٠١٧ هست؛ این به معنی اینه که مدار زمین خیلی شبیه یک دایره هست.

موقعیت مداری زمین و خورشید در فصل‌های مختلف. نگاره از time and date

بنابراین این تصور که فصل‌ها به دلیل دور و نزدیک شدن زمین به خورشید اتفاق میفتن، اشتباهه (اتفاقا زمین در ١٣ تیرماه به نقطه اوج، و در ١۴ بهمن به نقطه حضیض مداریش میرسه). دلیل اصلی ایجاد فصل‌ها، انحراف محور چرخش زمین نسبت به حالت عمود بر صفحه منظومه شمسی هست. همون‌طور که توی شکل می‌بینید، زمانی‌که خورشید به صورت مایل‌تر به نیم‌کره شمالی زمین می‌تابه، فصل زمستان و وقتی تابش به صورت عمودتر هست، فصل تابستان رو تجربه می‌کنیم. این درحالیه که توی نیم‌کره جنوبی، بالعکس، به ترتیب، فصل تابستان و زمستان رو داریم.

 

کجی محور زمین

قبل از این‌که وارد بحث حرکت ظاهری خورشید و تغییر طول روزهای سال بشیم، توی این قسمت می‌خوام به‌طور خلاصه، کمی درمورد مسأله کجی محور زمین بحث بشه. اصولاً اینکه چرا سیارات حول محوری به دور خودشون می‌گردن، برمی‌گرده به دوران شکل‌گیری منظومه شمسی. وقتی که توده گرد و غبار پیش ستاره‌ای خورشید در حال چرخیدن و شکل‌گیری بود، بعضی از مناطق بیرونی‌تر هم که دورتر قرارگرفته بودن، موفق شدن مقداری از مواد اطرافشون رو از طریق گرانش جذب کنن و گویچه‌هایی رو به‌وجود بیارن که به‌تدریج هسته اولیه سیارات رو تشکیل دادن. این فرایند جذب یا انباشت مواد توسط سیارات، همراه با چرخش بوده. و بعد از این‌که هم‌جوشی هسته‌ای در مرکز خورشید اتفاق افتاده و اصطلاحا خورشید شعله‌ور شده، این چرخش (یا به بیان دقیق‌تر تکانه زاویه‌ای)، همراه سیارات باقی مونده (اصل بقای تکانه زاویه‌ای).

حرکت تقدیمی و ناوشی محور زمین. نگاره از world-mysteries

به‌همین خاطر، سیارات علاوه بر حرکت مداری به دور خورشید، یک چرخش وضعی به دور خودشون هم دارن. حالا این‌که چرا محور چرخش به دور خودشون، کمی نسبت به عمودِ صفحه‌ی منظومه شمسی انحراف داره، احتمالا به دلیل برخوردهای شدیدی بوده که در دوران شکل‌گیری منظومه شمسی اتفاق میفتاده و سیارات، تحت بمباران شدید، توسط تکه سنگ‌های غول‌پیکر سرگردان بودن ( بعد از اینکه خورشید شعله‌ور شد، به علت بادهای شدید خورشیدی که در ابتدا گسیل می‌شد، دقیقا شبیه به یه سشوار پر قدرت، خیلی از این تکه سنگ‌ها به فاصله‌های دورتر فرستاده شدن، که امروز به شکل کمربند کوییپر و ابر اورت، در لبه‌های منظومه شمسی قرار دارن). این برخوردها می‌تونستن باعث بشن که محور چرخش کمی جابجا بشه. محور زمین به‌طور میانگین حدود ٢٣.۵ درجه از حالت قائم انحراف داره. به علت پخ بودن کره زمین در قطبین، نیروهای گرانشی که خورشید و ماه به زمین وارد می‌کنن، باعث حرکت تقدیمی زمین میشن؛ درواقع محور زمین با حفظ زاویه انحراف خودش، حول محور عمود هم می‌چرخه. شبیه چیزی که توی فرفره می‌بینیم. البته یک دور گردش بر اثر حرکت تقدیمی، حدودا ٢۵٧٧٢ سال طول می‌کشه. شاید این رقم خیلی بزرگی به‌نظر برسه، ولی دست کم باعث شده ستاره قطبی که درست بالای قطب شمال کره زمین قرار داره و با استفاده از اون می‌تونیم جهت شمال رو پیدا کنیم، تغییر کنه؛ الان ستاره‌ای که به‌عنوان ستاره قطبی می‌شناسیمش، ستاره آلفای صورت فلکی دب اصغر هست، درحالی‌که حدود سه هزار سال قبل از میلاد، ستاره ثعبان در صورت فلکی اژدها راهنمای جهت شمال بود.
اگه دقت کرده باشید، گفتیم کجی محور زمین «به‌طور میانگین»، حدود ٢٣.۵ درجه هست. چون صفحه مداری ماه نسبت به صفحه مداری زمین به دور خورشید، حدود ۵ دقیقه انحراف داره، این موضوع باعث میشه کمی مقدار انحراف محور زمین تغییر کنه و با دوره تناوب حدود ١٨.۶ سال، بین بازه ٢٢.١ تا ٢۴.۵ درجه، متغیر باشه. در حال حاضر، مقدار کجی محور زمین ٢٣.٢۶ درجه هست. به این رقص محوری زمین، حرکت ناوشی یا ترقصی گفته میشه.

حرکت ظاهری سالیانه خورشید

اگه ما در قسمت‌های مختلف مدار زمین به خورشید نگاه کنیم، می‌بینیم که انگار موقعیت خورشید در طول سال نسبت به ستاره‌های پس‌زمینه (با فرض اینکه بتونیم ستاره‌ها رو در طول روز هم ببینیم)، تغییر می‌کنه؛ فرض کنید محور زمین رو دایروی در نظر بگیریم، در نتیجه خورشید هر روز کمی کمتر از ١ درجه نسبت به ستاره‌های پس‌زمینه آسمون، به سمت شرق جابجا میشه ( تعداد روزهای سال ٣۶۵ روز و یک دایره کامل ٣۶٠ درجه هست). به مسیر حرکت ظاهری سالیانه خورشید، دایره البروج میگن. به همین خاطر هست که انگار خورشید در ماه‌های مختلف، توی برج‌ها یا صورت فلکی‌های مختلفی قرار داره.

نقاط اعتدالین و انقلابین و حرکت ظاهری سالیانه خورشید روی کره سماوی. نگاره از stars.astro.illinois.edu

داخل پرانتز: البته که طالع‌بینی اساس علمی نداره و خرافاته، ولی از اون‌جایی که متأسفانه توی قرن ٢١اُم هم هنوز عده زیادی به این خزعبلات اعتقاد دارن، جا داره این نکته رو عنوان کنم: تاریخ طالع‌بینی حدودا به ٣٠٠٠ سال پیش برمی‌گرده. برج‌هایی که مربوط به ماه تولد هستن از اون زمان تا الان، به‌خاطر حرکت تقدیمی زمین، تغییر کردن. مثلا اگه شما فروردین ماهی و توی ادبیات طالع بینی برج حمل هستید، به این معنیه که خورشید در ماه فروردین، توی صورت فلکی حمل قرار داره. این درحالیه که الان دیگه خورشید توی این برج قرار نداره. بلکه در فروردین ماه توی صورت فلکی حوت هست. بنابراین زیاد توجهی به این اراجیف ماه تولد نکنید لطفاً! :))

به‌خاطر کجی محور زمین، دایره البروج از استوای سماوی، ٢٣.۵ درجه انحراف داره (اگر استوای کره زمین رو ادامه بدید تا کره سماوی رو قطع بکنه، بهش استوای سماوی میگن). به محل تلاقی این دو دایره، اعتدالین گفته میشه. برای نیم‌کره شمالی، اگه خورشید در مسیر حرکت به سمت بالای استوای سماوی باشه، این نقطه اعتدال بهاری(آغاز فصل بهار)، و اگه در مسیر حرکت به سمت پایین استوای سماوی باشه، این نقطه اعتدال پاییزی(آغاز فصل پاییز) هست. هم‌چنین وقتی که خورشید در بالاترین نقطه دایره البروج نسبت به استوای سماوی قرار داره، انقلاب تابستانی (آغاز فصل تابستان) و هنگامی‌که در پایین‌ترین نقطه دایره البروج نسبت به استوای سماوی هست، انقلاب زمستانی(آغاز فصل زمستان) بهش گفته میشه.

محل طلوع و غروب خورشید در طول سال چطور تغییر می‌کنه؟

موقع اعتدال بهاری و پاییزی، خورشید دقیقا از سمت شرق، طلوع و از سمت غرب، غروب می‌کنه؛ بنابراین دو بار در طول سال، این امکان وجود داره که بتونید جهت‌های جغرافیایی‌تون رو، به‌وسیله خورشید چک بکنید (البته در واقعیت، چون نقاط اعتدالین تنها در یک لحظه اتفاق میفتن، که لزوما هم در لحظه طلوع یا غروب خورشید نیست، بنابراین مکان طلوع و غروب خورشید از محل دقیق شرق و غرب، مقدار ناچیزی اختلاف داره که میشه ازش صرف‌ نظر کرد).
اما همین‌طور که از نقاط اعتدالین فاصله می‌گیریم، محل طلوع و غروب خورشید هم از شرق و غرب فاصله میگیره و به سمت شمال یا جنوب متمایل میشه؛ اگه شما روی استوای زمین قرار داشته باشید، در انقلاب تابستانی، خورشید از ٢٣.۵ درجه‌ای شمال شرق، طلوع و در ٢٣.۵ درجه‌ای شمال غرب، غروب می‌کنه. برعکس، در انقلاب زمستانی، طلوع خورشید در ٢٣.۵ درجه‌ای جنوب شرق، و غروبش در ٢٣.۵ درجه‌ای جنوب غرب هست. بنابراین روی استوا، حداکثر انحراف محل طلوع یا غروب خورشید از شرق یا غرب، ٢٣.۵ درجه هست که در انقلاب تابستانی و انقلاب زمستانی رخ میده. اما فرض کنید که شما بالاتر از استوا زندگی می‌کنید. در این‌صورت، برای محاسبه مقدار زاویه انحراف محل طلوع و غروب خورشید از شرق و غرب جغرافیایی، باید یک فاکتور (عرض جغرافیایی)sec هم ضرب کنید (عرض جغرافیایی، زاویه مختصاتی هست که مکان شمالی/جنوبی یک نقطه روی سطح زمین رو نشون میده و از صفر درجه در استوا، تا نود درجه شمالی/جنوبی در قطب‌ شمال/جنوب، متغیره). مثلا شهر تهران در عرض جغرافیایی ٣۵ درجه شمالی قرار داره. بنابراین حداکثر میزان انحراف، 23.5 * (35)sec ، حدودا ٢٨.۶٨ درجه هست. هرچند که این یه فرمول تخمینیه، اما تا عرض‌های جغرافیایی ۵٠ درجه صادقه (اگه علاقه‌مند به محاسبات کامل با استفاده از هندسه کروی هستید، به اینجا مراجعه کنید).

طول روز یا شب در طول سال چطور تغییر می‌کنه؟

خب، فکر می‌کنم تا الان تقریبا به این سوال جواب داده شده باشه که چرا شب یلدا که معادل با انقلاب زمستانی هست، طولانی‌ترین شب ساله؟ با توجه به توضیحاتی که درمورد حرکت ظاهری سالیانه خورشید داده شد، حداکثر ارتفاع خورشید نسبت به افق در طول سال تغییر می‌کنه و زمان انقلاب زمستانی به حداقل، و زمان انقلاب تابستانی به حداکثر مقدار خودش می‌رسه. بنابراین در انقلاب زمستانی، خورشید مسیر کوتاه‌‌تری (دایره عظیمه کوچکتر) رو باید توی آسمون طی بکنه و در انقلاب تابستانی، روی مسیر بلندتری (دایره عظیمه بزرگ‌تری) حرکت می‌کنه. هنگام اعتدال بهاری و پاییزی که حد وسط انقلابین هستن، طول روز و شب در همه جای دنیا برابر هست. یعنی تقریبا ١٢ ساعت روز و تقریبا ١٢ ساعت شبه. البته، به دو علت، طول روز، یک مقداری بلندتر از طول شب هست. اول اینکه؛ در زمان اعتدالین، مرکز هندسی خورشید ١٢ ساعت بالای افق هست، در حالی‌که طلوع خورشید، طبق تعریف، لحظه‌ای هست که لبه‌ی بالایی قرص خورشید از افق پیدا میشه (و نه مرکز خورشید)، و غروب خورشید هم به همین صورت، لحظه‌ایه که لبه بالایی قرص خورشید میره زیر افق و دیگه دیده نمیشه. بنابر این تعریف، طول روز مقداری بیشتر از ١٢ ساعت هست. علت دوم اینکه؛ به علت شکسته شدن نور خورشید توی جو زمین، ما موقع طلوع خورشید، لبه بالایی قرصش رو زودتر می‌بینیم، و موقع غروب، لبه‌ی بالایی رو حتی بعد از اینکه خورشید غروب کرده هم مشاهده می‌کنیم. این پدیده، باعث میشه، طول روز، حدود ۶ دقیقه (بسته به اینکه دما و فشار هوا بصورت موضعی چقدر توی ارتفاعات مختلف تغییر می‌کنه) بیشتر از زمانی باشه که اثر شکست نور توی جو وجود نداره. به‌خاطر این دو دلیلی که ذکر شد، زمان اعتدال بهاری و پاییزی، طول روز چند دقیقه بلندتر از طول شب هست.

آنالما

تصویری که می‌بینید، حرکت ظاهری خورشید در طول ساله که معروف به آنالمای خورشیدی هست (اگه کسی معادل فارسی عبارت آنالما رو می‌دونه بگه! ://)

تصویر آنالما. نگاره از visualphotos

داستان از این قراره که اگه توی یک ساعت خاصی از روز، مثلا ١٢ ظهر، در طول سال از خورشید عکس برداری بکنید، می‌بینید که شبیه عدد هشت انگلیسی میشه. اگه امکانات عکس‌برداری براتون مقدور نیست، می‌تونید یک میله شاخص نصب کنید و انتهای سایه‌ی اون رو در یک ساعت خاص، در طول سال علامت‌گذاری کنید. دقت کنید که اگه ساعت رسمی کشور عقب یا جلو رفت، شما طبق همون ساعت قدیم خودتون عمل کنید. در نهایت، شکل آنالما به‌دست میاد.
اگر به تصویر دقت کنید، می‌بینید که خورشید هم به سمت بالا و پایین، و هم به سمت راست و چپ حرکت کرده. علت این‌که خورشید در طول سال ارتفاعش تغییر میکنه رو قبلا بررسی کردیم. ولی به نظرتون چرا باید خورشید به سمت راست و چپ هم حرکت بکنه؟ درواقع علتش اینه که مدار زمین به دور خورشید بیضوی هست و نه دایروی. بنابراین در تصویر آنالمای خورشیدی یک کشیدگی به سمت شرق و غرب هم دیده میشه.

دوست دارم در پایان، این بیت از غزلی رو که از دوست خوبم مرتضی استاد عظیم هست، تقدیمتون کنم:

کمی آرام شو دیگر، تو ای شب زنده‌دار عشق!
که یلدا هم سحر دارد و آخر سر به سر آید…

تلاش برای توصیف جهان از زاویه‌ی گرانش

داستان معروف سیبی که از درخت افتاد و به سبب اون نیوتون کشف کرد که زمین جاذبه داره رو همه از بریم. این داستان چندان واقعی نیست نیوتون سالها توی اتاقش داشت با انواع و اقسام روابط سر و کله میزد تا بالاخره تونست که فیزیک جدیدی رو پایه‌گذاری کنه و واقعا با یک سیب نبود که نظریه‌ای متولد شد.

اگه گرانش رو به زبان خیلی ساده بخوام بگم، میشه فرمول‌بندی نیوتون از حرکات سیاره‌ها. قبل‌تر از نیوتون فردی به نام کپلر سه قانون رو در مورد حرکات سیاره‌ها پیدا کرده بود.کپلر معتقد بود که سیاره‌ها دارن در مدارهایی بیضوی به دور خورشید میچرخند که خورشید در یکی از کانون‌های بیضی قرار گرفته.. زمانی که سیاره به خورشید نزدیکتره با سرعت بیشتری حرکت میکنه نسبت به زمانی که از خورشید دورتره و رابطه ی بین فاصله سیارات از خورشید و پریود حرکتشون هم به دست آورده بود.

بعدتر از کپلر، نیوتون حرکات سیارات رو با صورت بندی گرانش ارائه کرد. نیوتون میگفت گرانش یک نیروی بلندبرده و بین اجرام مختلف برقراره. اگر دو تا جرم مختلف به نحوی بتونن همدیگه رو مشاهده کنن،شروع میکنن به جذب کردن همدیگه. شدت نیرویی هم که حس میکنن متناسب با حاصل ضرب جرمشون تقسیم بر مجذور فاصله دو تا جرم از همدیگه است.

این تا اوایل قرن نوزده بهترین تصویر ما از جهان بوده. اینکه اجرام به شکلی پراکنده‌اند در جهان و طبق گرانش نیوتونی رفتار میکنن. اما از اونجایی که علم همواره در حال تحوله و تصویر ما از جهان ثابت نمی‌مونه، شواهدی پیدا شدن که باعث شد دانشمندان درباره ی این نظریه به تردید بیفتند.اوایل قرن نوزدهم اینشتین با ارائه نظریه نسبیت عام تصویر جدیدی از جهان رو ارائه کرد.در این نظریه گرانش نه یک نیرو که یک ویژگی از فضا- زمان درنظر گرفته میشه.تغییرات در فضا-زمان هم به دلیل پراکندگی اجرام در فضا به وجود میاد.یک مثال آشنا از این اجرام میتونه سیاهچاله ها باشند. سیاهچاله ها در واقع بخشی از فضا زمان هستند که حتی نور هم امکان گریختن از افق رویداد سیاهچاله ها رو نداره. معادله‌ی میدان در نسبیت عام با رابطه‌ی زیر نشون داده میشه.

معادله ی میدان اینشتین

سمت چپ این معادله تانسور انیشتین رو میبینید. این تانسور درواقع حامی تمام اطلاعات هندسه‌ی فضا- زمان هست.سمت راست معادله هم تانسور انرژی- تکانه‌ رو میبینید. که درواقع حاوی تمام اطلاعات یک جرم گرانشی یا بهتر بگم یک ماده است.این جرم گرانشی میتونه زمین باشه، ستاره نوترونی باشه، یا حتی یک سیال باشه.

نسبیت عام موفقیت‌های چشم‌گیری تا به امروز داشته. پیش‍بینی ام‍واج گرانشی، توصیف سیاهچاله‌ها، سفر در زمان و… همگی از دستاوردهای نسبیت عام هستند.اما نسبیت عام در اواسط قرن بیستم و بعدتر با چالش‌های جدی مواجه شد. همین اتفاق باعث شد که دریچه‌ی جدیدی به سوی گرانش باز بشه و نظریات جدید گرانشی متولد بشن.

اینشتین وقتی معادله‌ی میدان گرانشی در نسبیت عام رو نوشت با یک سوال مواجه شد. چرا جهان تحت گرانش خودش فرو نمیریزه؟ نیوتون برمبنای بی‌نهایت بودن و همسانگردی جهان مطمئن بود که جهان تحت گرانش خودش فرو نمیریزه. نیوتون بر مبنای این فرضیات معتقد بود که هر نقطه از جهان نیروی برابری رو حس میکنه، بنابراین جهان هرگز تحت گرانش فرونمیریزه. انیشتین برای رفع این مسئله جمله‌ای رو دستی وارد معادلاتش می‌کنه. این جمله به صورت یک نیروی دافعه‌ی کیهانی، که به عنوان ثابت کیهان‌شناسی معرفی شده، وارد این معادلات میشه. جالبه بدونید اینشتین بعدها از این کارش به عنوان یک اشتباه بزرگ یاد میکنه.

بعد از وارد شدن جمله ی ثابت کیهان شناسی معادله‌ی میدان اینشتین به فرم زیر در میاد.

معادله‌ی میدان اینشتین در حضور ثابت کیهان‌شناسی

با فرض عدم وجود ماده، یعنی در حالتی که مقدار تانسور انرژی- تکانه در این معادله صفر باشه، میتونیم به جمله‌ی ثابت کیهان‌شناسی انرژی خلا رو نسبت بدیم. در این حالت لمبدا رو معادل چگالی انرژی خلا میدونیم.

اما مشکلی که تا به امروز هنوز حل نشده چی بود؟

ما باید بدونیم مقدار این ثابت کیهان شناسی چقدره و از چه مرتبه‌ایه. نظریه‌ی میدان‌های کوانتومی مقداری رو که برای انرژی خلا پیش‌بینی می‌کنه بسیار بسیار بیشتر از عددی است که از رصدها بدست میاد. چیزی در حدود شصت تا صد و بیست مرتبه‌ی بزرگی بزرگتر. همین اختلاف مقدار در نظریه و رصد باعث شد نظریات جدید گرانشی‌ای متولد بشن تا شاید این مشکل رو حل کنند.

مشکل بعدی‌ای که نسبیت عام نتونست از پسش بربیاد مسئله‌ی ماده تاریک بود. اگه بخوام مختصرا بگم ماجرای ماده تاریک از کجا جدی شد، باید برگردیم به رصدهایی که انجام شده و مهم‌ترین شاهد حضور ماده تاریک نمودارهای سرعت چرخش ستاره‌ها و کهکشان‌ها بودند.ما از گرانش نیوتونی میدونیم که سرعت حرکت دایره‌ای یک ستاره از رابطه‌ی زیر بدست میاد.

معادله سرعت چرخش کهکشان‌ها

در این رابطه G ثابت جهانی گرانش، M جرم محصور و r فاصله شعاعی است. برای فواصل بیشتر از دیسک کهکشانی قانون گاوس بیان می‌کند که با فرض اینکه تمام جرم در مرکز محصور شده در فواصل دور مقدار جرم ثابته و سرعت باید با r-1/2  کاهش پیداکنه. اما آن چیزی که رصدها نشون میده چنین نیست. رصد ها میگه از فاصله ای به بعد سرعت حرکت به مقدار ثابتی میل میکنه. انگار که برخلاف اون چیزی که از قانون گاوس میدونیم، جرم اینجا متغیره و داره با فاصله تغییر میکنه. در واقع  تغییرات جرم متناسب با تغییرات فاصله است. این جرم اضافی از کجا میاد؟ به نظر میاد این وسط ماده‌ای فراتر از ماده‌ی مرئی وجود داره که بهش میخوایم بگیم ماده‌ی تاریک. ماده‌ی مرموزی که خیلی خوب نمیشناسیمش. وجود داره ولی مشاهده نمیکنیمش. برهمکنش نمیکنه و هرجایی خودش رو نشون نمیده، اما این وسط داره تو معادلاتمون و در کیهان‌شناسی نقش مهمی بازی میکنه.

نمودار سرعت چرخش کهکشان‌ها

نظریات گرانشیِ بعد از نسبیت عام  تلاش هایی برای توصیف ماده تاریک هم داشته اند. البته عده‌ای از فیزیکدانان انرژی‌های بالا معتقدند که ماده تاریک واقعا به صورت ذراتی وجود داره. و تلاش‌های زیادی چه از بابت نظری و چه عملی برای توصیف و آشکارسازی ذرات ماده تاریک کرده‌اند.

نظریات جدید گرانشی که عمدتا ازشون به عنوان گرانش تعمیم یافته یاد میشه، اضافه کردن درجات آزادی به نظریه‌ی نسبیت عام هست. در واقع ماجرا از این قراره که فیزیکدانان تلاش میکنن با اضافه کردن درجات آزادی به کنش نسبیت عام راهی پیدا کنند که بتونن سوالاتی که نسبیت عام نمیتونه بهشون پاسخ بده رو پاسخ بدن. این درجات آزادی در ساده‌ترین حالت میتونه اضافه کردن یک میدان اسکالر باشه. یا عده‌ای هم دوست دارن بردار، تانسور یا میدان‌های با رنک بالاتر اضافه کنند به این کنش. هر مدلی از گرانش که ساخته میشه باید تست‌پذیر باشه. یعنی نتایجی که پیش‌بینی میکنه با نتایج آزمایش و رصد سازگار باشه. و اساسا قابلیت در معرض آزمایش قرارگرفتن رو داشته باشه.

از دل این تلاش‌ها مدل‌های زیادی برای توصیف جهان ساخته شده اند، که اینجا مختصرا اشاره میکنم و در پست‌های بعدی بهشون می‌پردازم.نظریه‌های اسکالر-تانسور، دینامیک تعمیم یافته نیوتونی، نظریه‌ی انیشتین- اِتِر، نظریه‌های بایمتریک، نظریه‌های f(R )، گرانش غیر موضعی و گرانش ابعاد بالا مشهورترین نظریه‌های گرانشی اند.

سرنوشت نظریات گرانشی به کجا رسیده؟

هنوز فیزیکدانان در حال تلاش‌اند تا بتونن برای سوالاتی که مطرح شده نظریه‌ای بسازند که پاسخ سوالاتشان رو بده. برای محقق شدن این امر نیاز به ایده‌های بهتر و داده‌های رصدی و آزمایشگاهی بیشتر دارن.

پی نوشت:

  1. برای تعریف  تانسور به این آدرس سر بزنید.
  2. برای اینکه مختصری درباره‌ی درجه‌ی آزادی در فیزیک بدونید به این آدرس مراجعه کنید. البته درجه‌ی آزادی در متن بالا کمی متفاوت از چیزیه که در متن پیوست شده مشاهده میکنید.