انگاره پیچیدگی عینک جدیدی برای مطالعه طبیعت به ما میدهد. سیستمهای پیچیده از تعداد زیادی اجزا تشکیل شدهاند و نوعی نظم یا تازگی نسبت به اجزایشان بر آنها حاکم است. این سیستمها در مقیاس ریز، اجزایشان برهمکنشهای موضعی دارند ولی در مقیاس درشت، رفتارهای «پدیداره» از خود نشان میدهند که شبیه به رفتار اجزای آن در مقیاس ریز نیست. پدیدارگی در مورد این جور پدیدههاست.
این ویدیو دعوتی است برای خواندن این مقاله مروری کوتاه:
The term emergence is increasingly used across scientific disciplines to describe phenomena that arise from interactions among a system’s components but cannot be readily inferred by examining those components in isolation. While often invoked to explain higher-level behaviors, such as flocking, synchronization, or collective intelligence, the term is frequently used without precision, sometimes giving rise to ambiguity or even mystique. In this perspective paper, we clarify the scientific meaning of emergence as a measurable, physically grounded phenomenon. Through concrete examples, such as temperature, magnetism, and herd immunity in social networks, we review how collective behavior can arise from local interactions that are constrained by global boundaries. By disentangling emergence from vague overuse, we emphasize its role as a rigorous tool for understanding complex systems. Our goal is to show that emergence, when properly framed, offers not mysticism but insight.
این نوشته رو به مناسبت بیست و پنجمین گردهمایی ژرفا با موضوع سیستمهای پیچیده برای شماره ۸۱۸ روزنامه دانشگاه صنعتی شریف نوشتم.
برای دیدن نگاره با کیفیت بیشتر کلیک کنید. حق نشر متعلق به شماره ۸۱۸ روزنامه دانشگاه صنعتی شریف.
انسان به دنبال قدرت پیشبینی
از قرن ۱۷ میلادی ما انسانها به امید پیدا کردن الگوهایی در طبیعت، با جدیت خاصی شروع به مطالعه دنیای اطرافمان به صورت کمی کردیم. رفتهرفته عددها مهمتر شدند و همه هم و غممان تبدیل به این شد که بعد از به دست آوردن یکسری عدد، پیشبینی کنیم که عدد بعدی چیست! گاهی این پیشبینی در مورد مکان یک سیاره در آسمان بود بعد از چند ماه رصد یا دمای یک پیستون پر از گاز و مایع بعد از طی کردن یک فرایند ترمودینامیکی. گاهی هم آن عدد مطلوب، زاویهی پرتاب یک توپ بود به لشکر دشمن! الگوهای حاکم بین اعداد همیشه موضوع هیجانانگیز و سودآوری برای مردم بود چرا که قدرت «پیشبینی» را در پی داشت.
قدرت پیشبینی،مزیت رقابتی علم بر فلسفه بود که از دل مدلسازیهای عددمحور به دست میآمد. قرن ۱۹ و ۲۰ میلادی طی شد و نوبت به هزاره سوم رسید. انسان قرن ۲۱ام که به گمانش همه علوم را خوب میشناخت، با پرسشهای جدیدی روبهرو شد. پرسشهایی که این بار مرز بین علوم را نشانه گرفته بودند. پرسشهایی از این جنس که حالا که فیزیک را بهخوبی میشناسیم، آیا میتوانیم یک ترکیب آلی را به خوبی توصیف کنیم یا مثلا شیوه تاشدگی یک پروتئین را با دقت خوبی پیشبینی کنیم؟! یا اگر متخصص زیستشناسی باشیم پیشبینی رفتار جامعه انسانها در شرایط بحران اقتصادی برایمان ممکن است؟! در مورد رفتار بازار بورس چه؟ اکنون که سلولهای عصبی را میشناسیم آیا کارکرد مغز را میتوانیم توصیف کنیم؟ آیا میتوانیم بگوییم که برای سلولهای عصبی چه اتفاقی میافتد که فردی دچار بیماریهایی مانند صرع یا پارکینسون میشود؟ یا پرسشهایی از این قبیل که چرا هنوز مدیریت ترافیک و جلوگیری از مسدود شدن جادهها برایمان دشوار است؛ مگر ما همان بشری نیستیم که به ماه سفر کردهایم و با توسعه مکانیک کوانتومی بمب اتم ساختهایم؟! چرا بعد از حل کردن این همه مسئله بغرنج، نمیتوانیم زمان بحرانی برای همهگیری یک شایعه یا بیماری جدید در دنیا را محاسبه کنیم و برنامه دقیقی برای چگونگی واکسیناسیون مردم را تدوین کنیم؟ علیرغم این همه پیشرفت در علوم مختلف، چرا در حل این قبیل مسائل ناتوان ماندهایم؟!
چرا شناخت دنیای اتمها برای شناخت دنیای شیمی کافی نیست؟! یا چرا «بیشتر، متفاوت است»؟
همه اینها پرسشهایی بود که بهخاطر ظاهر سادهشان انسان قرن بیست و یکمی نخست فکر میکرد که «علیالاصول» باید بشود جوابشان را دانست. بالاخره طی سه قرن گذشته، ریاضیات بسیار گسترش یافته بود و فیزیک – علم اتمها و کهکشانها – را به خوبی توسعه داده بودیم. فیزیک هم که مادر شیمی است و شیمی مادر زیستشناسی و زیستشناسی توصیفکننده موجودات زنده و انسان هم یک موجود زنده است. رفتار بازار بورس یا اقتصاد جهانی یا همهگیری یک بیماری هم بر اساس عملکرد همین موجودات زنده است. خب پس لابد با مقداری محاسبه میتوان به این پرسشها پاسخ داد. با این وجود، رفته رفته متوجه شدیم که فهم ما از سیستمهایی مانند مغز انسان یا اقتصاد جهانی دچار نواقص جدی است و پیشبینی و کنترل رفتار آنها برای ما بسیار دشوار است. گویا این سیستمها دارای پیچیدگی عجیبی هستند. به عبارتی، این سیستمها، پیچیده هستند از آنجا که ما با آنکه اجزایشان را میشناسیم و رفتار تکتک آنها را به خوبی میتوانیم پیشبینی کنیم، ولی «رفتار جمعی» آنها تحت یک ساختار جدید را نمیتوانیم به خوبی توصیف کنیم! میدانیم که عملکرد سلولهای عصبی سازنده مغز چگونه است، اما عملکرد مغز را نمیتوانیم توصیف کنیم. مثلا نمیدانیم تکلیف حافظه چیست! میدانیم که در سلولهای عصبی حافظه وجود ندارد ولی با این حال، در مجموعهای از همین سلولها وجود دارد! همین مجموعه کارهای عجیب و غریبتری هم میکند. مثلا سلولهای عصبی مغز به طور جمعی از خود، آگاهی نشان میدهند. در حالی که آگاهی در هیچ کجای سلول عصبی بیچاره وجود ندارد. تلاش برای حل این قبیل تناقضها که در مقیاس ریز اگر همه چیز آشنا باشد، لزومی ندارد در مقیاس درشتتر رفتار سیستم را بتوانیم توصیف کنیم آغازگر انگارهای جدید در علم بود؛ انگاره پیچیدگی.
اگر به دنبال کتاب مناسبی برای یادگیری سیستمهای پیچیده هستید، این کتاب پیشنهاد جدی ما است 🙂
بشر قرن ۲۱، به دنبال شناخت سیستمهای پیچیده است. سیستمهایی که از تعداد زیادی اجزا تشکیل شدهاند و نوعی نظم خودبهخودی بر آنها حاکم است. در این سیستمها در مقیاس ریز، اجزایشان برهمکنشهای موضعی دارند ولی در مقیاس درشت، رفتارهای «پدیداره» از خود نشان میدهند که شبیه به رفتار اجزای آن در مقیاس ریز نیست. راستش، ما ناچار به درک سیستمهای پیچیده هستیم. برای ما که همیشه مجذوب قدرت پیشبینی علم شدهایم مهم است که بدانیم اگر آنفولانزا در آفریقا شایع شد با چه احتمالی یک آلمانی در چه روزی بیمار میشود و با چه احتمالی یک ایرانی در چند روز بعد. برای ما مهم است، چرا که شبکه واگیری بیماری از لحاظ ریاضیاتی موجود سادهای نیست و مطالعه یک فرایند دینامیکی روی چنین شبکهای بدون کمک گرفتن از کامپیوترها غیرممکن است. برای ما حل همزمان تعداد زیادی معادله دیفرانسیل غیرخطی که به همدیگر وابسته هستند با قلم و کاغذ اصلا راحت نیست. حداقل تجربه سال اول و دوم زندگی دانشگاهیمان این را به ما گوشزد میکند!
سیستمهای پیچیده مهم هستند، چرا که انگاره پیچیدگی عینک جدیدی برای مطالعه طبیعت به ما میدهد. انگاره پیچیدگی به ما میگوید مستقل از اینکه مسئلهای تا پیش از این در کدام حوزه خاص از علم بررسی میشده، باید با نگاهی از پایین به بالا به دنبال حل آن مسئله باشیم و همزمان از همه امکانات فنی و تحلیلیمان برای حل آن استفاده کنیم. برای مثال، مسئله مغز، یک مسئله در فیزیک یا شیمی یا زیستشناسی یا علوم کامپیوتر نیست. در مکتب/نگاه/انگاره پیچیدگی، مسئله مغز سوالی است که متخصصان حوزههای مختلف با ابزارهایی که دارند سعی میکنند در یک محیط مشارکتی راهی برای حل آن پیدا کنند.
انگاره پیچیدگی به ما میگوید با تبدیل کردن یک سیستم به اجزا سازنده آن و شناخت اجزا نمیتوانیم به درک درستی از آن سیستم برسیم. مکتب پیچیدگی در برابر مکتب تقلیلگرایی (reductionism) قرار دارد.
(این نوشته از دکتر محمد خرمی در مورد تقلیلگرایی را بخوانید.)
در کنفرانس سار، پاییز ۹۷ که ایدهش مشابه با کنفرانسهای TEDx هست در مورد نظریه پیچیدگی حرف زدم. یک سخنرانی عمومی برای مردم!«داستان پیچیدگی: چرا بیشتر، متفاوت است؟»
در همایش پیوند در تابستان گذشته در مورد این حرف زدم که چگونه ایدههای برگرفته شده از فیزیک میتونن درک بهتری از شبکههای اجتماعی مثل فیسبوک به ما بدن. ویدیو این ارائه رو به همراه اسلایدها و فایل صوتی رو اینجا میذاریم. ما بقیه ارائهها رو هم در قسمت «سخنرانیها، دورههای آموزشی و کلاس درس» میتونید پیدا کنید!
تصمیم گرفتم تا جایی که میتوانم، مسیر یادگیری سیستمهای پیچیده را برای علاقمندانی که جرات یادگرفتن و شهامت حرکت کردن بیرون از مرزهای تعریف شده علوم را دارند را هموار کنم. برای شروع قصد دارم چند جلسه کلاس/سمینار در دانشگاه شهید بهشتی (تهران) برگزار کنم. ایده اصلی این جلسات لکچرهایی پیرامون مفاهیم اصلی سیستمهای پیچیده است بیآنکه وارد جزئیات ریز آن شوم. میخواهم طی این جلسات افراد با پیشزمینههای مختلف با ایدههای اصلی آشنا شوند.
فیزیک نیوتون و موضوعات مربوط به حساب دیفرانسیل و انتگرال که غالب تفکر علمی سه سده گذشته را تشکیل دادهاند بر این ایده استوار هستند که هر چه مقیاس فضایی یا زمانی یک سیستم فیزیکی را ریزتر و ریزتر کنیم، با سیستمی سادهتر، هموارتر و با جزئیات کمتری روبهرو میشویم. ملاحظات دقیقتری نشان میدهد که ساختار ریزمقیاس سیارات، مواد و اتمها بدون جزئیات نیست. با این وجود، برای بسیاری از مسائل، چنین جزئیاتی در مقیاسهای بزرگتر نامرتبط به حساب میآیند. از آنجا که این جزئیات مهم نیستند، فرموله کردن نظریهها به شیوهای که اصلا جزئیاتی وجود نداشته باشد منجر به همان نتایجی میشود که با در نظر گرفتن توصیف دقیقی از سیستم میتوان به آنها رسید.
برف دانه کخ – یک فرکتال کاملا خودمتشابه. نگاره از ویکیپدیا
میدانیم در رویارویی با سیستمهای پیچیده، هموار کردن پیدرپی سیستم در مقیاسهای ریزتر معمولا نقطه شروع مناسبی برای مطالعه سیستم به طور ریاضیاتی نیست. درک این موضوع، تغییر چشمگیری را در بنیادهای فکری ما به همراه داشته است.
در این سخنرانی ابتدا فرکتالها، به عنوان موجوداتی که در مقیاس ریزتر جزئیاتشان را از دست نمیدهند را معرفی میکنیم. سپس بیآنکه سراغ جعبه ابزار نظریه میدانهای کوانتومی رویم، ایده بازبهنجارش را به عنوان چارچوب جامعتری برای مطالعه رفتار سیستمها در مقیاسهای مختلف و چگونگی ارتباط این رفتارها مطرح میکنیم.
این نوشته اشارهی مستقیمی دارد به مقاله منتشر شده در Nature News and Views توسط Alessandro Vespignani به مناسبت تولد ۲۰ سالگی شبکههای جهان-کوچک است.
«این ایده که هرکس در دنیا به هرکس دیگری تنها با ۶ درجه جدایی متصل است، ۲۰ سال پیش توسط مدل شبکه «جهان کوچک» توضیح داده شد. چیزی که به نظر میرسید کاربرد خاصی داشته باشد تبدیل به یافتهای با نتایج فراوان شد.» الساندرو وسپینانی
ماجرا از اینجا شروع شد که اواخر بهار سال ۱۹۹۸، واتس و استروگتز مقالهای منتشر کردن به اسم «دینامیک جمعی شبکههای جهان-کوچک» که در اون مقاله مدلی معرفی شد که «خوشگی» و «فاصله کوتاه بین رئوس» شبکههایی که در زندگی واقعی پیدا میشن رو توصیف میکرد. خب، اون اوایل این مدل یه جوری جالب بهنظر میرسید. ولی صرفا به عنوان یک خروجی یا تعمیمی از شبکههای منظمی که فیزیکدونای آماری و مادهچگالیها بهشون عادت داشتن. [در حقیقت تا ۲۰ سال پیش، منظور ما از شبکه توی فیزیک، گرافهای منظم توری شکلی بودن که بهشون lattice میگفتیم و نه network.] اما با گذر زمان، هر چی که دانشمندان رشتههای مختلفی از این مدل استفاده کردند، پیامدهای عمیق این مدل بیشتر آشکار شد. به این معنی که درک ما از رفتارهای دینامیکی و گذار فازهایی که توی پدیدههای روزمره مشاهده میکردیم به طور جدی بهتر شد. از فرایندهای واگیری گرفته تا انتشار اطلاعات! به زودی مشخص شد که این مقاله دوران جدیدی از پژوهش رو ایجاد کرده که نهایتا منجر به شکلگیری «علم شبکه» به عنوان یک رشته «چندرشتهای» شد!
در حقیقت قبل از اینکه واتس و استروگتز مقالهشون رو منتشر کنند، الگوریتمهایی که برای ایجاد شبکهها استفاده میشد به دنبال این بودن که یک شبکه تصادفی ایجاد کنند. مثل مدل اردوش-رینی. ایده اساسی این الگوریتمها این بود که ما نمیدونیم چهطور هر دو راس در شبکه باید بهم متصل بشن برای همین فرض میکنیم که شیوه اتصال هر دو تا راس در شبکه بر اساس یک احتمال از پیش مشخص شده هست. ویژگی مشترک شبکههای تصادفی، اینه که هر چقد اندازه شبکه (تعداد رئوس) بزرگ بشه، میانگین طول کوتاهترین مسیر بین هر دو تا راس به صورت لگاریتم تعداد رئوس رشد میکنه. منظور از طول (کوتاهترین) مسیر بین دو راس، کمترین تعداد یال (پیوند) برای رسیدن از این راس به اون یکی هست. بنابراین اگر یک شبکه تصادفی N تا راس داشته باشه، میانگین طول مسیر بین هر دو راس که به تصادف انتخاب بشن این شکلی تغییر میکنه:
این رفتار لگاریتمی به معنی جهان-کوچک بودن هست. همون ایدهای که در دنیا هر نفر حداکثر با ۶ تا واسطه به هرکس دیگهای میتونه برسه. یعنی آهنگ بزرگ شدن فاصله بین هر دو راس در یک شبکه تصادفی کمتر از آهنگ بزرگ شدن اندازه اون شبکه است. (این رابطه خطی نیست، با دو برابر کردن L ،N دو برابر نمیشه!).
پروفایل چگونگی تغییر متوسط طول کوتاهترین مسیرین بین دو راس در شبکههایی با تپولوژی متفاوت. نگاره از کتاب علم شبکه باراباشی
با این وجود، مدلهای شبکههای تصادفی، وجود گروهکهایی (Cliques) که در شبکههای واقعی دیده شده رو توصیف نمیکنند. برای اندازه گیری گروهکدار بودن یک شبکه باید ضریب خوشگی هر راس رو حساب کنیم. برای اینکار، بهازای هر راس، تعداد پیوندهای بین همسایههاش رو میشماریم و تقسیم میکنیم بر تعداد کل پیوندهای ممکن بین همسایههای راس مورد نظر. در حقیقت ضریب خوشگی معیاری از اینه که چقدر همسایهها به هم متصل هستند. یک شبکه اجتماعی رو در نظر بگیرین، معمولا دوستِ دوستِ شما، دوست شما هم هست! یعنی مثلثهایی از روابط توی شبکههای واقعی دیده میشه و این درست چیزیه که شبکههای تصادفی فاقدش هستن. به عبارت دیگه، احتمال اینکه سه نفر در یک شبکه اجتماعی دوست هم باشن به مراتب بیشتر از چیزیه که شبکهای که طی یک فرایند ساده تصادفی ایجاد شده پیشبینی کنه!
سازوکار ایجاد یک شبکه جهان کوچک در مدل واتس-استروگتز با اضافه کردن بینظمی به یک شبکه منظم. نگاره برگرفته از مقاله اصلی ۱۹۹۸
میدونیم که شبکههای منظم، دارای ضریب خوشگی بالایی هستن و شبکههای تصادفی دارای خاصیت نزدیک بودن اعضا به هم! چیزی که یک شبکه جهان-کوچک واقعی نیاز داره هر دوی این ویژگیهاست! واتس و استروگتز برای اینکه این دوگانگی رو برطرف کنند پیشنهاد مدلی رو دادن که ابتدا یک شبکه منظم با ضریب خوشگی بالا رو ایجاد کنه و بعد از اون، با احتمال p، یالها رو بین رئوس اصطلاحا بُر بزنه! یعنی برای این کار، از یک شبکه منظم، هر یال رو با احتمال p انتخاب میکنید و دو سرش رو به رئوس متفاوتی وصل میکنید! به این کار اصطلاحا سیمبندی گفته میشه و اگر این سیمبندی به طور تصادفی انجام بشه، اصطلاحا گفته میشه که یالهای شبکه رو بُر میزنیم! بنابراین با تغییر مقدار p میتونیم شبکه رو از حالت منظم (p → 0) به حالت تصادفی (p → 1) تبدیل کنیم.
برای مقادیر بسیار کوچک p شبکه حاصل، یک شبکه منظمه با ضریب خوشگی بالا. اما برای مقادیر کوچک p میانبرهایی که بین نقاط دور شبکه ایجاد میشه، میانگین طول کوتاهترین مسیر رو کاهش میده. واتس و استروگتز نشون دادن که برای طیف وسیعی از مقادیر p، بسته به تعداد رئوس، میشه شبکههای با ضریب خوشگی بالا و میانگین فاصله کمی بین رئوس ساخت. برای همین با این روش میشه پدیده جهان-کوچکی به همراه گروهکداربودن رو ایجاد کرد!
وجود میانبرهای قرمز، به یک شبکه با ضریبخوشگی بالا، خاصیت جهان کوچکی میبخشد. نگاره از nature
مدل واتس و استروگتز ابتدا به عنوانی مدلی که «شش درجه جدایی» رو توصیف میکرد، در نظر گرفته میشد. اما در حقیقت مهمترین تاثیرش هموار کردن مسیر مطالعه اثرات ساختار شبکه روی طیف وسیعی از پدیدههای دینامیکی بود. یک سال پس از انتشار مقاله شبکههای جهان-کوچک، آلبرت باراباشی و رِکا آلبرت در مقالهای با عنوان «برآمدگی اثر مقیاسی در شبکههای تصادفی» مدلی معروف به مدل شبکه «اتصال ترجیحی» رو منتشر کردن که نقش بسیار کلیدی در توسعه پژوهش در نظریه شبکههای پیچیده ایفا کرد. در نظریه گراف یا علم شبکه، به تعداد یالهای متصل به هر راس، درجه اون راس گفته میشه و برای شبکه تصادفی، توزیع درجات رئوس، پواسونی هست. ایده مدل باراباشی-آلبرت این بود که توزیع درجات شبکههای واقعی، پواسونی نیست بلکه یک توزیع دمکلفت (توانی) هست. برای همین باراباشی و آلبرت سازوکاری رو معرفی کردن که به کمکش بشه شبکههایی با توزیع درجات توانی داشت. این که درجات یک شبکه از توزیعی توانی میاد، به معنای وجود پدیدههایی نادر ولی مهمه! مثلا تعداد کسانی که توی اینستاگرام بالای ۱۰۰میلیون دنبالکننده دارن ۱۰ نفر هست ولی اینها افراد سرشناسی هستن! یا مثلا وقتی گفته میشه که در امریکا ۹۹٪ ثروت دست ۱٪ افراد جامعه است، درسته که این ۱٪ تعداد کمی از افراد جامعه امریکا رو تشکیل میدن ولی افراد بسیار تاثیرگذاری هستن! از اونجایی که در شبکههای جهان-کوچک و شبکههایی که توزیع درجات ناهمگنی دارن طیف وسیعی از گذارفازها و رفتارهای برآمده رو میشه مشاهده کرد، رفتهرفته دانشمندان زیادی از رشتههای مختلف به این موضوع علاقمند شدن.
یک شبکه تصادفی (شبکه جادههای امریکا) در برابر یک شبکه باراباشی-آلبرت (شبکه خطوط هوایی امریکا). در شبکه خطوط هوایی، راسهایی (فرودگاهها) با درجه بسیار بالا وجود دارد در صورتی که در شبکه جادهای اینگونه نیست. نگاره از کتاب علم شبکه باراباشی.
نکته مهمی که به مرور خیلی جلب توجه کرد، اصطلاحا تپولوژی شبکهها بود، به این معنا که طی سلسلهای از پژوهشها متوجه شدیم که چگونگی ارتباطات عناصر در یک شبکه میتونه چه تبعات جالبی به همراه داشته باشه. کمکم اتفاقات بزرگی رقم خورد. ما تونستیم مقاومت شبکههای مختلف رو بررسی کنیم، گسترش بیماریهای همهگیر رو کنترل کنیم، درک عمیقتری از انتشار اطلاعات پیدا کنیم و همینطور بفهمیم که همگاهسازی رفتارهای برآمده چهطور روی شبکهها شکل میگیره. به عنوان مثال، با استفاده از مفهوم شبکههای جهان-کوچک موفق شدیم که ساختار وب (WWW) رو درک کنیم یا اینکه بفهمیم چهطور قسمتهای آناتومیک و کارکردی مغز با همدیگه ارتباط برقرار میکنند. ویژگیهای ساختاری دیگهای هم کمکم مورد مطالعه قرار گرفت، مثل پیمانهای بودن یا مفهوم موتیفهای شبکه. همه این یافتهها در نهایت سبب شد که دانشمندان، معماری شبکههای موجودات زنده و مصنوعی رو شناسایی و درک کنند، از شبکههای زیرسلولی گرفته تا زیستبومها و اینترنت!
به لطف توان محاسباتی بیسابقه، مجموعه دادههای بزرگ و تکنیکهای مدلسازی محاسباتی موجود، پژوهشهای روز این حوزه موفق شدن که پلی بین دینامیک تکتک راسها و ویژگیهای برآمده بزرگمقیاس شبکهها برقرار کنن. با این وجود، سادگی و دمدست بودن مدلهای جهان-کوچک و اتصال ترجیحی هنوز پایهی فهم ما از تپولوژی شبکهها رو تشکیل میدن و از صدقهسر ارتباط این مدلها با شاخههای مختلف علم، امروز رسما با یک حوزه بینرشتهای به اسم «علم شبکه» روبهرو هستیم!
نکتهای که حتما باید بهش اشاره کنیم اینه که جمعآوری دانش و روش از رشتههای کاملا مختلفی مثل علوم اجتماعی، ریاضیات کاربردی، فیزیک، زیستشناسی و علوم کامپیوتر واقعا کار آسونی نبوده! سالها جنگ و جدل به خاطر توافق بر سر تعاریف و مفاهیم بوده و واقعا انرژی زیادی صرف شده تا رهیافتهایی که مردم در رشتههای مختلف به کار بردن برای بقیه هم واضح بشه! ولی ما این کار رو انجام دادیم! طی ۲۰ سال گذشته، یک جامعه پرجوش و خروشی از علم شبکه ایجاد شده که برای خودش مجلات معتبر، موسسات تحقیقاتی و کنفرانسهایی با هزاران دانشمند داره!
در ۲۰امین سالگرد انتشار مقاله واتس و استروگتز، بیتشر از ۱۸۰۰۰ مقاله به این مدل که یکی از نمادهای تپولوژی شبکه است ارجاع دادن. واتس و استروگتز مقالهشون رو با این جمله تموم میکنن که «امیدواریم که کار ما انگیزهبخش مطالعات بیشتر شبکههای جهان-کوچک بشه!» شاید در بستر تاریخ، هیچ گزارهای اینقدر پیشگویانه نبوده باشه!
حدود۳۳۰ سال پیش، نیوتون با انتشار شاهکار خود، اصول ریاضی فلسفه طبیعی، نگاهی جدید نسبت به بررسی طبیعت را معرفی کرد. نگاه نیوتون به علم به کمک نظریه الکترومغناطیس که توسط مکسول جمع بندی و در نهایت توسط آلبرت اینشتین کامل شد، شالوده فیزیککلاسیک را بنا نهاد. انقلاب بعدی علم، توسط مکانیک کوانتومی رخداد. آنچه که مکانیک کوانتومی در قرن ۲۰ میلادی نشانه گرفت، مسئله موضعیت در فیزیک کلاسیک و نگاه احتمالاتی به طبیعت بود. نگاهی که سرانجام منجر به پارادایمی جدید در علم، به عنوان فیزیک مدرن شد. با این وجود، علیرغم پیشرفتهای خارقالعاده در فیزیک و سایر علوم، کماکان در توجیه بسیاری از پدیدهها ناتوان ماندهایم. پدیدههایی که همیشه اطرافمان حاضر بودهاند ولی هیچموقع قادر به توجیه رفتار آنها نبودهایم. بنابراین، میتوان به این فکر کرد که شاید در نگاه ما به طبیعت و مسائل علمی، نقصی وجود داشته باشد. به دیگر سخن، بعید نیست که مجددا نیاز به بازنگری در نگاهمان به طبیعت (تغییر پارادایم) داشته باشیم؛ عدهی زیادی معتقدند آنچه که در قرن ۲۱ام نیاز است، نگاهی جدید به مبانی علم است؛ نگاه پیچیدگی!
گاهی گفته میشود که ایده پیچیدگی، بخشی از چهارچوب اتحاد بخشی برای علم و انقلابی در فهم ما از سیستمهایی مانند مغز انسان یا اقتصاد جهانی است که رفتار آنها بهسختی قابل پیشبینی و کنترل است. به همین خاطر، سوالی مطرح میشود؛ آیا چیزی به عنوان «علم پیچیدگی» وجود دارد یا اینکه پیچیدگی متناظر با هر شاخهای از علم، دارای شیوه خاص خود است و مردم در رشتههای مختلف مشغول سر و کله زدن با سیستمهای پیچیده زمینه کاری خود هستند؟! به عبارت دیگر، آیا یک پدیده طبیعی مجرد به اسم پیچیدگی، به عنوان بخشی از یک نظریه خاص علمی در سیستمهای متنوع فیزیکی (شامل موجودات زنده) وجود دارد یا اینکه ممکن است سیستمهای پیچده گوناگونی بدون هیچ وجه مشترک وجود داشته باشند؟! بنابراین، مهمترین سوالی که در زمینه پیچیدگی میتوانیم بپرسیم این است که، به راستی پیچیدگی چیست؟ و در صورت وجود پاسخ مناسب به این پرسش، به دنبال این باشیم که آیا برای تمام علوم یک نوع پیچیدگی وجود دارد یا اینکه پیچیدگی وابسته به حوزه مورد مطالعه است!
در مورد تعریف پیچیدگی، هنوز اتفاق نظری بین متخصصان یک رشته خاص، مانند فیزیک، وجود ندارد، چه برسد به تعاریفی که در رشتههای متنوع مطرح میشود. این تعاریف در ادامه نقد و بررسی میشوند. با این وجود، مشترکات زیادی در بین تعاریف موجود وجود دارد که برای شروع بحث، مرور آنها خالی از لطف نیست:
برای ما، پیچیدگی به معنای وجود ساختار به همراه تغییرات است. (۱)
از یک جهت، سیستمپیچیده، سیستمی است که تحول آن شدیدا به شرایط اولیه و یا اختلالهای کوچک حساس است. سیستمی شامل تعداد زیادی قسمتِ مستقلِ درحالِ برهمکنش با یکدیگر که میتواند مسیرهای مختلفی برای تحولش را بپیماید. توصیف تحلیلی چنین سیستمی قاعتدا نیاز به معادلات دیفرانسیل غیرخطی دارد. از جهت دیگر، میتوانیم نگاهی غیررسمی داشته باشیم، به این معنا که اگر بخواهیم قضاوتی داشته باشیم، سیستم «بغرنج (complicated) » است و قابلیت اینکه دقیقا به طور تحلیلی یا نوع دیگری توصیف شود وجود نداشته باشد.(۲)
به طور کلی، صفت «پیچیده»، سیستم و یا مولفهای را توصیف میکند که فهم یا تغییر طراحی و/یا عملکرد آن دشوار باشد. پیچیدگی توسط عواملی چون تعداد مولفههای سازنده و روابط غیربدیهی بین آنها، تعداد و روابط غیربدیهی شاخههای شرطی، میزان تودرتو بودن و نوع ساختمان داده است. (۳)
نظریه پیچیدگی بیان میکند که جمعیت زیادی از اجزا، میتوانند به سمت تودهها خودسازماندهی کنند و منجر به ایجاد الگو، ذخیره اطلاعات و مشارکت در تصمیمگیری جمعی شوند. (۴)
پیچیدگی در الگوهای طبیعی نمایانگر دو مشخصه کلیدی است؛ الگوهای طبیعی حاصل از پردازشهای غیرخطی، آنهایی که ویژگیهای محیطی که در آن عمل میکنند یا شدیدا جفتشدهاند را اصلاح میکنند و الگوهای طبیعی که در سیستمهایی شکل میگیرند که یا باز هستند یا توسط تبادل انرژی، تکانه، ماده یا اطلاعات توسط مرزها از تعادل خارج شدهاند. (۵)
یک سیستم پیچیده، دقیقا سیستمی است که برهمکنشهای چندگانهای بین عناصر متفاوت آن وجود دارد. (۶)
سیستمهای پیچیده، سیستمهایی با تعداد اعضای بالایی هستند که نسبت به الگوهایی که اعضای آن میسازند، سازگار میشوند یا واکنش نشان میدهند. (۷)
در سالهای اخیر، جامعه علمی، عبارت کلیدی «سیستم پیچیده» را برای توصیف پدیدهها، ساختار، تجمعها، موجودات زنده و مسائلی که چنین موضوع مشترکی دارند را مطرح کرده است: ۱) آنها ذاتا بغرنج و تودرتو هستند. ۲) آنها به ندرت کاملا تعینی هستند. ۳) مدلهای ریاضی این گونه سیستمها معمولا پیچیده و شامل رفتار غیرخطی، بدوضع (ill-posed) یا آشوبناک هستند. ۴) این سیستمها متمایل به بروز رفتارهای غیرمنتظره (رفتارهاری ظهوریافته) هستند. (۸)
پیچیدگی زمانی آغاز میشود که علیت نقض میشود! (۹)
برای آشنایی بیشتر به این پروژه سر بزنید!
در مورد تعاریف فوق ابهاماتی وجود دارد؛ در (۱) باید ساختار و تغییرات را به درستی و دقت معنا کنیم. در (۲) باید به دنبال تلفیق سیستمهای پیچده و مفاهیمی چون غیرخطی، آشوبناک و بسذرهای بودن باشیم و به درستی مشخص کنیم که آیا این ویژگیها شرط لازم / کافی برای یک سیستم پیچیده هستند یا نه. (۳) و (۴) مفاهیم محاسباتی و موضوعاتی از علم کامپیوتر را مطرح میکند که به خودیخود مسائل چالشبرانگیزی هستند! (۵) ایده مرکزی غیرخطی بودن را مطرح میکند؛ در ادامه میبینیم با این که تعداد زیادی از سیستمهای پیچیده از ویژگی غیرخطی بودن تبعیت میکنند، با این وجود غیرخطی بودن نه شرط لازم و نه شرط کافی برای پیچیدگی است. در مورد (۶) و (۷) نیز باید تاکید کنیم که بسذرهای بودن و شامل اعضا/عناصر/مولفه/افراد زیادی بودن نیز شرط کافی برای پیچیدگی نیست. در ادامه خواهیم دید، تعریف (۸) که ایدهی پدیدارگی (ظهوریافتگی یا برآمدگی: Emergence) را مطرح میکند میتواند مفهومی بسیار گیجکننده باشد برای اینکه به کمک آن بتوانیم سیستمهای پیچیده را تمیز و تشخیص دهیم. در مورد تعریف (۹) باید بحث زیادی کنیم چرا که افراد زیادی در برابر نقص علیت ناراحت خواهند شد! به همین دلیل است که گاهی درک سیستمهای پیچیده برای مردم دشوار است. بنابراین با توجه به ابهامات تعاریف افراد مختلف در حوزههای گوناگون علم، بهتر از است که مفاهیم وابسته به پیچیدگی را بررسی کنیم.