سرخسها گیاهانی هستند که شکلی هندسی خاصی دارند. اگر قسمتی از آنها را جدا کنید، با کمی دوران و بزرگنمایی میتوانید قسمت دیگری را بازسازی کنید. این ویژگی هندسی فرکتالها است. در مورد هندسه فرکتالی و کاربرد آن در فیزیک نکات جالبی وجود دارد. مثلا به نوشتههای زیر سر بزنید:
تصمیم گرفتم تا جایی که میتوانم، مسیر یادگیری سیستمهای پیچیده را برای علاقمندانی که جرات یادگرفتن و شهامت حرکت کردن بیرون از مرزهای تعریف شده علوم را دارند را هموار کنم. برای شروع قصد دارم چند جلسه کلاس/سمینار در دانشگاه شهید بهشتی (تهران) برگزار کنم. ایده اصلی این جلسات لکچرهایی پیرامون مفاهیم اصلی سیستمهای پیچیده است بیآنکه وارد جزئیات ریز آن شوم. میخواهم طی این جلسات افراد با پیشزمینههای مختلف با ایدههای اصلی آشنا شوند.
فیزیک نیوتون و موضوعات مربوط به حساب دیفرانسیل و انتگرال که غالب تفکر علمی سه سده گذشته را تشکیل دادهاند بر این ایده استوار هستند که هر چه مقیاس فضایی یا زمانی یک سیستم فیزیکی را ریزتر و ریزتر کنیم، با سیستمی سادهتر، هموارتر و با جزئیات کمتری روبهرو میشویم. ملاحظات دقیقتری نشان میدهد که ساختار ریزمقیاس سیارات، مواد و اتمها بدون جزئیات نیست. با این وجود، برای بسیاری از مسائل، چنین جزئیاتی در مقیاسهای بزرگتر نامرتبط به حساب میآیند. از آنجا که این جزئیات مهم نیستند، فرموله کردن نظریهها به شیوهای که اصلا جزئیاتی وجود نداشته باشد منجر به همان نتایجی میشود که با در نظر گرفتن توصیف دقیقی از سیستم میتوان به آنها رسید.
میدانیم در رویارویی با سیستمهای پیچیده، هموار کردن پیدرپی سیستم در مقیاسهای ریزتر معمولا نقطه شروع مناسبی برای مطالعه سیستم به طور ریاضیاتی نیست. درک این موضوع، تغییر چشمگیری را در بنیادهای فکری ما به همراه داشته است.
در این سخنرانی ابتدا فرکتالها، به عنوان موجوداتی که در مقیاس ریزتر جزئیاتشان را از دست نمیدهند را معرفی میکنیم. سپس بیآنکه سراغ جعبه ابزار نظریه میدانهای کوانتومی رویم، ایده بازبهنجارش را به عنوان چارچوب جامعتری برای مطالعه رفتار سیستمها در مقیاسهای مختلف و چگونگی ارتباط این رفتارها مطرح میکنیم.