قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستمهای پیچیده است. با نظریه اطلاعات و پردازش تصویر آغاز میکنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانهبندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایدههای جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرینهای پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.
با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.
هفته اول: مقدمه
یک تصویر جِیپِگ (JPEG) چه ربطی به اقتصاد یا گرانش کوانتومی دارد؟ برای پاسخ به این پرسش باید به این نکته توجه کنیم که هر سه اینها در مورد این هستند که چه میشود وقتی توصیفهایمان از دنیا را سادهسازی کنیم!؟ JPEG با دور ریختن ساختار ریز، یک تصویر را به نحوی فشرده میکند که با یک نگاه گذرا جزئیات دور ریخته شده قابل شناسایی نباشد. اقتصاددانان هم با چشمپوشی از جزئیات روانشناسی هر فرد، در مورد رفتار انسانها نظریهپردازی میکنند. در این میان، یادآوری کنیم که حتی سطحبالاترین آزمایشهای ما در فیزیک نمیتوانند به ما بنیادیترین عناصر سازنده ماده را نشان دهند و نظریههایمان برای تطابق با آزمایشها ناگزیر به این هستند که برخی از جزئیات در مقیاسهای بسیار ریز را محو کنند.
ایده بازبهنجارش در مورد همین چیزها است؛ مطالعه نظریهها هنگامی که از مقیاسی به مقیاس دیگر میروند.
۲۵امین گردهمایی انجمن علمی ژرفا با موضوع سیستمهای پیچیده با همکاری انجمنهای علمی فیزیک، همبند، شناسا از دانشگاه صنعتی شریف و مرکز شبکههای پیچیده و علم دادهٔ اجتماعی دانشگاه شهید بهشتی در تاریخ ۲۴ام اردیبهشت ماه سال ۱۳۹۸ برگزار شد.
💰 اقتصاد و فیزیک سیستمهای پیچیده – دکتر سامان مقیمی
🧠 مغز از پیچیده تا بغرنج – دکتر عبدالحسین عباسیان
🧬 پیچیدگی زیستی: در جستجوی تصویری واقعبینانه از ژنوتیپ و شایستگی – دکتر عطا کالیراد
قبلتر برای بچههای سالهای اول، دوم و سوم لیسانس فیزیک، یک سری کتاب و کورس برای درسهای مختلف معرفی کرده بودم. اما هیچوقت در مورد ترمودینامیک و مکانیک آماری ننوشتم. راستش دلیل اصلیم هم این بود که هیچ کتابی رو پیدا نکردم که اکثر موضوعات رو به خوبی توضیح داده باشه و همینطور اون ایدههای درخشان و جذاب ترمودینامیک رو هم به خوبی مطرح کرده باشه. از طرف دیگه، یه کتاب خوب از نظر من کتابیه که مسئلههای چالش برانگیز و جدی هم داشته باشه. به همین خاطر همیشه از اینکه پیشنهادی در مورد ترمودینامیک یا مکانیک آماری داشته باشیم دوری کردم.
با این وجود، اکثر صاحبنظران معتقدند که ترمودینامیک و مکانیک آماری خیلی مهمه! خیلی! به قول ساسکیند تمام کلهگندههای فیزیک، استادبزرگ فیزیک آماری بودند؛ از آینشتین گرفته تا فاینمن تا خود ساسکیند 🙂 ترمودینامیک پر از مفاهیم نابه که معمولا توی دوره لیسانس پشت حجم انبوه ابزارها مخفی میشه و دانشجوها اون درک لازم رو نمیتونند پیدا کنند. برای همین هم کاملا طبیعیه که بچهها از این درس خوششون نیاد. تجربه شخصی خودم از روبهرو شدن با ترمودینامیک برای اولین مرتبه لااقل چیز خوبی نبود! بدون تعارف، دانشجوی فیزیک نیومده فقط یه مشت ابزار یادبگیره و سعی کنه مثل یک مهندس فکر کنه. شخصا متنفرم از اینکه درس ترمودینامیک در دانشکده فیزیک به همون شکلی ارائه بشه که در دانشکده شیمی یا مهندسی مواد ارائه میشه! چیزی که توی ترمودینامیک مهمه این نیست که یه ماشین گرمایی با فلان بازده طبق بهمان چرخه کار میکنه یا اینکه طی چه سازوکاری میشه فلانقدر گرما از این طرف اتاق به اون طرف اتاق منتقل کرد. یعنی اینها مهم هستند، ولی چیزهای بسیار مهمتری هم وجود داره. چیزهایی که ارزش ترمودینامیک رو به عنوان جامعترین نظریه فیزیک مشخص میکنه. فراموش نکنید که ما برای یک پیستون گاز، یک غشا سلولی و یک سیاهچاله ترمودینامیک مینویسیم.
مفاهیمی مثل انتروپی و اطلاعات امروز معانی خیلی خیلی گستردهتری نسبت به قبل پیدا کردن. کلاس خوب ترمودینامیک کلاسی هست که شخص درک درستی از این مفاهیم پیدا کنه. معمولا توی کلاسهای ترمودینامیک به سادگی از کنار پارادوکسهای هیجانانگیز ترمودینامیک گذشته میشه، در صورتی که تمام بامزگی ماجرا همین پارادوکسها و راههای برطرف کردنشونه.
🎶 فایل صوتی «آشوب، پیچیدگی و انتروپی» در کافه فیزیک دانشگاه شهیدبهشتی
با وجود همه چیزهایی که گفتم، به نظر من ترمودینامیک مهمه چون برای اولین بار دانشجوی فیزیک با یک «نظریه موثر» آشنا میشه و یاد میگیره که توی فیزیک میشه بدون اینکه جزئیات ریز سیستم رو دونست، در مورد مشاهدهپذیرهای بزرگمقیاس صحبت کرد. یادآوری کنم که توی ترمودینامیک یک گاز رو به عنوان یک سیستم در نظر میگیریم، به عنوان یک «کل» و با سه تا پارامتر دما، فشار و حجم در موردش صحبت میکنیم. به عبارت دیگه برامون مهم نیست که این گاز از چه اجزائی ساخته شده و این اجزا با همدیگه چهطور و با چه جزئیاتی برهمکنش میکنند. کل این سیستم بسذرهای رو به کمک سه تا پارامتر که معمولا توسط یک قید مثل معادله حالت بهم وابسته شده توصیف میکنیم، نظریه هم به خوبی کار میکنه والسلام! بههمین خاطر اگه فرد این نوع نگاه رو به ترمودینامیک بفهمه اون موقع انتظار میره که درک کنه که چرا یک اقتصاد خرد داریم و یک اقتصاد کلان و ربطشون بهم چیه!
بعدها بهطور مفصل در مورد مفهوم نظریه موثر خواهم نوشت، انشالله!فعلا این ویدیو رو ببینید! با این مقدمه بد نیست که یک سری پیشنهاد برای یادگیری ترمودینامیک و مکانیک آماری داشته باشیم. خوشحال میشم که تجربههای شما رو هم بدونم.
سرطان به عنوان یکی از بیماریهای که این روزها نامش بر سرزبانها افتاده است، نامی است که به مجموعهای از بیماریهایی اطلاق میشود که از تکثیر مهارنشده سلولها پدید میآیند. سرطان عموما به عنوان بیماری ژنها شناخته میشود؛ به این معنا که تغییرات ژنتیکی میتوانند منجر به بروز این عارضه شود. از سوی دیگر، تلاشهای صورت گرفته پیرامون کنترل و درمان سرطان عمدتا بر اساس شناخت ژنهای موثر در سرطانهای مختلف، تاکنون با چالشهای زیادی همراه بوده است. در نگاه پیچیدگی، حرکتهای جمعی برآمده از برهمکنشهای یک سیستم بسذرهای (سلول) تنها با مطالعه اجزای آن سیستم (ژنها) قابل توصیف نیست و با دانستن اینکه هر جز (ژن) چگونه کار میکند، نمیتوان درک کاملی از مقیاسی بزرگتر (سلول) با سازماندهی مرتبه-بالاتری پیدا کرد. در مورد ژنها میدانیم که بیان هر ژن بر بیان سایر ژنها اثر میگذارد و وجود این همبستگیها سبب تشکیل یک حرکت جمعی میشود که خود باعث اثر گذاشتن روی بیان سایر ژنها میشود. هدف این مطالعه، نگاهی پدیدارشناسانه به سرطان سینه و مقایسه رفتار جمعی ژنها در نمونه سالم و سرطانی است. با در نظر گرفتن سلول به عنوان یک سیستم پیچیده، میخواهیم شبکه پیچیدهای که در پس این سیستم نشسته است را مورد مطالعه قرار دهیم به امید این که درک بهتری از سرطان از نگاه پیچیدگی پیدا کنیم.
بدین منظور، با در نظر گرفتن هر ژن به عنوان یک اسپین و برهمکنش ژن با ژن به عنوان ضریب جفتشدگی بین دو اسپین متناظر با آنها در یک مدل شیشه-اسپینی (مدل گاوسی چند متغیره)، به دنبال استنباط این ضرایب هستیم. برای این کار با استفاده از اصل بیشینه آنتروپی، ماتریس برهمکنش را برای نمونه سالم و سرطانی یافته و از روی آن شبکه تنظیم ژن را برای دو نمونه بازسازی میکنیم. این شبکهها، دارای یالهایی با وزنهای مثبت و منفی هستند، بنابراین میتوانیم در چارچوب نظریه توازن به این شبکهها انرژی نسبت دهیم و تمایل شبکهها نسبت به تغییر وضعیتشان را مورد بررسی قرار دهیم. نتایج ما نشان میدهد که توزیع مثلثهای ایجاد شده در شبکه از یک الگوی توانی پیروی میکند. از نقطه نظر چشمانداز انرژی، انرژی شبکه سالم از شبکه سرطانی بیشتر است و این به معنای پویایی بیشتر سلول سالم نسبت به سرطانی است. شبکه سرطانی تمایل کمتری نسبت به تغییر وضعیت خود دارد و به همین خاطر دسترسی کمتری به وضعیتهای قابل دسترس خود پیدا میکند. از سوی دیگر، در شبکه سرطانی، تعداد یال بیشتری دیده میشود. وجود یال بیشتر، به معنای ارتباط بیشتر بین اجزا و تاثیر بر دینامیک سلول است. رهیافت دنبالشده در این مطالعه به ما در یافتن درک بهتری از سلول به عنوان یک سیستم پیچیده کمک میکند.