خبر برنده شدن مدال فیلدز توسط خانم میرزاخانی همه‌ی ماها رو خوشحال و خانم‌ها رو ،به طور ویژه‌،  نسبت به علم با انگیزه تر کرد! خوبه که یادی کنیم از همه خانم‌هایی که با سختی‌های که بوده و هست وارد علم شدند و البته تاثیر هم گذاشتند. این پست رو تقدیم می‌کنم به همه‌ی بانوان تاریخ علم، خانم‌هایی مثل لیزه مایتنر، الن سوالو ریچاردز، ماری کوری و به ویژه خانم امی نودر!

توی این پست قصد دارم ضمن صحبت در مورد قضیه نٌودِر گریزی هم به زندگی ایشون بزنم. بهتره با یک ویدئوی کوتاه ، کمتر از ۳ دقیقه‌، شروع کنیم! برای این کلیپ زیرنویس فارسی هم گذاشتم، فقط به خاطر علاقه‌ی زیاد به شما فارسی زبانان 😉

ماجرا از اینجا شروع میشه که ما همه‌جا با تقارن سروکار داریم. از ساختار بدن خودمون گرفته تا اشکالی که توی طبیعت هست، معماری‌های قدیمی و مدرن،فرش زیرپامون، وسایلی مثل تلفن همراه و … . تقارن توی هنر ارزش خاصی داره مخصوصا توی

گنبد متقارن مسجد شیخ‌لطف‌الله، اصفهان

گنبد متقارن مسجد شیخ‌لطف‌الله، اصفهان

هنر اسلامی. اکثر مساجد درون و بیرونشون کاملا متقارن ساخته میشه! پپیشنهاد میکنم نوشته‌ی «گفتگو با استاد» از کتاب «اطاق آبی» سهراب سپهری رو بخونید! توی این نوشته، سپهری در مورد تقارن در نقاشی با یکی از اساتیدش بحث می‌کنه.

خب برگردیم سراغ علم! توی ریاضیات و فیزیک هم تقارن اهمیت خاصی داره،‌ یکی از کارهای فیزیک‌دان‌ها پیدا کردن تقارنه! هر چند که شکستن تقارن هم خودش یه موضوع خیلی جالب و چالشی هست ولی موضوع این پست نیست. (نگاه کنید به مقاله‌ی «بیشتر متفاوت است» آقای اندرسون!) همین‌طور برای فیزیک‌دان‌‌ها اهمیت داره که بدونند که چه چیزهایی ثابت هستند و به بیان بهتر، فیزیک‌دان‌ها دوست دارند بدونند که چه کمیت‌هایی پایسته (پایستار) هستند. حتما اسم قانون‌هایی مثل پایستگی انرژی به گوشتون خورده حتی اگر اهل فیزیک نباشید!

حالا با این مقدمه‌ای که گفتم فکر کنید که یک نفر پیدا بشه و «تقارن» و «پایستگی» کمیت‌ها رو به هم متصل کنه! چه اتفاق فرخنده‌ای خواهد شد! این کار رو خانم امی نودر ریاضی‌دان تاثیرگزار آلمانی در سال ۱۹۱۵ انجام داد، چیزی که به عنوان قضیه‌ی اول

امی نودر، بانوی ریاضیات

امی نودر، بانوی ریاضیات

نودر امروز فیزیک‌دان‌ها میشناسندش. سال ۱۹۱۵ دیوید هیلبرت و فلیکس کلاین از نودر دعوت کردند تا به دانشکده‌ی ریاضی دانشگاه گوتینگن بیاد و به اونها توی فهم نسبیت عام که توسط اینشتین مطرح شده بود کمک کنه. همین جور که ‌می‌دونید نسبیت‌عام یک نظریه‌ی هندسی از گرانشه و بعضی‌ها بر این باورند که اگر اینشتین نسبیت‌عام رو کشف نمی‌کرد، حتما توسط آدم‌هایی مثل هیلبرت و امثال هیلبرت این نظریه کشف می‌شد؛ با این وجود ریاضی‌دان‌ها، فیزیک نمی‌دونستند و سرانجام افتخار این کشف به آینشتاین رسید! دعوت از نودر حاشیه‌های زیادی هم به همراه داشت، از جمله اینکه در اون زمان حضور زن‌ها در دانشگاه مخالفان زیادی داشت ولی هیلبرت محکم جلوی این طرز تفکر نادرست ایستاد و از نودر به خوبی حمایت کرد! قضیه نودر، سال ۱۹۱۵ بیان و اثبات شد ولی نودر تا سال ۱۹۱۸ از انتشار اون خودداری کرد. بعد از این که کار نودر به دست اینشتین رسید، اینشتین نامه‌ای به هیلبرت می‌نویسه و توی اون میگه: «دیروز مقاله‌ای بسیار جالب در مورد ناوردایی از خانم نودر دریافت کردم. من از اینکه این چیزها با این کلیت قابل فهم هستند تحت تاثیر قرار گرفته‌ام! پاسداران قدیمی گوتینگن باید از خانم نودر درس بگیرند، به نظر می‌رسد که او کارش را بلد است!» جالبه که بدونید آدم‌هایی از جمله اینشتین، نودر رو مهم‌ترین خانم در تاریخ ریاضیات خطاب کرده اند!

قضیه نودر بیان میکنه که:

«برای هر تقارن (پیوسته)موجود در یک سامانه، یک کمیت پایستار وجود دارد.»

این قضیه منجر به این شد که دو مقوله‌ی ظاهرا متفاوت بهم متصل بشند و  نتیجه‌ی این وصلت هم، وصل شدن فیزیک نظری به سیستم‌های دینامیکی و بالعکس شد. این قضیه یک ابزار بسیار قدرتمند برای فیزیک وحساب وردشهاست و در مکانیک لاگرانژی و همیلتونی (که فرمالیسمی مشابه با مکانیک نیوتونی هستند) کاربرد اساسی داره. در حقیقت واژه‌ی «تقارن» در صورت قضیه‌ به طور دقیق‌تری، اشاره می‌کنه به هموردایی فورمی که یک قانون فیزیکی نسبت به تبدلات گروه لی دریک بعد (با ارضا کردن شرایط فنی) داره. بد نیست بدونید که معمولا قانون پایستگی برای هر کمیت فیزیکی با یک معادله‌ی پیوستگی بیان میشه که خب مجال توضیحش توی این پست نیست! تغییر نکردن یک کمیت در اثر تحول سیستم (ناوردا باقی موندن) به معنی پایستگی اون کمیت هست و به بیان ریاضی اگر تغییرات یک کمیت نسب به زمان صفر باشه. اون کمیت ثابته: \( dA/dt =0 \)

From left to right, you can see topology (the donut and coffee mug), ascending/descending chains, Noetherian rings (represented in the doodle by the Lasker-Noether theorem), time, group theory, conservation of angular momentum, and continuous symmetries–and the list keeps going on and on from there!

From left to right, you can see topology (the donut and coffee mug), ascending/descending chains, Noetherian rings (represented in the doodle by the Lasker-Noether theorem), time, group theory, conservation of angular momentum, and continuous symmetries–and the list keeps going on and on from there!

اجازه بدید کمی تخصصی تر حرف بزنیم:

توی فرمالیسم مکانیک لاگرانژی برای سادگی بیشتر از مختصات تعمیم یافته استفاده میشه. اگر با مختصات تعمیم‌یافته آشنا نیستید نگران نباشید، ایده‌ی ساده‌ ولی کاربردی هست، توی اکثر کتاب‌های درسی مکانیک کلاسیک (مکانیک تحلیلی) در موردش بحث شده؛ در حالت کلی مختصات تعمیم یافته، می‌تونند چیزهایی غیر از x,y,z باشند،‌ مثلا زاویه! بعد از مشخص شدن مختصات تعمیم یافته، لاگرانژی به صورت اختلاف انرژی جنبشی و پتاسیل سامانه به صورت \(L=T-V , L=L(q,p, t) \) مشخص میشه.  لاگرانژی تابعی از مختصات تعمیم یافته(q)، تکانه‌ی تعمیم یافته (p) ( تکانه تعمیم یافته مشتق زمانی مختصات تعمیم یافته است) و احیانا زمان هم هست. با استفاده از لاگرانژی و استفاده از معادله‌ی اویلر-لاگرانژ می‌تونیم به راحتی معادلات حرکت رو به دست بیاریم.

معادله اویلر-لاگرانژ

معادله اویلر-لاگرانژ

منظور از qنقطه همون مشتق زمانی q یا تکانه تعمیم یافته (p) هست. اندیس k یعنی kامین مختصه‌ی تعمیم یافته و… . حالا اگر تغییرات لاگرانژی نسبت به یکی از اون مختصات تعمیم یافته صفر باشه، یعنی طرف راست معادله صفر باشه ، اون‌موقع طرف چپ معادله هم صفر میشه و این یعنی تغییرات لاگرانژی نسبت به تکانه‌ی تعمیم یافته ثابته! اویلر-لاگرانژ۲

خب حالا این یعنی چی؟!

مثال۱)‌ فرض کنید که شما یک توپی رو به هوا پرتاب می‌کنید، مختصات تعمیم یافته توی این حالت، همون x,y,z در دستگاه دکارتی هست. برای این توپ لاگرانژی به صورت زیر نوشته میشه:لاگرانژی

همون جوری که می‌بینید توی این لاگرانژی خبری از y , x نیست! پس مشتق L نسبت به y یا x صفر هست که نتیجه‌ش ثابت بودن مشتق L نسبت yنقطه (سرعت در جهت y) و xنقطه (سرعت در جهت x) هست. با حل معادله اویلر-لاگرانژ (حل کنید!) به این می‌رسیم که تکانه در جهت x , y‌ ثابته: لاگرانژی۲

توی این مثال دیدیم که تکانه (حاصل‌ضرب m در xنقطه یا yنقطه) در دو جهت پایسته بود و در صورت لزوم می‌تونیم از قانون پایستگی تکانه‌ هم استفاده کنیم!

مثال۲) فرض کنید که یک ذره در پتانسیلی باشه که فقط به فاصله‌ش از محور z ها وابسته است، اون‌موقع اگر لاگرانژی رو در دستگاه مختصات استوانه‌ای بنویسیم، خواهیم داشت: لاگرانژی۳

می‌بینید که توی لاگرانژی خبر از z  و θ نیست. دوباره با حل معادله اویلر لاگرانژ به این نتیجه میرسیم که تکانه در جهت z و θ پایسته است که این به معنی ثابت بودن تکانه‌ی خطی در جهت z و پایستگی تکانه‌ی زاویه‌ای در جهت θ هست.

خب  ما توی این دو تا مثال به پایستگی دو کمیت به نام‌‌‌های تکانه‌ی خطی و تکانه‌ی زوایه‌ای رسیدیم. طبق قضیه‌ی نودر چیزی که این کمیت‌های پایسته رو به‌وجود اورده، چیزی نیست جز تقارن! توی مثال اول تقارن توی صفحه‌ی xy (صفحه‌ی موازی سطح زمین)وجود داشت. یعنی اینکه فرقی نمی‌کرد که توپ ما در کجای این صفحه بود، مهم این بود که چقدر از زمین بالا یا پایین باشه، به عبارت دیگه تقارنی که در انتقال توپ ما در صفحه xy (یا در جهت x  و جهت y) وجود داشت سبب پایستگی تکانه‌ی خطی در جهت x,y شد! توی مثال دوم هم تنها چیزی که اهمیت داشت انتقال در جهت r یا همون جابه جایی از محور z بود و این اصلا مهم نبود که شما در جهت z یا در جهت θ انتقال یا جابه‌جایی انجام بدین. بنابراین به خاطر تقارن موجود در انتقال در جهت z ، پایستگی تکانه‌ی خطی در جهت z و به خاطر تقارنی که در جهت θ بود پایستگی تکانه‌ی زاویه‌ای در جهت θ داشتیم. یعنی با استفاده از قضیه نودر، بدون حل معادله اویلر-لاگرانژ،می‌تونستیم کمیت‌های پایسته رو از روی لاگرانژی تشخیص بدیم.

به طور خلاصه می‌تونیم این جدول رو داشته باشیم:

Screenshot from 2014-08-17 23:43:15تقارن در زمان یعنی اینکه اگر رفتار سامانه‌ی ما مستقل از زمان باشه به این معنی که هرچقدر زمان بگذره سیستم تغییر نکنه، اون موقع انرژی برای اون ثابت و پایسته است. برای مثال، وقتی شما نوسانگری که درخلا در حال نوسان با دوره‌ی تناوب T هست رو امروز می‌بیند و دوباره فردا هم با همون دوره تناوب می‌بینیدش، یعنی اینکه انرژی برای این نوسانگر پایسته است!

خیلی چیزها خلاصه میشه توی همین قضیه! زمین گرده چون که بیشترین تقارن رو کره داره و این گردی سبب میشه که تکانه‌ی زاویه ای حفظ بشه! همین طور مدار سیاره ها و …

خب در انتها جا داره که یک بار دیگه درود بفرستیم به امی نودر!

معتبرین‌ترین جایزه‌ی علمی دنیا، جایزه‌ی نوبل هست. ولی این جایزه به دلایلی به ریاضیدان‌ها داده نمیشه! در عوض جان چارلز فیلد، ریاضیدان کانادایی ابتکاری زد که هر چهار سال یک بار، به ریاضیدانانی که کمتر از ۴۰سال داشته باشند و یک کار ارزنده و خیلی خوبی توی ریاضیات انجام بدند یک جایزه داده بشه، که این جایزه همون مدال فیلدز هست. مدال فیلدز و جایزه‌ی آبل معتبرترین و مهم‌ترین جایزه‌هایی هستند که یک ریاضیدان ممکنه اون رو ببره و در حقیقت جایگزین جایزه نوبل برای ریاضی هست!

هر دوره این جایزه به دو، سه یا چهار ریاضیدان اهدا میشه. امسال (دیروز اعلام شد) این جایزه به چهار نفر به نام‌های آرتور آویلا، مانجول بارگاوا، مارتین هایرر و مریم میرزاخانی اهدا شد.  با کمال خوشحالی و ذوق بسیار بسیار زیاد، بین این چهار نفر اسم خانم دکتر مریم میرزاخانی هست. که نه تنها موجب خوشحالی و مباهاته بلکه جالب توجه هم هست که ایشون اولین خانم برنده‌ی این جایزه در کل تاریخ هستند! هورا!  

مریم میزراخانی در حال گرفتن مدال فیلدز از دست پارک‌گون‌های رئیس جمهور کره‌جنوبی

مریم میزراخانی در حال گرفتن مدال فیلدز از دست پارک‌گون‌های رئیس جمهور کره‌جنوبی

تبریک میگیم به خانم میرزاخانی و برای ایشون آرزوی سلامتی و موفقیت‌های پی‌درپی داریم! دست مریزاد خانم دکتر 🙂 برنده‌شدن ایشون موجب تشویق بیشتر خانم‌ها به این جایزه شد، مسئولین برگزارکننده خیلی خوشحال بودند و این رو یک دریچه‌ی امید برای دختران و خانم‌های جوان که در ریاضیات فعالیت میکنند دونستند!

مریم میرزاخانی این مدال رو به خاطر کارشون روی «دینامیک و هندسه سطوح ریمانی و فضاهای پیمانه‌ای آنها» که مربوط به هندسه‌ی مختلط میشه برنده شدند.  مسئله‌ی سه جسم (مثل برهمکنش خورشید و زمین و ماه) حل دقیق ریاضی نداره. مریم میزاخانی نشون داد در سیستم‌های دینامیکی که نوع تحولشون به نحوی هست که شکلشون رو می‌چرخونند و کش میارند، مسیرهای سیستم بالاجبار مقیدند که از قوانین جبری پیروی کنند! خلاصه این که مسئله‌‌‌ی سه جسم به یک سرانجام خوبی رسید!

مک‌مولن گفته که دستاورد خانم میرزاخانی «توانایی فوق‌العاده در حل مسئله، دید وسیع در ریاضیات و روان بودن در دیسیپلین‌های زیادی» رو ترکیب کرد که در عصر مدرن واقعا غیرعادیه!

به نقل از ویکی‌پدیا:

مریم میرزاخانی (زاده ۱۹۷۷ریاضیدان ایرانی و استاد دانشگاه استنفورد است. او طی تحصیل در دبیرستان فرزانگان تهران در سال‌های ۱۹۹۴ (هنگ‌کنگ) و ۱۹۹۵ (کانادا) برنده مدال طلا در المپیاد جهانی ریاضی و در این سال حایز نمره کامل شد. سپس کارشناسی ارشد خود را در رشته ریاضی از دانشگاه شریف گرفت و برای ادامه تحصیل دکترا به دانشگاه هاروارد رفت. از مریم میرزاخانی به عنوان یکی از ده ذهنِ جوان برگزیده سال ۲۰۰۵ از سوی نشریه پاپیولار ساینس در آمریکاو ذهن برتر در رشته ریاضیات تجلیل شد. میرزاخانی برنده جوایزی چون جایزه ستر از انجمن ریاضی آمریکا در سال ۲۰۱۳، جایزه کلی و مدال فیلدز در سال ۲۰۱۴ است. وی از یازدهم شهریور ماه ۱۳۸۷ (اول سپتامبر ۲۰۰۸) در دانشگاه استنفورد استاد دانشگاه و پژوهشگر رشته ریاضیات است. پیش از این، او استاد دانشگاه پرینستون بود.

این ویدیو ها رو ببینید:

توی قسمت قبلی دیدیم که اگر هر تابع f رو داشته باشیم می‌تونیم برای اون تابع مجموعه‌ی ژولیای مربوط به اون رو پیدا کنیم که خب یکمی از کامپیوتر هم کمک گرفتیم. کار ما این بود که یک تابع رو بر می‌داشتیم شرایط اولیه‌ای (یک سری نقطه توی فضای مختلطی (موهومی)) بهش می‌دادیم، مقدار تابع رو به ازای اون شرایط اولیه به دست می‌اوردیم و همین طور دوباره این مقدار رو به تابع می‌دادیم و این روند رو ادامه میدادیم تا ببینیم آیا شرایط اولیه‌ای که انتخاب کردیم به بی‌نهایت میل میکنه یا نه، اگر نمی‌کرد اون موقع مجموعه‌ی ژولیا اون تابع رو تشکیل میداد.  همین طور گفتیم که از بین همه‌ی توابع، توابعی که به صورت چندجمله‌ای های مربعی می‌باشند بیشتر مشهور هستند؛ توابعی با فورم: $$f(z)=z^2 +c$$توی این پست در مورد علت این شهرت توضیح میدم؛

تابع ${f(z)=z^2 +c}$ رو در نظر بگیرید؛ فراموش نکنید که c می‌تونه هر عددی – ولی حتما مختلط – باشه. حالا اگر با نقطه‌ی z=0 شروع کنیم، به این دنباله‌ می‌رسیم:

  $$  c , c² + c , (c²+c)² + c , ((c²+c)²+c)² + c , (((c²+c)²+c)²+c)² + c , …$$

اگر این دنباله واگرا نباشه، یعنی اگر c هایی انتخاب کنیم که در نهایت این دنباله به بی‌نهایت نرسه اون موقع مجموعه‌ی ژولیایی که توسط این cها برای تابع  ${f(z)=z^2 +c}$ ساخته میشه، «همبند» هست. احتمالای توی نظریه‌ی گراف با مفهموم همبند بودن آشنا شدین (معمولا سال آخر دبیرستان بچه‌های رشته‌ی ریاضی فیزیک نظریه‌ی گراف رو توی درس ریاضیات گسسته می‌خونند!) اگر نشدین، همبند بودن یک جور مفهموم متصل بودن رو داره، وقتی یک گراف یا شبکه‌ای همبند باشه اونموقع اگر شما از یک نقطه‌ای شروع به حرکت کردید، می‌تونید به هر نقطه‌ای که دلتون می‌خواد برید وبدون اینکه جایی مسیرتون قطع بشه. خلاصه این که اگر دنباله‌ای که ساختیم واگرا

مجموعه مندلبرو

نشد اون موقع ما یک مجموعه‌ی ژولیای همبند می‌تونیم بسازیم. (اثبات این مطلب فراتر از حوصله‌ی ماست!) خب حالا این مجموعه‌ی ژولیای همبند به چه دردی می‌خوره آیا؟! اجازه بدید تا یک مجموعه‌ی جدید معرفی کنیم به نام «مجموعه‌ی مندلبرو».

«مجموعه مندلبرو شامل نقاطی (c) از صفحه‌ی مختلط هست که به ازای آن ها مجموعه‌ی ژولیا تابع ${f(z)=z^2 +c}$ همبند باشد.»

شما می‌تونید یک برنامه بنویسید تا براتون مقادیری که C ممکنه بگیره رو پیدا کنه ولی یک نکته‌ای هست و اون اینه که همه‌ی مجموعه‌های ژولیا همبند شامل نقطه‌ی 0 = 0+ z= 0i  هستند! بنابراین «اربیت» یا «چرخش» یا «تکرار» مبدا برای این دسته از مجموعه ها، همیشه باید یک مقدار کران‌دار باشه و به بی‌نهایت میل نکنه، پس نقطه‌ی صفر در همه‌ی مجموعه‌های ژولیای همبند صدق میکنه. به طور مشابه در همه‌ی مجموعه‌های ژولیای ناهمبند نقطه‌ی صفر وجود نداره! خب این یک سنگ محکی شد برای تشخیص اینکه آیا نقطه c دلخواهی عضو مجموعه‌ی مندلبرو هست یا نه! یعنی کافیه تا ما «اربیت» یا «چرخش» یا «تکرار» نقطه‌ی z=0 رو برای تابع  ${f(z)=z^2 +c}$ بررسی کنیم، اگر مقادیری که به دست میاند (همون «اربیت» یا «چرخش») کران‌دار باشند اون موقع اون c مورد نظر ما عضو مجموعه مندلبرو هست ولی اگر به بی‌نهایت میل کنه اون‌موقع اون c دیگه عضو مجموعه مندلبرو نیست! شرمنده 😀

مندلبرو در حال کار در IBM

مجموعه‌ی مندلبرو یکی از موضوعات دینامیک مختلطه که برای اولین بار ایده‌ش اوایل قرن بیستم توسط ریاضی‌دانان فرانسوی بهنام «فاتو» و«ژولیا» مطرح شد. اون موقع‌ها هنوز کامپیوتر زیاد رونق نداشت برای همین مثلا فاتو نتونست شهود و تصویر خوبی از این مجموعه ارائه بده. تا اینکه مندلبرو اول مارس ۱۹۸۰(اواخر قرن بیستم!) به لطف کامپیوترهای شرکت IBM تونست این کار رو انجام بده و بعدش هم این موضوع رو گسترش زیادی داد. آدم‌های زیادی بعد از مندلبرو روی این موضوع کار کردند ولی به خاطر خدمات مندلبرو یا به احترام مندلبرو، اسم این مجوعه رو «مجموعه مندلبرو» گذاشتند!

این مجموعه در حقیقت یک فرکتال هست با مرز بسیار بسیار پیچیده، جوری که شیشیکورا ثابت کرد (۱۹۹۸) که بعد این مرز ۲ هست! این فرکتال برخلاف مجموعه‌ی ژولیا کاملا خودمتشابه نیست و اگر روی شکل زوم کنید این رو به راحتی متوجه خواهید شد!

همین طور این مجموعه توی صفحه‌ی مختلط، توی دیسکی یه شعاع ۲ قرار میگیره و  تقاطع اون با محور حقیقی بازه [۰/۲۵, ۲-] هست. حدودا دو سال پیش مساحت مجموعه مندلبرو 0.0000000028 ± 1.5065918849 واحدمربع تخمین زده شد! پیشنهاد می‌کنم حتما به صفحه‌ی ویکی پدیای این مجوعه عجیب و غریب  سر بزنید، مخصوصا اگر دوست دارید که الگوریتم‌هایی که برای تولید این دسته از فرکتال‌ها مورد استفاده قرار می‌گیرند چه جوری هستند!

برای مطالعه، پیشنهاد میکنم کتاب زیر رو بخونید، خیلی خوب توضیح داده هم فرکتال‌ها رو هم آشوب رو!

David P. Feldman, Chaos and Fractals, An Elementary Introduction, Oxford University

به عنوان حسن ختام، یک جمله از مندلبرو رو نقل میکنم (از سخنرانی تد ۲۰۱۰) : «خب، اجازه دهید تمام کنم. این شکل در اینجا تنها از یک تمرین در ریاضیات محض بوجود آمد. ظهور شگفتی های بی پایان از قواعد ساده، که بی نهایت تکرار می شوند.»

«حالا، اینجا چیز دیگری است که نسبتا جالب است. یکی از مخرب ترین رویدادها در تاریخ ریاضیات، که توسط بسیاری از مردم درک نشده، در حدود ۱۳۰ سال پیش رخ داده است، ۱۴۵سال پیش. ریاضیدانان شروع به خلق اشکالی که وجود نداشتند کردند. ریاضیدانان شروع به خودستایی کردند به حد مطلقا شگفت انگیزی که انسان بتواند چیزهایی را اختراع کند که طبیعت نمی دانست. به طور خاص، توانست چیزهایی اختراع کند مانند یک منحنی که صفحه را پر می کند. یک منحنی، منحنی است، یک صفحه، صفحه است، و این دو ترکیب نخواهند شد. خب، آنها ترکیب می شوند! مردی به نام پیانو چنین منحنی هایی تعریف کرد، و آن موضوع فوق العاده مورد علاقه واقع شد. آن موضوع بسیار مهم، اما بیشتر جالب توجه بود به دلیل یک نوع شکاف، یک جدایی بین ریاضیات آمده از 181883_800x600واقعیت از یک طرف، و از طرف دیگر ریاضیات جدیدی که از ذهن ناب انسان آمده است. خب، من بسیار متاسف بودم برای تذکر اینکه ذهن ناب انسان در حقیقت، آنچه را برای یک مدت طولانی دیده شده بود بالاخره دیده است! و بنابراین من اینجا چیزی را معرفی می کنم، مجموعه ای از جریان های یک منحنی صفحه پر کن…» بنوآ مندلبرو (پدر هندسه‌ی فرکتالی) ، سخنرانی تد ۲۰۱۰

توی پست دوم فرکتال‌ها در مورد بعد (یا ناهمواری) غیرصحیح فرکتال‌ها توضیح دادم. مثلا دیدیم که بعد برف‌دانه‌ای که ساختیم ۱/۴۶ و بعد مثلث سیرپینسکی ۱/۵۸ به دست اومد. حالا فرض کنید که بعد از محاسبه بعد یک فرکتال، اون عدد دقیقا «۲» به دست بیاد! به نظرتون این چه معنی میده؟ اگر این اتفاق بیفته اون موقع فرکتال شما کل صفحه رو پر میکنه! یعنی به ازای هر نقطه از صفحه یک نقطه از فرکتال وجود داره. برای توضیح بیشتر اجازه بدید که وارد موضوع «خم‌های فضا (صفحه) پر کن بشم»:

خم‌های فضا پرکن:

خیلی از اوقات نیازه که مختصات فلان نقطه در فضا رو بدونیم. توی این جور مواقع،‌بسته به نوع مسئله، از دستگاه مختصاتی استفاده می‌کنیم که به کمک اون راحت‌تر بتونیم مختصات نقاط دلخواه رو مشخص کنیم. به عنوان مثال همه‌ی ما از دستگاه مختصات دکارتی (کارتزی) توی دبیرستان استفاده میکردم. دستگاهی که برای مشخص کردن هر نقطه از فضا کافی بود فاصله‌ی فضایی اون نقطه از مبدا (همون x, y, z) رو بدونیم. یا مثلا همه‌ی دانشجوهای فیزیک می‌دونند (یا باید بدونند!) زمانی که توی فضای ۳ بعدی با مسئله‌ی نیروی مرکزگرا مواجه میشند بهتره که از دستگاه مختصات کروی استفاده کنند. توی دستگاه کروی از دو تا زاویه و یک فاصله‌ی شعاعی استفاده میشه تا مختصات هر نقطه از فضا مشخص بشه. شاید رفتن از دستگاه دکارتی به کروی مسئله رو راحت‌تر کنه ولی چیزی که فرق نمی‌کنه اینه که برای توصیف هر نقطه در فضا چه در دستگاه دکارتی و چه در فضای کروی به ۳ تا پارامتر نیاز داریم و تعداد پارامترها تغییر نمی‌کنه! (اگر الان دارید به مختصات تعمیم یافته فکر می‌کنید اولا آفرین، ثانیا لطفا فعلا فراموشش کنید چون من میخوام یه چیز دیگه بگم!) حالا فرض کنید که یک خم با ابتدا و انتهای مشخص دارید. خم یک موجود یک بعدیه که توی یک فضای ۲ بعدی و یا بیشتر جا میشه و زیر مجموعه‌ای از اون فضاست. شما می‌تونید خمتون رو تقسیم بندی کنید (مثل خط کش). اگر نقطه‌ی ابتدایی خمتون رو مبدا در نظر بگیرید (انتخاب این نقطه اختیاری، هر نقطه‌ی دیگه‌ای رو میتونید در نظر بگیرید)، اون موقع مختصات (موقعیت)‌ هر نقطه‌ای از خم رو می‌تونید با استفاده از مبدا و تقسیم بندی که انجام دادید، داشته باشید! مثلا در فاصله ۳ سانتی متری نقطه‌ی A  و در فاصله‌ی ۲.۳۴ سانتی متری نقطه‌ی B قرار داره. این نقاط یکتا هستند، به عبارت دیگه توی یک فاصله‌ی مشخص فقط یک نقطه پیدا

میشه! کاری که انجام دادیم این بوده که هر نقطه از خم رو فقط با «یک» پارامتر مشخص کردیم که خیلی کار خوبیه ولی متاسفانه یه مشکلی هست و اون اینه که ما با این کار فقط مختصات نقاطی که روی خم مورد نظر ما هستند رو تونستیم با یک پارامتر مشخص کنیم و برای بیان مختصات سایر نقاط فضا مجددا به پارامترهای بیشتری نیاز داریم( 🙁 ).

اینجا بود که شخصی به نام پیانو (Giuseppe Peano) تصمیم گرفت که خمی بسازه که کل فضا رو پر کنه، اون موقع میشه مختصات هر نقطه از فضا رو فقط با یک پارامتر مشخص کرد و این یعنی عالی! سه مرحله از ساخت خم پیانو
راستش پیانو این ایده رو از کانتور ریاضیدان بزرگ آلمانی گرفته بود. چون که کانتور قبلا نشون داده بود که: «تعداد (بیشمار) نقاط در یک بازه‌ی بسته برابر با تعداد تقاط در هر فضا با بعد محدوده». این جوری شد که خم‌های فضا پر کن توسط پیانو ساخته شد و به خاطر همین به خم‌های که فضاهای ۲ بعدی (صفحه) رو پر میکنند معمولا میگند خم پیانو. یک سال بعد از مطرح کردن خم‌های فضا پر کن توسط پیانو، دیوید هیلبرت

خم هیلبرت، یک خم صفحه پرکن

خم هیلبرت، یک خم صفحه پرکن

خم‌های فضا پرکن مختلفی رو ارائه داد که فکر کنم این موضوع با کار هیلبرت کامل شد تقریبا! نکته این بود که ریاضی‌دان‌ها فکر میکردند چیزهایی ساختند که واقعا توی دنیا واقعی وجود ندارند و این از ذهن ناب بشر اومده. ولی همین جوری که مندلبرو گفت (ابتدای پست) ریاضی‌دان‌‌ها فقط چیزی رو دیده بودند که برای مدت‌ها‌ی طولانی در طبیعت دیده شده بود! به این صفحه نگاه کنید، فرکتال‌‌های مختلفی با بعد (ناهمواری)های مختلفی رو شامل میشه، از جمله اونهایی که بعدشون صحیح و فضا پر کن هستند!

فرکتال‌های تصادفی:

به برف‌دانه‌ی کخ برگردیم در قسمت اول. مطابق شکل چند مرحله از ساخت این برف‌دانه رو می‌بینیم. شیوه stepsساخت این فرکتال ابتدایی آسونه و قاعده هم داره! یعنی اینکه هر بلایی که سر یک ضلع بیاد سر بقیه اضلاع هم میاد و از اون مهم‌تر هر مرحله‌ای که برای ساخت پیش میریم از «یک» قاعده فقط پیروی میکنیم (اینکه هر پاره‌خط به ۳ قسمت مساوی تقسیم میشه، قسمت وسط دور ریخته میشه و دو قسمت هم اندازه با یکی از اون سه قسمت به شکل اضافه میشه.) در حقیقت ما با یک فرایند کاملا منظم، یک شکل عجیب (در نگاه اول!) رو می‌سازیم. در قسمت اول محیط و مساحت این فرکتال به راحتی حساب شد و همین طور با استفاده از رابطه‌ای که توی قسمت دوم برای محاسبه بعد (ناهمواری) ارائه شد، بعد این فرکتال log۴/log۳ = ۱/۲۶ به دست میاد! پس این یک فرکتال منظم هست. حالا اگر steps۲اینقدر منظم پیش نریم چه اتفاقی می‌افته؟ برای مثال اگر در مرحله‌ی اول که دو قسمت برابر رو اضافه میکنیم و یک مثلث جدید میسازیم سر مثلث رو به بالا باشه و برای مرحله‌ی بعد سرمثلث ها رو به پایین باشه و همین جوری یک در میون عوض بشه اون موقع شکل از این نظم خارج میشه و دیگه توی هر مرحله با یک قاعده سر و کار نداریم. میشه باز بی نظمی رو بیشتر کرد. این دفعه هر مرحله رو که میخوایم انجام بدیم سکه بندازیم مثلا، اگر شیر اومد سر مثلث رو به بالا باشه و اگر خط اومد سر مثلث رو به پایین. با این کار (که هر مرحله مطابق با یک قاعده‌ی تصادفی ما فرکتال رو میسازیم) در نهایت به یک فرکتال غیر ابتدایی می‌رسیم که دیگه واقعا ساده نیست، اسم این فرکتال، فرکتال تصادفیه!
فرکتال های تصادفی بیشتر به شکل‌هایی که توی طبیعت هستند نزدیکند تا فرکتال‌های غیر تصادفی. ولی خب یک سری پیچیدگی ها به این دسته از فرکتال‌ها به خاطر تصادفی

نمونه‌هایی از برف‌دانه‌ی تصادفی کخ

       نمونه‌هایی از برف‌دانه‌ی تصادفی کخ

بودنشون اضافه میشه که بررسی کامل اونها از حوصله شما و سواد من احتمالا خارجه و نیاز به نظریه‌های پیشرفته احتمالات داره. با این وجود فقط به چند نکته درباره‌ی این دسته از فرکتال‌ها اشاره می‌کنم؛

اول اینکه این‌دسته از فرکتال ها دیگه دقیقا خودمتشابه و قطعه های کوچیک‌تر دقیقا مثل کل شکل نیستند! با این وجود شباهت زیادی هنوز وجود داره. به همین خاطر میگند فرکتال‌های تصادفی، به طور آماری خودمتشابه هستند. حقیقت هم اینه که واقعا طبیعت رو باید آماری بررسی کرد، خوشبختانه یا متاسفانه!

از طرف دیگه به خاطر اینکه فرکتال‌های تصادفی به طور آماری خودمتشابه هستند دیگه محاسبه‌ی بعد (ناهمواری) برای این دسته از فرکتال‌ها به این راحتی ها نیست! بعد یک فرکتال غیر تصادفی با بعد همون فرکتال ولی با ساختار تصادفی ممکنه برابر یا نابرابر باشه. مثلا برف‌دانه‌ی کخ و برف‌دانه‌ی تصادفی کخ هر دو داری بعد log۴/log۳ = ۱/۲۶ هستند ولی لزوما در مورد بقیه فرکتال‌ها این برابری وجود نداره!

نکته: فرکتال‌های غیرمعمولی تصادفی نیستد!

درسته که فرکتال‌های تصادفی شکل عجیب و غریبی دارند ولی هر فرکتالی که شکلش برای ما عجیب به نظر برسه لزوما تصادفی نیست؛ ممکنه با یک قاعده‌ی منظمی ساخته شده باشه که به نظر ما تصادفی برسه! کافیه که شکل تقارن خوبی نداشته باشه یا اینکه قاعده‌ی ساختش یکمی پیچیده باشه اون موقع به راحتی میشه گول خورد!

پس مواظب باشید که گول ظاهر فرکتال‌ها رو نخورید 😀 sir irregular sir irregular carpetمثلث و فرش سیرپینسیکی می‌تونند با یک شکل غیرعادی ظاهر بشند، درصورتی که با یک قاعده‌ی کلی ساخته شدند. هر چند که این‌ها تقارن خوبی ندارند ولی تصادفی نیستند!

بازی آشوب:

فرض کنید یک مثلث با رئوس A , B , C داریم. یک نقطه‌ی دلخواه داخل این مثلث انتخاب می‌کنیم و اسمش رو میذاریم نقطه‌ی 0. بعد تاس می‌ریزیم و بسته به این که عددی که اومدی چنده به طرف یکی از رئوس حرکت fhvdمیکنیم، جوری که مثلا اگر عدد ۱ یا۲  اومد به سمت راس A، اگر عدد ۳ یا ۴ اومد به سمت راس B و اگر ۵ یا ۶ اومد به طرف راس C حرکت می‌کنیم. فرض کنید که عدد تاس ۲ هست، پس به طرف راس A حرکت می‌کنیم و  بین نقطه‌ی 0 و راس A نقطه‌ی 1 رو مشخص می‌کنیم. (خط واصل نقطه‌ی 0 و راس A رو رسم می‌کنیم و وسط این پاره خط رو 1 نام گذاری می‌کنیم.) مجددا تاس می‌ریزیم و بسته به این که چه عددی بیاد دوباره مثل قسمت قبل به سمت راس مطلوب می‌ریم و بین اون راس و نقطه‌ی 1 رو 2 نام گذاری می‌کنیم. برای مثال اگر توی این مرحله عدد تاس ۵ باشه باید نقطه‌ی 1 رو به راس C وصل کنیم و وسط این پاره خط رو 2 نام گذاری کنیم. اگراین کار رو همین جوری ادامه بدیم نقاط مختلفی داخل مثلث ایجاد میشه که فعلا به ظاهر چیز به دردبخوری نیستند! ولی اگر این کار رو ۱۰۰ بار یا ۱۰۰۰ بار یا ۱۰۰۰۰۰ بار انجام بدیم به یک شکل آشنا میرسیم، به شکل نگاه کنید:

شکل حاصل پس از ۱۰۰ بار یا ۱۰۰۰ بار یا ۱۰۰۰۰۰ بار (چپ به راست)

شکل حاصل پس از  ۱۰۰۰۰۰بار                                      پس از  ۱۰۰۰ بار                                                        پس از ۱۰۰ بار

خب این فوق‌العاده جالبه! ما با استفاده از یک فرایند کاملا تصادفی (شانسی) به یک چیز کاملا مشخص رسیدیم! این برای شما عجیب نیست؟ ما کاملا الله بختکی تاس ریختیم و نقطه گذاشتیم و رسیدیم به مثلث سیرپینسکی! بازی آشوب اثبات تحلیلی خوبی داره که به نظرم گفتنش اینجا ممکنه حوصله‌تونو سر ببره! اگه از این بازی آشوب خوشتون اومد پیشنهاد میکنم پست امید در مورد حدس زدن عدد پی رو بخونید. هرچند که فرق دارند این دوتا ولی خب نوع هیجانش از یک نوعه! از نوع غافل‌گیری! (نگاه کنید به: «رمالی علمی، یا تخمین عدد پی با پرتاب چوب») پس بازی آشوب به ما نشون داد که یک سیستم دینامیکی تصادفی می‌تونه منجر به نتایج مشخصی بشه و به عبارت دیگه از دل یک فرایند کاملا نامنظم، نظم به وجود میاد! نکته‌ی قابل توجه اینه که اگر ما شانس (تاس ریختن و انتخاب تصادفی هر راس) رو کنار بذاریم و از یک فرایند مشخص استفاده کنیم، مثلا ABCABCABC…اون موقع دیگه به مثلث سیرپینسکی نمی‌رسیم! چیزی که خیلی جالب‌تره

تبدیل آفین

تبدیل آفین، حافظ توازی خطوط

اینه که هرشکلی (چه فرکتالی چه غیرفرکتالی) رو میشه به کمک یک بازی آشوب یا یک بازی آشوب تعمیم یافته ساخت! توی بازی آشوب تعمیم یافته از تبدیلات آفین استفاده میشه. (تبدیلات آفین تبدیلاتی هستند که خطوط موازی هر شکل رو پس از تبدیل موازی نگه می‌دارند). هر حرکت توی بازی آشوب تعمیم یافته یک تبدیل آفینه و شما به کمک این بازی می‌تونید هر شکلی رو که دوست دارید بسازید! به همین سادگی، به همین خوشمزگی! مثلا با یک بازی آشوب تعیمیم یافته با و استفاده از چهارتا تبدیل آفین میشه یک سرخس ساخت! این پست رو با اشاره به یک قضیه‌ به پایان می‌برم؛ قضیه‌ی کلاژ: «برای هر شکلی با هر هندسه‌ای می‌توان یک بازی آشوب ساخت که آن شکل را تولید کند.». این قضیه (و بازی آشوب) پل بین بی‌نظمی و نظم هست. شما از هرج و مرج به نظم و از نظم می‌تونید به هرج و مرج برسید! از کاربردای دیگه‌ی این قضیه فشرده سازی تصاویره. فرض کنید که شما یک فایل تصویری حجیم رو می‌خوایید که برای کسی سرخس، تولید شده با بازی آشوبایمیل کنید و اینترنت خوبی ندارید یا اینکه می‌خوایید از یک شبکه‌ی ضعیف ردش کنید؛ کافیه به جای تصویر، با استفاده از قضیه کلاژ، بازی آشوبی که اون رو تولید میکنه (چند خط کد که کامیپوتر براتون میسازه) بفرستید و شخصی که این بازی رو دریافت میکنه با اجرا کردنش می‌تونه به تصویر مطلوب برسه! پیشنهاد میکنم فیلم «آشوب (۲۰۰۶)» رو ببینید! فیلم علمی نیست ولی توش در مورد بی‌نظمی و اینا حرف زده می‌شه که ممکنه براتون جالب باشه! به نقل از ویکی پدیا: «داستان درباره‌ی یک گروه سارق مسلح است که به بانکی حمله کرده و از حساب فردی سرقت می‌کنند. پلیسانی که به دنبال این افراد هستند عبارتند از یک مامور ابقا شده (زیرا سارقان بانک فقط چنین بازرس معلق شده‌ای را قبول دارند، با بازی جیسون استاتهام) و دستیارش که فرزند یک پلیس اسطوره‌ای است. دستیار متوجه می شود که سارقان به طور رمزی از نظریه آشوب حرف می‌زنند و با دقت بیشتری تمام مدارک را بررسی می‌کند تا به این نتیجه می‌رسد که باید به دنبال چه افراد سابق‌داری برود. او متوجه می‌شود هدف آنها سرقت یک میلیارد دلار پول بوده که از طریق ویروس‌های کامپیوتری دزدی شده است …»

کنث فالکونر (ریاضی دان) در مورد مفهوم فرکتال ها میگوید:

«به مفهوم فرکتال ها باید همان جوری نگریست که یک زیست شناس به مفهوم زندگی می نگرد.»

توی پست قبلی مقدمه‌ی کوتاهی درباره فرکتال ها و اینکه هندسه ی توصیف گر طبیعت یک هندسه‌ی فرکتالی هست یک توضیحاتی دادم.

رعد و برق ـ پدیده ای با هندسه فرکتالی

صرف نظر از فرکتال های ساختگی (فرکتال هایی که ریاضیدان ها معمولا می‌سازند مثل برف‌دانه کخ) به هر طرف که نگاه کنید می‌تونید یک فرکتال طبیعی رو مشاهده کنید. سر سفره «کلم ترشی (یا بروکلی)»، کنار ساحل «خطوط ساحلی»، «برگ درخت»، «شش ها (ریه)»، «رعد و برق» و …خب این فرکتال ها چه ویژگی دارند؟

فرکتال ها ۳تا ویژگی خاص دارند که بهشون اشاره میکنم:

۱) فرکتال ها خودمتشابه هستند!

یک گل‌کلم یا کلم بروکلی رو در نظر بگیرید؛ اگه با یک چاقوی تیز، یکی از گلچه های گل کلم رو ببرید و جداگانه بهش نگاه کنید:

کلم بروکلی، موجودی با ساختار فرکتالی

کلم بروکلی، موجودی با ساختار فرکتالی – نمونه یک موجود  خودمتشابه 🙂

چیزی که به نظر می‌رسه یک گل کلم کامله، اما کوچکتر! اگه باز برش بدید، دوباره، دوباره، دوباره، …، شما گل‌کلم های کوچکتری بدست می آرید. به تجربه دیده شده که بعضی از اشکال این خاصیت عجیب رو دارند، یعنی هر قسمت از شکل مثل کل شکله با این تفاوت که اندازه کوچکتری داره. به این خاصیت خود متشابهی میگند. توی برف‌دانه کخ هم اگر قسمتی از شکل روجدا کنید میبینید که دقیقا مثل کل شکله و این تشابه هیچ وقت قطع نمیشه و همین طور ادامه داره! ممکنه که شما بگید یک خط راست هم اگر تکه تکه بشه باز هم شکل قسمت اول رو داره پس فرکتاله! اولا اشتباه نکنید یک ویژگی شرط لازمه نه کافی! در ثانی معمولا منظور ما از خود متشابه بودن، خود متشابه بودن در یک الگوی غیرعادی و غیربدیهیه! 

۲) فرکتال ها دارای بعد غیرصحیح هستند!

همیشه ما با ابعاد صحیح روبه رو بودیم! مثلا میگیم خط موجودی ۱بعدی، مربع یک شکل ۲ بعدی و مکعب یک شکل ۳بعدیه (ابعاد اقلیدوسی، همه هندسه ای که ما اول یاد میگیریم اقلیدوسی هست) ! حتی فضا-زمان در نسبیت ۴ بعدیه و نه مثلا ۳/۴۵ بعدی! همین طور نظریه هایی مثل ریسمان هم که فراتر از ۳ بعد رفته اند هنوز تعداد بعد توجیه کننده‌شون صحیحه مثلا ۱۱ نه ۱۱/۲۴! ممکنه بپرسید این غیرصحیح بودن بعد فرکتال ها دیگه چه صیغه ایه! پس اجازه بدید که «بعد» رو تعریف‌ کنیم:

مطابق شکل،‌ dفرض کنید که از یک قطعه شکل سمت چپ میخوایم شکل بزرگتر (با بزرگنمایی ۳ برابر) رو درست کنیم؛ برای این کار به چند قطعه‌‌ی هم اندازه با شکل سمت چپ نیاز داریم؟ برای خط معلومه، اگه همون خط قبلی سه برابر بشه (طولش) شکل جدید حاصل میشه، پس به ۳قطعه هم‌اندازه نیاز داریم. برای مربع هم مثل خط می‌مونه با این تفاوت که هم طولش ۳ برابر میشه و هم عرضش (به شکل نگاه کنید) پس ما به ۹ قطعه‌ی هم‌اندازه نیاز داریم. و وقتی هم که مکعب میشه، بزرگنمایی هم برای طول و هم برای عرض و هم برای ارتفاع اتفاق افتاده و این دفعه به ۲۷ مکعب نیاز داریم. (به شکل نگاه کنید!) خب این عددهای به دست اومده رو دوباره نگاه کنیم. من توی یک جدولی می‌نویسمشون؛

فکر کنم رابطه ای که بین این اعداد هست رو فهمیدید: ۳و ۹ و ۲۷! یک رابطه که یک تصاعد هندسی هست رسما!

«تعداد قطعه هم‌اندازه برای ساخت شکل جدید = بزرگنمایی به توان بعد شکل»

از روی این رابطه با استفاده از لگاریتم گیری از طرفین میشه بعد را بدست اورد، یعنی «بعد» میشه:

«بعد = لگاریتم تعداد قطعه هم‌اندازه برای ساخت شکل جدید تقسیم بر لگاریتم بزرگنمایی»  

daum_equation_1405194334641اگر n تعداد قطعات و m بزرگنمایی باشه:

ما در حقیقت یک تعریف از بعد ارائه کردیم. بعد خودمتشابهی! خب با این تعریف بریم سراغ محاسبه‌ی ابعاد فرکتال ها؛ 

فرض کنید یک برف‌دانه به این شکل میسازیم که مثل شکل قبل از یک مربع با (با بزرگنمایی ۳) یک مربع بزرگتر که شامل ۹ مربع هم اندازه با مربع اولیه هست به وجود میاد. حالا مربع های کوچیک

snow

 بالایی، چپی، راستی و پایینی مربع کوچیک مرکز رو مطابق شکل حذف میکنیم. اگر همین روند رو ادامه بدیم یک برف دانه ساخته می‌شه! (n روی شکل منظور مرحله‌ی ساخت شکله با n تعداد قطعات کوچکتر اشتباه نگیرید!)

daum_equation_1405194713785

بعد این برفدانه همین جور که میبینید یک عدد بین ۱ و ۲ هست! و اینجاست که دیگه بعد، یک عدد صحیح به دست نمیاد. مندلبرو اسم این بعد رو «ناهمواری» میذاشت که تعریف جالب‌تریه مخصوصا برای اجسامی که دارای برآمدگی هم باشند! چیزی که الان مطرح میشه اینه: معنی این ۱/۴۶۴۹۷ چیه؟ ما میدونیم که یک موجود دو بعدی یعنی اینکه توی صفحه جا میشه و یک موجود یک بعدی یعنی یک خط! پس این عدد بین ۱ و ۲ یعنی چی؟! این به همون ماجرا برمیگرده که وقتی ساختن این شکل رو تا بینهایت ادامه بدیم با یک شکل پر از لبه رو به رو میشیم. در ضمن یادآوری کنم که این فقط یک عدد هست! هر چند مفهوم قشنگی پشتش هست ولی یک عدده که ناهمواری شکل رو مطرح میکنه! به هر حال کاری که ریاضیدان ها بکنند قرار نیست واقعا واقعی باشه 🙂 یک نکته ی دیگه اینکه هیچ وقت مطرح نمی‌شه که «اندازه‌ی یک فرکتال» یا «متوسط اندازه یک فرکتال» چقدره بلکه همیشه ما با همین عدد که بعد غیرصحیح یا ناهمواری  فرکتال هست کار میکنیم! شما امروز میتونید یه عدد به عنوان ناهمواری به کامپیوتر بدید و اون در کسری از ثانیه یک شکلی با اون ناهمواری رو  براتون تولید کنه یا یک شکل دلخواه رو با اون ناهمواری بازتولید کنه! به همین سادگی! تقریبا هندسه فرکتالی پیشرفت زیادی کرد چون سر و کله کامپیوتر پیدا شد. در مورد این توی قسمت آخر بیشتر توضیح میدم!

خب بریم سراغ یه مثال دیگه؛ مثلث سیرپینسکی فرض کنید یک مثلث (متساوی الاضلاع برای قشنگی بیشتر!) داریم. وسط هر ضلعش رو مشخص میکنیم و بهم وصلشون میکنیم تا ۴ تا مثلث جدیدتر ساخته بشه. مثلث وسط رو دور می‌ریزیم. این کارو تا ابد انجام میدم. الان ما یک فرکتال داریم که بعدش ۱/۵۸ هست:
daum_equation_1405196329871
این عدد بیشتر از عدد قبل هست، فکر کنم شکل خودش نشون میده که ناهمواری مثلث سیرپینسکی از برف دانه ای که ساختیم بیشتره!

۳) بعد خود متشابهی فرکتال‌ها از بعد توپولوژیک اونها بیشتره!

این که بعد توپولوژیک دقیقا چیه، چیزیه که از حوصله‌ی این پست خارجه! شاید جداگونه در موردش بنویسم (البته ترجیح میدم امید بنویسه :)) ولی فعلا به عنوان آشنایی، عرض کنم خدمتون،‌همین جوری که ما بعد خود متشابهی رو به صورت تقسیم دوتا لگاریتم تعریف کردیم میشه یه جور دیگه با ادبیات و شاید بهتره بگم ریاضیات خوشگل تری بعد رو تعریف کرد و اون موقع یک سری عدد جدید به دست میاریم. این اعداد در مورد فرکتال ها جوریه که با مقدار خودمتشابهی شون فرق دارند و کمتر از اونها هستند مثلا بعد توپولوژیکی مثلث سیرپینسکی ۱ و بعد خودمتشابهیش (همین جوری که حساب کردیم) ۱/۵۸۵ هست که ۱/۵۸۵ > ۱!

خب جمع بندی کنیم؛ فرکتال ها دارای سه ویژيگی: ۱) خودمتشابهی ۲) دارای بعدخودمتشابهی غیرصحیح و ۳) بعدتوپولوژیکی کمتر از بعد خودمتشابهی هستند! پیشنهاد میکنم ویدیو زیر رو حتما ببینید؛ سخنرانی مندلبرو (پدر هندسه فرکتالی) در تد هست. درست چندماه بعد از این سخنرانی، مندلبرو، پیرمرد مهربان دنیای فرکتال ها به خاطر سرطان لوزالمعده ای که داشت از دنیا رفت. روحش قرین آرامش باد!

 

220px-Arabic_script-04.svgقصد دارم تا توی ۵ تا پست در مورد فرکتال‌ها (برخال ها – fractals) بنویسم. این پست رو اختصاص میدم به یک مقدمه و معرفی در مورد این موضوع:

همه ی ما با شکل هایی مثل دایره، مثلث، مربع، خط راست، چندضلعی ها و … آشنا هستیم، اشکال اقلدیسی که ساده ترین هندسه موجود (هندسه اقلدیسی) رو میسازند و ما به کمک اونها میتونیم یک تقسیم بندی برای اشکال محیط دور و برمون داشته باشیم. ولی حقیقت اینه که طبیعتی که ما اون رو توصیف میکنیم اصلا شکل اقلیدوسی نداره! به عبارت دیگه شکل هایی که توی دنیای واقعی هستند اقلیدوسی نیستند! به قول بنوآ مندلبرو، پدر هندسه فرکتالی:

«ابرها کره نیستند، کوها ها مخروط نیستند،‌ خطوط ساحلی دایره نیستند، پوست درخت صاف نیست و همین طور نور روی خط راست حرکت نمی کند!»

در حقیقت هندسه ای که دنیای اطراف ما رو توصیف میکنه یک هندسه پیچیده تری هست به نام هندسه برخالی یا هندسه فرکتالی. اجازه بدید موضوع رو با یک مسئله اندازه گیری ادامه بدم؛ فرض کنید به عنوان یک گردشگر وارد اصفهان -نصف جهان – شدید و میخواهید که فاصله ی بین پل خواجو تا سی و سه پل رو کنار زاینده رود قدم بزنید. از یکی از بومی های اونجا می پرسید که فاصله ی این پل تا اون پل چقدره و احتمالا جوابی حول و حوش ۲ کیلومتر میشنوید که برای یه قدم زدن، مناسب به نظر میرسه. خب این ۲ کیلومتری که جواب شماست چه جوری اندازه گیری شده؟ قریب به یقین مثل اندازه گیری فاصله دوتا شهر بوده. ولی اگه شما بخواهید دقیق این فاصله رو اندازه گیری کنید، یعنی از روی خطوط ساحلی این کارو انجام بدین بسته به این که واحد اندازه گیریتون چی باشه (چه اندازه ای باشه) جواب های مختلفی به دست میارید. فرض کنید با چند تا خط کش با طول های ۱۰۰، ۵۰ و ۱۰ سانتی متری این کارو میخواهید انجام بدین. چون خطوط ساحلی خم های کج و معوجی هستند، هر چقدر خط کش شما کوچیک تر باشه، خط کش شما نزدیک تر به شکستگی ها میشه و شما دقیق تر اندازه گیری میکنید. نکته اینجاست که با کوچیک و کوچیک تر شدن خط کش (واحد اندازه گیری) عدد به دست اومده بزرگ و بزرگتر میشه. بنابراین دقیق ترین اندازه گیری وقتی هست که طول خط کش به صفر میل کنه و مجموع واحدهای اندازه گیری شما (که حالا تبدیل به نقطه شدند) کاملا بر خطوط ساحلی منطبق بشه. ولی خب یه مشکلی هست و اون اینه که در این صورت عدد شما به بینهایت میل میکنه که خوشایند نیست! یعنی شما باید یک مسیر بینهایت طولانی رو قدم بزنید! نه نگران نباشید، چیزی که شما می پیمایید اون خطوط ساحلی نیست! شما موقع قدم زدن یک سری خط راست بهم پیوسته رو می پیمایید که همون ۲ کیلومتر میشه (خدا رو شکر کنید که دقیقا از روی خطوط ساحلی نمیتونید حرکت کنید . و گرنه هیچ وقت نمی رسیدین!) خب شاید این یکمی برای شما عجیب باشه که در یه جای محدود یه خم با طول بینهایت پیدا شده. خب راستش این مفهوم عجیب،‌ مفهوم هندسه فرکتال ها رو داره میگه!

برای روشن شدن قضیه بذارید یه مثال با شهود ریاضی بیشتری بزنم؛

برف دانه کخ

برف دانه کخ

برفدانه ی کخ! یک مثلث (برای راحتی فعلا متساوی الاضلاع) به ضلع یک رو در نظر بگیرید. خب محیط این مثلث (جمع جبری اندازه ی اضلاع) هست ۳ و مساحت این مثلث طبق رابطه ای که برای مثلث های متساوی الاضلاع وجود داره هست رادیکال ۳ تقسیم بر ۴ ضرب در مربع طول یکی از اضلاع. حالا اگر ما توی هر مرحله این بلا

رو سر مثلث بیاریم که هر ضلعش رو مطابق شکل به سه قسمت تقسیم کنیم، قسمت وسطش رو دور بریزیم و دو قسمت هم طول با اون رو بالا بیاریم

اون موقع محاسبات پایین نشون میده (امیدوارم واضح باشه)‌ که بعد از n مرحله محیط و مساحت به چه عددی میل میکنه:

برای محیط:

محیط برای مساحت:

مساحت

این نشون میده که این شکل که از ابتدایی ترین فرکتال ها هست دارای مساحت محدود ولی محیط نامحدود (بی نهایت) هست. که همون ماجرای اندازه گیری طول خطوط ساحلی از پل خواجو تا سی و سه پل هست.  فکر کنم برای مقدمه کافی باشه!

چرا رياضى ياد مى‌‌گيريم؟ اساسا، بخاطر سه دليله: محاسبه، كاربرد، و آخرى، و متاسفانه كمترين از لحاظ زمانى كه به اون اختصاص مى‌‌ديم، الهام بخش بودنه!  رياضى علم الگوهاست، و اون رو مطالعه مى‌‌كنيم تا ياد بگيريم چطور منطقى، منتقدانه و خلاقانه فكر كنيم، اما بخش خيلى زيادى از رياضى كه تو مدرسه ياد مى‌‌گيريم بطور موثرى انگیزه دهنده نيست، و وقتى هم میپرسیم، “چرا اين را ياد مى‌‌گيريم؟” چيزى كه اغلب مى‌‌شنویم اينه كه به زودی میفهمید! یا فوقش اگه دانشجوی فیزیک هم باشید، موقع تدریس درس «ریاضی فیزیک» میگند این توی فلان جای کوانتوم کاربرد داره! خب این اصلا خوب نیست! بهترنیست هر از گاهى رياضى رو فقط به خاطر این انجام بدیم که جالبه يا زيباست؟ يا به اين خاطر كه ذهن را به هيجان مياره؟  بذارید براتون مثالی بزنم از دنباله اعداد دلخواهم، اعداد فيبوناچى!

$$ 1   1   2   3    5    8 … $$

$$ a_1=1 $$ $$ a_2=1 $$  $$ a_{n+1}= a_n +a_{n-1} $$

از نقطه نظر محاسبه، فهمیدنشون آسونه! مثلا یک بعلاوه یک که می‌شه دو. بعد یک بعلاوه دو که می‌شه سه، دو بعلاوه سه پنج میشه، سه بعلاوه پنج هم هشت، و الی آخر. از لحاظ کاربرد، اعداد فیبوناچی اغلب در طبیعت بطرزی شگفت آور ظاهر می‌شند. تعداد گلبرگهای یک گل عموما عددی فیبوناچی است، یا تعداد مارپیچ‌های روی یک گل آفتاب‌گردان یا يك آناناس همینطور از قاعده سری فیبوناچی پیروی می‌کنند.

tumblr_ljjtzhCGDW1qf0yue

در حقیقت، کابردهای خیلی بیشتری دربرگیرنده ارقام فیبوناچی می‌شه، اما چیزی که بیش ازهمه دربارشون میفهمیم الگوهای عددی زیبایی هستند. فرض کنیم شما از محاسبه مربع کامل اعداد خوشتون میاد:

$$ 1   1   2   3    5    8     13  … $$
$$ 1   1   4   9   25   64   169 … $$

به این مربع‌های کامل از چند تا عدد اول فيبوناچى نگاه كنيم. شما وقتى مربع‌‌هاى كامل را با هم جمع مى‌‌كنيد انتظار نداريد چيز خاصى اتفاق بيفته. اما اين را ببينيد:

$$ 1+1=2 $$
$$ 1+4=5 $$
$$ 4+9=13 $$
$$ … $$
$$ a_{n-1}^2 + a_n^2 = a_{n+1} $$

در واقع، يكى ديگه هم هست. فرض كنيد كه ميخواستيد مربع‌‌هاى كامل چند تا عدد فيبوناچى اول را جمع كنيد. بذارييد ببينيم به كجا ميرسيم:

$$ 1+1+4=6 $$
$$ 1+1+4+9=15 $$
$$ 1+1+4+9+4+25=40 $$
$$ 1+1+4+9+25+64=104 $$
$$ … $$

حالا به اون اعداد نگاه كنيد. اونها اعداد فيبوناچى نيستند، ولی اگه با دقت بهشون نگاه كنيد، خواهيد ديد كه اعداد فيبوناچى درون اونها مخفى شدند! تونستید اونا رو ببینید:

$$ 6=2*3 $$

$$ 15=3*5 $$

$$ 40=5*8 $$

$$ 104=8*13 $$

 $$ … $$

ولی چرا:

$$ 1+1+4+9+25+64 = 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 =104 $$

بذارید یه کار جالب انجام بدیم! با یک مربع یک در یک شروع می‌کنیم و بعدش یک مربع یک در یک دیگه رو می‌ذاربم. با هم دیگه، اونها یک مستطیل یک در دویی را تشکیل می‌دند. زیر اون، یه مربع دو در دویی رو قرار می‌دیم، و بغل اون، یک مربع سه در سه، دوباره زیر اون، یک مربع پنج در پنج. و بعديك مربع هشت در هشت!  الان يك مستطيل بزرگ ساختیم، اينطور نيست؟FibonacciBlocks

 

حالا بذارييد یه سوال ساده بپرسیم: مساحت مستطيل چقدره؟ خب، از يك طرف، جمع مساحتهاى مربعهاى داخل اونه، اينطور نيست؟ درست همانطور كه اون رو خلق كرديم. یک مربع كامل بعلاوه یک مربع كامل بعلاوه مربع كامل دو بعلاوه مربع كامل سه بعلاوه مربع كامل پنج بعلاوه مربع كامل هشت. اینطور نیست؟ از طرف ديگه، مساحت اون برابر حاصلضرب طولش درعرض اونه.

پس:

$$ S = 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 =104 $$

$$ S = 8 * (5+8) = 8 * 13 $$

که ۱۳ عدد بعد از ۸ توی دنباله فیبوناچی هست!

الان اگر به اين فرايند ادامه بديم، مستطيل‌‌هاىی با اعداد ٢١ در ١٣، ۲۱ در ۳۴ توليد خواهيم كرد و الى آخر. 

خب الان اين را امتحان كنيد. اگر ١٣ را تقسيم بر ٨ كنيد، به ١/٦٢٥ مى‌‌رسيد.

$$ 13/ 8 = 1.625 $$

$$ 21/13 = 1.615 $$

$$ 34/21 = 1.619 $$

$$ 55/34 = 1.6176 $$

$$ 89/55 = 1.61818 $$

و اگر عدد بزرگتر را به عدد كوچكتر تقسيم كنيم، اين ضريب‌‌

2000px-SimilarGoldenRectangles.svg

ها به رقمى در حدود ١/٦١٨ نزديك و نزديك‌‌تر مى‌‌شود، كه از سوى خيلى‌‌ها بعنوان ضريب طلايى شناخته مى‌‌شود،رقمى كه رياضيدانها، دانشمندان و هنرمندان را قرنهاست كه مجذوب كرده. شاید بزودی یه چیزی هم در مورد نسبت طلایی بنویسم!

برای مثال اگه یک مربع a در a رو کنار یک مستطیل a در b بذاریم (a>b) اون موقع یک مستطیل a در a+b داریم! نسبت طول این مستطیل به عرضش، همون نسب طلاییه!

 \frac{a+b}{a} = \frac{a}{b} \equiv \varphi

یاد آوری کنم که جواب عدد زیر عدد طلاییه: 

png\varphi = \frac{1+\sqrt{5}}{2} = 1.6180339887\ldots.

ما زمان زيادى را صرف يادگيرى درباره محاسبه كردن مى‌‌كنيم، اما بياييد كاربرد رو هم فراموش نكنيم، از جمله، شايد، مهمترين كاربرد از همه آنها، ياد بگيريم چطور فكر كنيم.

ویکی پدیا یه منبع قابل اعتماده! همین طور پیشنهاد میکنم این ویدیو رو ببینید چون که یکی از منابع هست :