رفتن به نوشته‌ها

دسته: ریاضی

فرکتال‌ها| قسمت اول، مقدمه

220px-Arabic_script-04.svgقصد دارم تا توی ۵ تا پست در مورد فرکتال‌ها (برخال ها – fractals) بنویسم. این پست رو اختصاص میدم به یک مقدمه و معرفی در مورد این موضوع:

همه ی ما با شکل هایی مثل دایره، مثلث، مربع، خط راست، چندضلعی ها و … آشنا هستیم، اشکال اقلدیسی که ساده ترین هندسه موجود (هندسه اقلدیسی) رو میسازند و ما به کمک اونها میتونیم یک تقسیم بندی برای اشکال محیط دور و برمون داشته باشیم. ولی حقیقت اینه که طبیعتی که ما اون رو توصیف میکنیم اصلا شکل اقلیدوسی نداره! به عبارت دیگه شکل هایی که توی دنیای واقعی هستند اقلیدوسی نیستند! به قول بنوآ مندلبرو، پدر هندسه فرکتالی:

«ابرها کره نیستند، کوها ها مخروط نیستند،‌ خطوط ساحلی دایره نیستند، پوست درخت صاف نیست و همین طور نور روی خط راست حرکت نمی کند!»

در حقیقت هندسه ای که دنیای اطراف ما رو توصیف میکنه یک هندسه پیچیده تری هست به نام هندسه برخالی یا هندسه فرکتالی. اجازه بدید موضوع رو با یک مسئله اندازه گیری ادامه بدم؛ فرض کنید به عنوان یک گردشگر وارد اصفهان -نصف جهان – شدید و میخواهید که فاصله ی بین پل خواجو تا سی و سه پل رو کنار زاینده رود قدم بزنید. از یکی از بومی های اونجا می پرسید که فاصله ی این پل تا اون پل چقدره و احتمالا جوابی حول و حوش ۲ کیلومتر میشنوید که برای یه قدم زدن، مناسب به نظر میرسه. خب این ۲ کیلومتری که جواب شماست چه جوری اندازه گیری شده؟ قریب به یقین مثل اندازه گیری فاصله دوتا شهر بوده. ولی اگه شما بخواهید دقیق این فاصله رو اندازه گیری کنید، یعنی از روی خطوط ساحلی این کارو انجام بدین بسته به این که واحد اندازه گیریتون چی باشه (چه اندازه ای باشه) جواب های مختلفی به دست میارید. فرض کنید با چند تا خط کش با طول های ۱۰۰، ۵۰ و ۱۰ سانتی متری این کارو میخواهید انجام بدین. چون خطوط ساحلی خم های کج و معوجی هستند، هر چقدر خط کش شما کوچیک تر باشه، خط کش شما نزدیک تر به شکستگی ها میشه و شما دقیق تر اندازه گیری میکنید. نکته اینجاست که با کوچیک و کوچیک تر شدن خط کش (واحد اندازه گیری) عدد به دست اومده بزرگ و بزرگتر میشه. بنابراین دقیق ترین اندازه گیری وقتی هست که طول خط کش به صفر میل کنه و مجموع واحدهای اندازه گیری شما (که حالا تبدیل به نقطه شدند) کاملا بر خطوط ساحلی منطبق بشه. ولی خب یه مشکلی هست و اون اینه که در این صورت عدد شما به بینهایت میل میکنه که خوشایند نیست! یعنی شما باید یک مسیر بینهایت طولانی رو قدم بزنید! نه نگران نباشید، چیزی که شما می پیمایید اون خطوط ساحلی نیست! شما موقع قدم زدن یک سری خط راست بهم پیوسته رو می پیمایید که همون ۲ کیلومتر میشه (خدا رو شکر کنید که دقیقا از روی خطوط ساحلی نمیتونید حرکت کنید . و گرنه هیچ وقت نمی رسیدین!) خب شاید این یکمی برای شما عجیب باشه که در یه جای محدود یه خم با طول بینهایت پیدا شده. خب راستش این مفهوم عجیب،‌ مفهوم هندسه فرکتال ها رو داره میگه!

برای روشن شدن قضیه بذارید یه مثال با شهود ریاضی بیشتری بزنم؛

برف دانه کخ
برف دانه کخ

برفدانه ی کخ! یک مثلث (برای راحتی فعلا متساوی الاضلاع) به ضلع یک رو در نظر بگیرید. خب محیط این مثلث (جمع جبری اندازه ی اضلاع) هست ۳ و مساحت این مثلث طبق رابطه ای که برای مثلث های متساوی الاضلاع وجود داره هست رادیکال ۳ تقسیم بر ۴ ضرب در مربع طول یکی از اضلاع. حالا اگر ما توی هر مرحله این بلا

رو سر مثلث بیاریم که هر ضلعش رو مطابق شکل به سه قسمت تقسیم کنیم، قسمت وسطش رو دور بریزیم و دو قسمت هم طول با اون رو بالا بیاریم

اون موقع محاسبات پایین نشون میده (امیدوارم واضح باشه)‌ که بعد از n مرحله محیط و مساحت به چه عددی میل میکنه:

برای محیط:

محیط برای مساحت:

مساحت

این نشون میده که این شکل که از ابتدایی ترین فرکتال ها هست دارای مساحت محدود ولی محیط نامحدود (بی نهایت) هست. که همون ماجرای اندازه گیری طول خطوط ساحلی از پل خواجو تا سی و سه پل هست.  فکر کنم برای مقدمه کافی باشه!

فیبوناچی و آشتی با ریاضی!

چرا رياضى ياد مى‌‌گيريم؟ اساسا، بخاطر سه دليله: محاسبه، كاربرد، و آخرى، و متاسفانه كمترين از لحاظ زمانى كه به اون اختصاص مى‌‌ديم، الهام بخش بودنه!  رياضى علم الگوهاست، و اون رو مطالعه مى‌‌كنيم تا ياد بگيريم چطور منطقى، منتقدانه و خلاقانه فكر كنيم، اما بخش خيلى زيادى از رياضى كه تو مدرسه ياد مى‌‌گيريم بطور موثرى انگیزه دهنده نيست، و وقتى هم میپرسیم، “چرا اين را ياد مى‌‌گيريم؟” چيزى كه اغلب مى‌‌شنویم اينه كه به زودی میفهمید! یا فوقش اگه دانشجوی فیزیک هم باشید، موقع تدریس درس «ریاضی فیزیک» میگند این توی فلان جای کوانتوم کاربرد داره! خب این اصلا خوب نیست! بهترنیست هر از گاهى رياضى رو فقط به خاطر این انجام بدیم که جالبه يا زيباست؟ يا به اين خاطر كه ذهن را به هيجان مياره؟  بذارید براتون مثالی بزنم از دنباله اعداد دلخواهم، اعداد فيبوناچى!

$$ 1   1   2   3    5    8 … $$

$$ a_1=1 $$ $$ a_2=1 $$  $$ a_{n+1}= a_n +a_{n-1} $$

از نقطه نظر محاسبه، فهمیدنشون آسونه! مثلا یک بعلاوه یک که می‌شه دو. بعد یک بعلاوه دو که می‌شه سه، دو بعلاوه سه پنج میشه، سه بعلاوه پنج هم هشت، و الی آخر. از لحاظ کاربرد، اعداد فیبوناچی اغلب در طبیعت بطرزی شگفت آور ظاهر می‌شند. تعداد گلبرگهای یک گل عموما عددی فیبوناچی است، یا تعداد مارپیچ‌های روی یک گل آفتاب‌گردان یا يك آناناس همینطور از قاعده سری فیبوناچی پیروی می‌کنند.

tumblr_ljjtzhCGDW1qf0yue

در حقیقت، کابردهای خیلی بیشتری دربرگیرنده ارقام فیبوناچی می‌شه، اما چیزی که بیش ازهمه دربارشون میفهمیم الگوهای عددی زیبایی هستند. فرض کنیم شما از محاسبه مربع کامل اعداد خوشتون میاد:

$$ 1   1   2   3    5    8     13  … $$
$$ 1   1   4   9   25   64   169 … $$

به این مربع‌های کامل از چند تا عدد اول فيبوناچى نگاه كنيم. شما وقتى مربع‌‌هاى كامل را با هم جمع مى‌‌كنيد انتظار نداريد چيز خاصى اتفاق بيفته. اما اين را ببينيد:

$$ 1+1=2 $$
$$ 1+4=5 $$
$$ 4+9=13 $$
$$ … $$
$$ a_{n-1}^2 + a_n^2 = a_{n+1} $$

در واقع، يكى ديگه هم هست. فرض كنيد كه ميخواستيد مربع‌‌هاى كامل چند تا عدد فيبوناچى اول را جمع كنيد. بذارييد ببينيم به كجا ميرسيم:

$$ 1+1+4=6 $$
$$ 1+1+4+9=15 $$
$$ 1+1+4+9+4+25=40 $$
$$ 1+1+4+9+25+64=104 $$
$$ … $$

حالا به اون اعداد نگاه كنيد. اونها اعداد فيبوناچى نيستند، ولی اگه با دقت بهشون نگاه كنيد، خواهيد ديد كه اعداد فيبوناچى درون اونها مخفى شدند! تونستید اونا رو ببینید:

$$ 6=2*3 $$

$$ 15=3*5 $$

$$ 40=5*8 $$

$$ 104=8*13 $$

 $$ … $$

ولی چرا:

$$ 1+1+4+9+25+64 = 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 =104 $$

بذارید یه کار جالب انجام بدیم! با یک مربع یک در یک شروع می‌کنیم و بعدش یک مربع یک در یک دیگه رو می‌ذاربم. با هم دیگه، اونها یک مستطیل یک در دویی را تشکیل می‌دند. زیر اون، یه مربع دو در دویی رو قرار می‌دیم، و بغل اون، یک مربع سه در سه، دوباره زیر اون، یک مربع پنج در پنج. و بعديك مربع هشت در هشت!  الان يك مستطيل بزرگ ساختیم، اينطور نيست؟FibonacciBlocks

 

حالا بذارييد یه سوال ساده بپرسیم: مساحت مستطيل چقدره؟ خب، از يك طرف، جمع مساحتهاى مربعهاى داخل اونه، اينطور نيست؟ درست همانطور كه اون رو خلق كرديم. یک مربع كامل بعلاوه یک مربع كامل بعلاوه مربع كامل دو بعلاوه مربع كامل سه بعلاوه مربع كامل پنج بعلاوه مربع كامل هشت. اینطور نیست؟ از طرف ديگه، مساحت اون برابر حاصلضرب طولش درعرض اونه.

پس:

$$ S = 1^2 + 1^2 + 2^2 + 3^2 + 5^2 + 8^2 =104 $$

$$ S = 8 * (5+8) = 8 * 13 $$

که ۱۳ عدد بعد از ۸ توی دنباله فیبوناچی هست!

الان اگر به اين فرايند ادامه بديم، مستطيل‌‌هاىی با اعداد ٢١ در ١٣، ۲۱ در ۳۴ توليد خواهيم كرد و الى آخر. 

خب الان اين را امتحان كنيد. اگر ١٣ را تقسيم بر ٨ كنيد، به ١/٦٢٥ مى‌‌رسيد.

$$ 13/ 8 = 1.625 $$

$$ 21/13 = 1.615 $$

$$ 34/21 = 1.619 $$

$$ 55/34 = 1.6176 $$

$$ 89/55 = 1.61818 $$

و اگر عدد بزرگتر را به عدد كوچكتر تقسيم كنيم، اين ضريب‌‌

2000px-SimilarGoldenRectangles.svg

ها به رقمى در حدود ١/٦١٨ نزديك و نزديك‌‌تر مى‌‌شود، كه از سوى خيلى‌‌ها بعنوان ضريب طلايى شناخته مى‌‌شود،رقمى كه رياضيدانها، دانشمندان و هنرمندان را قرنهاست كه مجذوب كرده. شاید بزودی یه چیزی هم در مورد نسبت طلایی بنویسم!

برای مثال اگه یک مربع a در a رو کنار یک مستطیل a در b بذاریم (a>b) اون موقع یک مستطیل a در a+b داریم! نسبت طول این مستطیل به عرضش، همون نسب طلاییه!

 \frac{a+b}{a} = \frac{a}{b} \equiv \varphi

یاد آوری کنم که جواب عدد زیر عدد طلاییه: 

png\varphi = \frac{1+\sqrt{5}}{2} = 1.6180339887\ldots.

ما زمان زيادى را صرف يادگيرى درباره محاسبه كردن مى‌‌كنيم، اما بياييد كاربرد رو هم فراموش نكنيم، از جمله، شايد، مهمترين كاربرد از همه آنها، ياد بگيريم چطور فكر كنيم.

ویکی پدیا یه منبع قابل اعتماده! همین طور پیشنهاد میکنم این ویدیو رو ببینید چون که یکی از منابع هست :

ترجمه: چگونه یک فیزیکدان نظری خوب شویم؟!

اگر مایلید در فهم قوانین فیزیک نظری شرکت کنید (که اگر در آن موفق شوید کار جالبی است) چیزهای زیادی وجود دارد که باید بدانید! اول اینکه همه دوره های آموزشی لازم در دانشگاه‌ها ارائه می‌شوند (در موردش مطمئن باشید)‌، پس طبیعی است که در یک دانشگاه پذیرفته شوید و هرچه را که میتوانید فرا بگیرید. ولی اگر هنوز در مدرسه به سر می برید باید آن قصه های کودکانه ای که به اسم «علم» به شما تدریس می‌شود را فعلاً تحمل کنید! اگر سن و سالتان فراتر از دوران مدرسه هست وعلاقه ای هم به پیوستن به جو پرهیاهوی دانشجویی ندارید چه؟!

توفت ( Gerard ‘t Hooft) برنده نوبل فیزیک در سال ۱۹۹۹
(به همراه مارتینیوس ولتمن  برای مشخص کردن ساختار کوانتومی در برهمکنش الکتروضعیف)

این ترجمه برگرفته از اینجاست. لطفا به صفحه‌ی اصلی برای لینک‌های تازه‌تر سر بزنید!

اگر مایلید در فهم قوانین فیزیک نظری شرکت کنید (که اگر در آن موفق شوید کار جالبی است) چیزهای زیادی وجود دارد که باید بدانید! اول اینکه همه دوره های آموزشی لازم در دانشگاه‌ها ارائه می‌شوند (در موردش مطمئن باشید)‌، پس طبیعی است که در یک دانشگاه پذیرفته شوید و هرچه را که میتوانید فرا بگیرید. ولی اگر هنوز در مدرسه به سر می برید باید آن قصه های کودکانه ای که به اسم «علم» به شما تدریس می‌شود را فعلاً تحمل کنید! اگر سن و سالتان فراتر از دوران مدرسه هست وعلاقه ای هم به پیوستن به جو پرهیاهوی دانشجویی ندارید چه؟!

خب امروزه تمامی دانشی که لازم دارید را میتوانید از اینترنت به دست آورید! ولی مشکل این است که مطالب به دردنخور زیادی نیزدر اینترنت پیدا میشود! برای همین من در پایان این مطلب اسامی و موضوعات درسگفتارهای (lecture courses) لازم را لیست کرده ام. معمولا من سعی میکنم که چرخی در اینترنت بزنم و مطالب لازم که ترجیحاقابل دانلود هستند را گردآوری کنم. با وجود این، تبدیل شدن به یک فیزیکدان نظری خوب هزینه ای بیشتر از هزینه یک رایانه متصل به اینترنت، یک پرینتر و یک سری قلم و کاغذ ندارد. تک تک مطالب اشاره شده در لیست را باید بخوانید! بهترین کتاب‌، پر مساله ترین کتاب است! سعی کنید مسئله ها را حل کنید! به دنبال آن باشید که همه چیز را بفهمید. تلاش کنید به جایی برسید که بتوانید اشتاباهات چاپی و اشکالات کوچک را به راحتی اشتباهات بزرگ بیابید و به این فکر کنید که مطلب مورد نظر را چگونه میتواند با زیرکی و هوشمندی بیشتری بنویسید!

میتوانم از تجربه ی شخصی خودم برایتان بگویم.من شانس بزرگی از این بابت داشتم که معلمهای بسیار خوبی دوروبرم بوده‌اند ،کسانی که به افراد کمک میکردند تااز سرگردانی فرار کنند! و این در تمامی مسیر به من کمک کرد تا برنده جایزه نوبل شوم. ولی در آن زمان من اینترنت نداشتم! برای همین سعی میکنم تا مربی شما باشم (کار سختی است)! من مطمئنم که هرکسی میتواند یک فیزیکدان نظری خوب (از نوع بهترین ها،‌از نوع برندگان جایزه نوبل)شود فقط کافیست مقدار مشخصی هوش، علاقه و اراده داشته باشد!

فیزیک نظری مانند یک آسمان خراش است که پایه‌های محکمی در ریاضیات مقدماتی و مفاهیم فیزیک کلاسیک (قبل از قرن بیستم) دارد. فکر نکنید فیزیک قبل از قرن بیستم غیرضروری است چون ما هم‌اکنون اطلاعات بسیار بیشتری داریم، نه، درآن روزها شالدوه ی چیزهایی که الان از آن‌ها لذت میبریم بناشده است! سعی نکنید که آسمان خراشتان را قبل از اینکه ابتدا برای خودتان این مفاهیم را بازسازی کرده باشید بنا کنید. چند طبقه اولیه ی آسمان خراش شما شامل صورت گرایی های ریاضی است که به نظریه‌های فیزیک کلاسیک زیبایی خودشان را اهدا میکند. اگر میخواهید بالاتر روید به آن‌ها نیاز دارید. پس از آن به موضوعات لیست زیر احتیاج دارید. در آخر،‌ اگر شما به اندازه ی کافی شیفته آن هستید که مسائل فوق‌العاده گیج‌کننده ی فیزیک گرانشی منطبق را دنیای کوانتوم حل کنید باید تا آخر به مطالعه نسبیت عام، نظریه ابرریسمان، نظریه-ام، Calabi-Yau compactification  و … به پردازید. در حال حاضر این بالای آسمان خراش است نوک های دیگری از جمله تراکم بوز-آینشتاین، اثر کسری هال و چیزهای بیشتری نیز وجود دارند که برای برنده شدن جایزه نوبل خوب به نظر میرسند (حداقل سال‌های گذشته که این‌طور نشان داده است!)

و اما یک هشدار: حتی اگر شما به شدت باهوش باشید ممکن است جایی گیر کنید! سری به اینترنت بزنید. چیزهای بیشتر پیدا کنید و به من یافته هایتان را گزارش دهید!

اگر این مطلب به کسی که درحال آماده شدن برای شروع دانشگاه است مفید بود و یا اگر انگیزه کافی به کسی داد یا کسی را در راهش کمک کرد و مسیرش به علم را هموارتر ساخت آن وقت میپندارم که این سایت مفید بوده. پس لطفاً مرا در جریان بگذارید.

و اما لیست:

  • جدید: غیری از لیستی که در ادامه آمده، این منبع هم لیست خوبی معرفی کرده.

(لیست با ترتیب منطقی چیده شده، همه چیز قرار نیست که با این ترتیب انجام شود ولی سعی برآن بوده تا جوری چیده شود که تقریباً وابستگی موضوعات به یکدیگر را نشان دهد. برخی از موضوعات در سطح بالاتری نسبت به بقیه قرار می گیرند.)

  1. زبان

  2. ریاضیات مقدماتی

  3. مکانیک کلاسیک

  4. اپتیک

  5. ترمودینامیک و مکانیک آماری

  6. الکترونیک

  7. الکترومغناطیس

  8. مکانیک کوانتوم

  9. اتم ها و مولکول ها

  10. فیزیک حالت جامد

  11. فیزیک هسته ای

  12. فیزیک پلاسما

  13. ریاضیات پیشرفته

  14. نسبیت خاص

  15. مکانیک کوانتومی پیشرفته

  16. پدیدار شناسی

  17. نسبیت عام

  18. نظریه میدان کوانتومی (QFT)

  19. نظریه ابرریسمان

آزمایش عجیب گاوس

در مورد تلاش شما، چیزی (یا چیز زیادی) برای گفتن ندارم، جز این که ناقص است. اثباتی که برای این که مجموع زوایای یک مثلث نمی‌تواند بیشتر از ۱۸۰ درجه باشد ارائه کرده اید، تا حدی فاقد دقت هندسی است. اما به سادگی می‌توان آن را اصلاح کرد، و در این که می‌توان این غیرممکن بودن را در کمال دقت ثابت کرد شکی نیست. اما در مورد قسمت دوم، که مجموع زوایای یک مثلث نمی‌تواند کم‌تر از ۱۸۰ درجه باشد، وضع متفاوت است، این نقطه‌ی حساسی‌است که کشتی‌ها را در هم می‌شکند. به نظر نمی‌رسد که این قسمت شما را زیاد درگیر کرده باشد. من بیشتر از ۳۰ سال روی این موضوع کار کرده‌ام، و بعید می‌دانم کسی بیشتر از من روی این موضوع کار کرده باشد، هر چند تا کنون چیزی در این مورد به چاپ نرسانده‌ام.

این فرض که مجموع زوایای مثلث می‌تواند کم‌تر از ۱۸۰ درجه باشد، به هندسه‌ی عجیبی می‌انجامد، که با هندسه‌ی ما (هندسه‌ی اقلیدسی) بسیار متفاوت، اما به همان اندازه سازگار است. من آن را بسط داده‌ام و کاملا از آن راضی هستم، و می‌توانم هر مسئله‌ای را در آن حل کنم، جز یافتن یک ثابت، که نمی‌توان آن را پیش از تجربه (as a priori) تعیین کرد. هر چقدر این مقدار ثابت بزرگ‌تر باشد، این هندسه به هندسه‌ی اقلیدسی نزدیک‌تر می‌شود.

Carl Friedrich Gauss
Carl Friedrich Gauss

این بخشی از نامه‌ی گاوس، شاهزاده‌ی ریاضیات، به تارینوس، در مورد اثبات اصل توازی بود. و احتمالا دقت کردید، که کل چیزی که گاوس مدعی اثباتش هست، اینه که مجموع زوایای یک مثلث، بیشتر از ۱۸۰ درجه نیست. و اگر راستش رو بخواید، اگر اصل توازی رو نپذیریم، چیزی بیشتر از این نمی‌تونیم ثابت کنیم.

مقدمه‌ی اول، اصل توازی، و چند گزاره‌ی هم‌ارز

نمی‌خوام خیلی هندسه بگم، اما دونستن این خوبه که جمله‌های زیر هم‌ارز هستن، یعنی هر کدوم رو رد کنید، همه رد شدند، و هر کدوم رو که قبول کنید، همه معتبر هستند(البته با قبول همه‌ی بنداشت‌های هیلبرت، غیر از اصل توازی):

  • مثلثی با مجموع زوایای ۱۸۰ درجه وجود دارد.
  • مجموع زوایای هر مثلث برابر ۱۸۰ درجه است.
  • مجموع زوایای همه‌ی مثلث‌ها برابر است.
  • برای مساحت مثلث‌ها هیچ کران بالایی وجود ندارد.
  • از نقطه‌ی p خارج از خط l تنها یک خط موازی l وجود دارد.

با توجه به هم‌ارزی این گزاره‌ها، و گزاره‌های دوم و چهارم پنجم، می‌بینیم که اگر بتونیم مثلثی پیدا کنیم که مجموع زوایاش کم‌تر از ۱۸۰ درجه باشه، اصل توازی رد می‌شه.

مقدمه‌ی دوم، فلسفه‌ی هندسه

گاهی بحث می‌شه که هندسه‌ی فضایی که ما توش زندگی می‌کنیم چیه؟ خب این سوال یعنی چی؟ توی هندسه، وقتی می‌گیم «خط»، مسلما منظورمون خطی که روی کاغذ می‌کشیم نیست. جالبه که حتی منظورمون خط‌هایی که بی‌نهایت ادامه دارن هم نیست. نکتش اینه:«وقتی می‌گیم خط، اصلا منظورمون هیچ چیز نیست!». توی هندسه، ما دو موجود تعریف نشده داریم، «نقطه» و «خط»، و همچنین ۳ رابطه‌ی تعریف‌نشده، «قرار دارد بر» (نسبتی میان نقطه و خط)، «میان» (نسبتی بین ۳ نقطه که روی یک خط قرار دارند)، و «قابلیت انطباق» (نسبتی بین ۲ پاره‌خط).

حالا وقتی من می‌گم دستگاه مختصات دکارتی یک مدل برای هندسه‌ی اقلیدسیه، منظورم اینه که، به «زوج‌های مرتب» می‌گم «نقطه»، به «مجموعه‌ی نقاطی که توی فلان معادله‌ها صدق کنند» می‌گم «خط»، اگر یک نقطه(زوج مرتب) عضو یک خط(به عنوان یک مجموعه) باشه می‌گم «این نقطه روی اون خط قرار داره» و …، و با این تعاریف، این موجودات توی بنداشت‌هایی که قبول کردم صدق می‌کنند.

برای بررسی هندسه‌ی دنیای فیزیکی اطرافمون هم باید همچین کاری بکنیم. خب، سوال اینه:«به چی بگیم خط؟». 🙂 سال‌هاست یه پیشنهاد معقول وجود داره، مسیر حرکت نور. راحت و خوب. 🙂

اصل داستان

«یه روزی، گاوس، با نور یک مثلث روی قله‌ی ۳ تا کوه تشکیل می‌ده، و مجموع زوایاشون رو اندازه می‌گیره، شاید بتونه ببینه که واقعا از ۱۸۰ درجه کمتر هستند.»

امیدوارم به اندازه‌ی من، وقتی که این رو خوندم، تعجب کرده باشید. 🙂

اون ۳ تا کوه اسم‌هاشون Brocken و Hohenhagen و Inselbergه. اگر می‌خواید در مورد این آزمایش بیشتر بخونید اینجا و اینجا رو ببینید. البته مقداری که گاوس به دست آورد از ۱۸۰ درجه کم‌تر بود، اما افسوس، که مقدار کسری از دقت ابزار گاوس کم‌تر بود. اگر واقعا همچین چیزی پیدا می‌شد، می‌تونستیم واحد قراردادی طول، «متر» رو، با یک واحد واقعی جایگزین کنیم. 🙂 (بعدا در مورد این هم می‌نویسم.) بعد‌ها آزمایش‌های نجومی هم داشتیم، اما هنوز چیزی پیدا نشده.

باز هم بعد‌تر، اگر تئوری گرانشی اینشتین رو قبول کنیم، مشخص شد که هندسه‌ی دنیای ما چیزی پیچیده‌تر از هندسه‌های اقلیدسی و هذلولویه، که توسط گودل و افراد دیگه بسط داده شده.

اما چیزی که مهمه اینه که ما بعد از ۲۰۰۰ سال تلاش، فهمیدیم که می‌شه هندسه‌ای غیر از هندسه‌ی اقلیدسی تصور کرد، بدون این که به تناقضی برسیم.

پست رو با یک جمله منصوب به اینشتین تموم می‌کنم:

If the facts don’t fit the theory, change the facts.