انگاره پیچیدگی عینک جدیدی برای مطالعه طبیعت به ما میدهد. سیستمهای پیچیده از تعداد زیادی اجزا تشکیل شدهاند و نوعی نظم یا تازگی نسبت به اجزایشان بر آنها حاکم است. این سیستمها در مقیاس ریز، اجزایشان برهمکنشهای موضعی دارند ولی در مقیاس درشت، رفتارهای «پدیداره» از خود نشان میدهند که شبیه به رفتار اجزای آن در مقیاس ریز نیست. پدیدارگی در مورد این جور پدیدههاست.
این ویدیو دعوتی است برای خواندن این مقاله مروری کوتاه:
The term emergence is increasingly used across scientific disciplines to describe phenomena that arise from interactions among a system’s components but cannot be readily inferred by examining those components in isolation. While often invoked to explain higher-level behaviors, such as flocking, synchronization, or collective intelligence, the term is frequently used without precision, sometimes giving rise to ambiguity or even mystique. In this perspective paper, we clarify the scientific meaning of emergence as a measurable, physically grounded phenomenon. Through concrete examples, such as temperature, magnetism, and herd immunity in social networks, we review how collective behavior can arise from local interactions that are constrained by global boundaries. By disentangling emergence from vague overuse, we emphasize its role as a rigorous tool for understanding complex systems. Our goal is to show that emergence, when properly framed, offers not mysticism but insight.
ویراستار: متن پیش رو نخستین بار توسط این نویسنده در سی و سومین شمارهی تکانه (نشریه علمی-آموزشی دانشجویان فیزیک دانشگاه صنعتی شریف) آمده. نویسنده از آقای علی گودرزی، آقای دکتر سامان مقیمی، آقای حسین مهدئی و آقای امیرحسین پیلهوریان و همچنین خانم حانیه ملکی تشکر میکند.
برای درک بهتر این نوشته، سیتپور شنیدن این پادکست را پیشنهاد میکند:
فروکاستگرایی یا تقلیلگرایی باوری فلسفی است که همهی قوانین حاکم بر طبیعت را میتوان با تعداد کمی از «قوانین بنیادی» توصیف کرد. بهعنوان مثال، این باور احتمالا رایج که رفتار یک سامانه دارای تعداد زیادی «ذره» (بهعنوان مثال جعبهای شامل تعداد زیادی مولکول گاز یا رفتارهای موجودی زنده که از تعداد زیادی مولکول تشکیل شده است) را می توان از طریق برآیند رفتار تکتک ذرات توصیف کرد، که البته حقیقت بدیهیای به نظر نمیآید، از این باور فلسفی نشأت میگیرد. مثلا بیوفیزیکدانان در مقیاس «بنیادیتری» نسبت به زیستشناسان کار میکنند و تلاش میکنند برخی رفتارهای موجودات زنده را از طریق فیزیک حاکم بر مولکولها و مواردی از این قبیل توصیف کنند. در این مقاله به طور خاص به فروکاستگرایی در فیزیک و بخشی از تأثیر آن در روند پیشرفت علم فیزیک میپردازیم.
از نظر تاریخی احتمالا این باور از حدود زمان گالیله و نیوتن به طور جدیتر وارد فیزیک شده است. شاید معروفترین شاهد آن تلاش نیوتن برای نوشتن قانون گرانش باشد؛ او سعی کرد به قانونی برسد که تمام برهمکنشهای گرانشی را توضیح دهد. تلاش او در این راستا بود که حرکت سیارات، سقوط اجسام بر روی زمین و مواردی از این دست را بتواند با یک قانون واحد توضیح دهد. یک نکتهی قابل بحث این است که به نظر نمیآید الزامی برای «وجود» قانونی واحد باشد که همهی برهمکنشهای گرانشی را توضیح دهد. به نظر میآید از نظر تاریخی، در ادامه و بعد از زمان گالیله و نیوتن این نگرش به مرور بیشتر وارد فیزیک شده است. چند الگوی جالب و مشخصتر در برخی اتفاقات پررنگ مربوط به این دیدگاه در علم فیزیک مشاهده میشود که به آنها خواهیم پرداخت (هر چند که این دستهبندی شامل همه الگوها نمیشود و لزوما یکتا نیست).
نظریه موثر
زیاد پیش میآید که در فیزیک، نظریهی توجیه کنندهای پدیدهای — که با مشاهدات تعارض خاصی ندارد — را به عنوان نظریهی موثر یک نظریهی بنیادیتر بنویسند. یکی از معروفترین تلاشها در این راستا ساختن مکانیک آماری است، که کل نظریهی ترمودینامیک را به مکانیک بس ذرهای تقلیل میهد و تلاش میکند با روشهای آماری، ترمودینامیک را به عنوان نظریهی موثری از مکانیک نیوتنی و بعد از آن مکانیک کوانتومی بسازد. هر گاه بین نظریهی به نسبت پذیرفته شده موجود و مشاهدات (تجربه) تعارضاتی مشاهده شود، فیزیکدانها تلاش میکنند تا با رعایت اصل همخوانی، نظریهی جدیدی بسازند؛ به این معنا که نظریهی جدید باید در حالات حدی مشخصی نتایج نظریهی سابق را مجنر شود. مثلا نظریهی نسبیت یا مکانیک کوانتومی که در پی همخوان نبودن مشاهدات تجربی با نظریههای کلاسیک ساخته شدند در حدهایی نتایج مکانیک کلاسیک را بازتولید میکند. به هر حال، نظریه مکانیک کلاسیک کامل نیست ولی در برخی حدود بسیار خوب کار میکند. به قول فاینمن، علم در مورد این نیست که چه چیز درست یا نادرست است، بلکه در مورد این است که ما چه چیز را با چه دقتی میتوانیم توصیف کنیم. مکانیک کلاسیک برای سرعتهای پایین یا اندازههای خاصی در اکثر موارد با دقت خوبی با مشاهدات ما همخوانی دارند. نظریههای پیشرفتهتری چون مکانیک کوانتومی و نسبیت هم در این حدود تبدیل میشوند به مکانیک کلاسیک. گاهی نظریههای جدید برای از بین بردن تعارضات دو نظریه جا افتاده تهیه میشوند. مثلا سوای مشاهدات آزمایش مایکلسون – مورلی، نسبیت خاص به دنبال بهبود نظریه مکانیک کلاسیک برای همخوانی با نتایج نظریه الکترومغناطیس ساخته شد.
پدیدارگی
گاهی در سامانههای بسذرهای ویژگیهای جدیدی اصطلاحا«پدیدار میشوند» بیآنکه ذرات سازنده آن سامانه آن ویژگی یا ویژگیها را در خود داشته باشند. از طرف دیگر، رفتار برخی سامانهها در سطوح مختلف را بدون دانستن سطوح بالاتر یا پایینتر آن میتوان فهمید. پدیدارگی یا پدیدار شدگی به بهوجود آمدن ویژگیهای یک سامانه در سطوح بالاتر پیچیدگی اشاره دارد که در تک تک اجزای آن در سطح پیچیدگی کمتر قابل مشاهده نیست و فقط در برآیند کل سامانه و با در نظر گرفتن کل اجزا و برهمکنشهایشان میتوان آنها را دید. فیلیپ اندرسون در مقالهای با عنوان «بیشتر، متفاوت است» این ایده را مطرح کرد که برای درک برخی از پدیدهها، پرداختن به نظریههای «بنیادیتر» لزوما سودمندتر نیست. مثلا انتظار می رود که علیالاصول کل شیمی را از فیزیک بسذرهای بتوان را استخراج کرد. اندرسون این ایده را مطرح میکند که این نظریههای موثر که در سطوح پیچیدگی بالاتری ساخته میشوند باید (از نظر خودش) به همان اندازه «بنیادی» تلقی شوند که نظریههای با سطح پیچیدگی کمتر تلقی میشوند، چون عملا بسیاری از اوقات «بنیادیترین» چیزی هستند که با آن میتوان مشاهدات را توصیف کرد. اندرسون از این دیدگاه انتقاد میکند که گاهی تنها به فیزیکدانان ذرات بنیادی به عنوان کسانی که کار «بنیادی» میکنند نگاه میشود، اما نظریههای ذرات بنیادی در عمل نمیتوانند بسیاری از پدیدههایی که مشاهده میکنیم و حاصل برهمکنش تعداد زیادی ذره هستند را توصیف کنند.
یکی دیگر از موارد قابل ذکر این است که نظریههای در سطوح پیچیدگی بالاتر خیلی اوقات برگرفته و حاصل تقریباتی از نظریههای بنیادیتر هستند و کاملا بدون اتکا به آنها نیستند. در واقع برای سادهتر شدن مدل و معادلات خیلی از این نوع نظریهها تقریباتی را وارد میکنند و با در نظر گرفتن اصل نظریه بنیادیتر، از بسیاری از پیچیدگیها صرف نظر میکنند. به عنوان مثال میتوان به مدل هابارد در فیزیک ماده چگال اشاره کرد. در این مدل از برهمکنش الکترونهای غیر نزدیک صرف نظر میشود و مقدار پتانسیل حاصل از برهمکنش الکترونهای نزدیک هم به عنوان تابعی از بقیهی پارامترها وارد مدل نمیشود. در این مورد مثلا ایدهی تقریب را میتوان در قانون کولن دید، به دلیل رابطهی عکس پتانسیل با فاصله، از پتانسیل ناشی از الکترونهای در فواصل دور از هم صرفنظر میشود. در سامانههای پیچیده هم از این جنس ایدهها استفاده میشود. فایدهی این کار این است که با اجتناب از درگیر محاسبات گاهی طولانی شدن، میتوان راحتتر به استنتاج نتایج حاصل از مدل پرداخت. البته میزان کارا بودن مدل سادهسازی شده باید با نتایج آزمایشها مطابقت داده شود.
نکتهی دیگری که وجود دارد بحث سودمند بودن یا نبودن توصیف پدیدههای پیچیده توسط نظریههای با سطح پیچیدگی کمتر است. فرض کنید بتوان با کامپیوترهای آینده سامانههای بسذرهای را با نظریههای در سطح اتمها حل عددی کرد. مشکلی که وجود دارد این است که حجم اطلاعات به دست آمده به این صورت بسیار زیاد است و بسیاری از آنها را نمیتوان به طور مستقیم در پدیدههایی که نیاز به توصیفشان را داریم مشاهده کرد. مثلا یک ظرف گاز را در نظر بگیرید. حتی اگر معادلات حرکت حاکم بر تک تک ذرات را بتوانیم به صورت کلاسیک حل کنیم، مشکل بعدی این هست که چیزی که مشاهده میکنیم مکان تک تک ذرات نیست. تابعیت زمان مکان تک تک ذرات برای توصیف یک سامانه ترمودینامیکی کارایی خاصی ندارد. حتی در این حالت هم باید دنبال کمیتهای موثری بگردیم، کمیتهایی که در این سطح از پیچیدگی پدیدار میشوند و سعی کنیم از حل عددی معادلات حرکت همهی ذرات به طریقی به آنها برسیم. در ترمودینامیک کمیتهایی مثل فشار و دما از این جنس هستند.
یکی ازمشکلاتی که گاهی از نظر عملی به تلاش برای توصیف یک سامانه با تعداد کمی پارامتر توسط نظریههای در سطح پیچیدگی بالاتر وارد میشود، این است که این کار بسیار سادهانگاری دارد و همیشه نمیتوان کل سامانه بسذرهای را توسط تعداد کمی کمیت موثر توصیف کرد. دکتر خرمی در مقالهای که در زمینهی فروکاستگرایی نوشتهاند اینطور استدلال میکنند که این نکته نسبتا بدیهی است. میتوان تعداد کمیتهای موثر را بیشتر کرد (و حتی مثلا تمام ذرات گاز را در نظر گرفت) ولی به این قیمت که میزان محاسبات بیشتر شود. وقتی محدودیت توان و انرژی داشته باشیم، این نهایت کاری است که میتوانیم بکنیم. اگر در آینده این محدودیتها کمتر شد، و البته نیاز به دقت بیشتری وجود داشت، میتوان محاسبات را دقیقتر کرد و آنها را با نظریههای با سطح پیچیدگی کمتری پیش برد. مثالی که در مقالهشان به آن اشاره میکنند در مورد هواشناسی است. اینکه در گذشته به دلیل کمقدرتتر بودن کامپیوترها مجبور بودند محاسبات را سادهتر کنند به این قیمت که دقت پیشبینیها کم میشد و همچنین مقیاس زمانیای که پیشبینیها تا آن تا حد معقولی کار میکردند کمتر میشد. ولی این نهایت کاری بود که میتوانستند بکنند و اصطلاحا «از هیچ چیز بهتر بود». اما بعدا با قدرتمندتر شدن کامپیوترها و ابزارهای محاسبه پیشبینیها بهتر شدند و تا مقیاس زمانی بزرگتری قابل اتکا بودند.
همه ما اسم گالیله رو شنیدیم و میدونیم که یکی از تاثیرگذارترین فیزیکدانانهای تاریخه. اثر معروف گالیله «دیالوگو» در مورد این ایده است که خورشید مرکز منظومه شمسیه که خب همین حرفها هم پای گالیله رو به دادگاه تفتیش عقاید باز کرد. با این وجود، گالیله نه تنها در زمینه فیزیک و ریاضی که در زمینههای دیگهای هم اهل تحقیق و پژوهش بوده و گاهی هم سوالهای خیلی مهمی پرسیده و به بعضیهاشون هم تونسته جواب بده. یه مثال خیلی مهم، الگوی تغییر میزان سوختوساز پایه (متابولیسم) حیوانات به نسبت وزنشونه. در واقع سوال اینه که وقتی در گونههای مختلف وزن حیوونی دو برابر میشه مقدار سوخت و سازش چند برابر میشه؟ جواب این سوال به یک مسئله خیلی مهم مقیاسی در سامانههای زیستی برمیگرده. چیزی که بعد از گذشت چند قرن، تازه دانشمندا موفق شدن توضیحی برای این کار پیدا کنند! نوع وابستگی سوخت و ساز به وزن حیوونا همون چیزیه که امروز به قانون Kleiber معروفه.
West G., 2017, Scale. The universal laws of growth, innovation, sustainability, and the pace of life in organisms, cities, economies, and companies,
خب این خیلی جالبه که گالیله در اون سالها تونسته به اینچیزها فکر کنه و سوالهای مهمی خارج از فیزیک و ریاضیات مطرح کنه و به کمک شناخت و مهارتمناسبی که در این زمینهها داشته سعی کرده مسئلهای خارج از تخصص اصلیش رو به میزان قابل توجهی جواب بده. بینش عمیقی که گالیله، نیوتون یا ریچارد فاینمن داشته همیشه زبانزد جامعه علمی بوده. بینشی که گاهی فقط منجر به این شده که سوالهای بسیار خوبی مطرح کنند. به قول کارل سیگن، «ما جهان خود را با شهامت پرسشها و عمق پاسخهایمان درخور میسازیم.»
مستقل از زمان گذشته که یک سری همهچیزدان معروف مثل ابنسینا وجود داشته در تاریخ مدرن هم که ما مفاهیمی مثل دانشگاه و تخصص دانشگاهی داریم باز اسم افراد دیگهای شنیده میشه که به مسائلی خارج از تخصص اصلیشون پرداختن و در نهایت موفق شدن که اونها رو به خوبی توسعه بدن. مثلا، اگه فیلم ذهن زیبا رو دیده باشین میدونید که جان نش، ریاضیدون معروف، برنده جایزه نوبل در اقتصاده یا مثلا جان فوننویمان هم در توسعه ریاضیات و فیزیک مشارکت جدی داشته و هم در علوم کامپیوتر و اقتصاد! اسم نوآم چامسکی رو هم که این روزا دیگه همه شنیدیم؛ چامسکی پدر علم زبانشناسی مدرنه که این روزها بیشتر از هر چیزی به عنوان یک منتقد جدی سیاستهای امریکا شناخته میشه و حرفش هم در بین اهل فن خریدار داره. خلاصه این که آدمها سعی کنن با توجه به دانش و مهارتهایی که در زمینه تخصصیشون دارن سراغ بررسی یا حل مسئلههای دیگه در بقیه حوزهها برن چیز عجیبی نیست. توی پست معرفی کتاب «قوانین عمومی موفقیت» باراباشی گفتیم که این تحقیقات عموما توسط افرادی انجام شده که زمینه تحقیقاتشون چیزهایی مثل فیزیک و علوم داده بوده نه مثلا مدیریت یا روانشناسی! در واقع لازلو باراباشی، نویسنده کتاب، به کمک همکارانش با استفاده از روش علمی سعی کرده راهی برای مطالعه کمی میزان موفقیت افراد یا شرکتها در موضوعات مختلف پیدا کنه و به نتیجهگیری معقولی برسه. نتایج این تحقیقات توی مجلههای معتبر علمی چاپ شده و خلاصهای از اونها رو باراباشی در کتاب عامهپسندی منتشر کرده. اگه کنجکاویتون در مورد این ماجرا زیاد شد پیشنهاد میکنیم حتما قسمت ۲۸ام پادکست بیپلاس که خلاصه این کتاب رو تعریف میکنه رو گوش کنید.
اگه همه این داستانها رو هم بذاریم کنار، عصری که ما توش زندگی میکنیم عصر توسعه علوم بینرشتهایه. این روزها مرتب میشنویم که مثلا فیزیکدانها و ریاضیدانها در بازارهای مالی مشغول فعالیت هستند یا اینکه زیستشناسها و روانشناسها در یک پروژه مشترک مشغول مطالعه مسائلی پیرامون عملکرد مغز انسان هستند. اصلا این روزها وقتی اسم نوروساینس برده میشه به طور مشخص در مورد یک حوزه کاملا بین رشتهای صحبت میشه که متخصصهایی از رشتههایی مثل ریاضی، علوم کامپیوتر، فیزیک، آمار، زیستشناسی، روانشناسی، پزشکی و رشتههای مختلف مهندسی دور هم جمع شدند و به کمک همدیگه مشغول تحقیق و پژوهش هستند تا از کار مغز و رفتار انسان سر در بیارن. از طرف دیگه زیاد از جاهای مختلف شنیدیم که اضافه کردن آدمهای جدید و بعضا خیلی دور از رویه یه شرکت منجر به این میشه که ایدههای خلاقانه بیشتری شکل بگیره و در نهایت انگار شرکتهای بزرگ بدشون هم نمیاد که آدمهای خارج از چارچوبهای رایج کسب و کارشون رو استخدام کنند. اون قدرها هم البته دور از عقل نیست این کار؛ شما اگه واقعا نیاز دارید که به چیزی جور دیگهای نگاه کنید باید یا سعی کنید که از شر همه چارچوبهای شکل گرفته در ذهنتون بعد از سالها آموزش حرفهای خلاص بشین که خب این کار خیلی سختیه یا اینکه از آدمهایی که ذهنیت متفاوتی دارن دعوت کنید تا به چالش پیش اومده فکر کنند و راه حلی ارائه کنند. بالاخره گاهی برای رسیدن به جایی که هرگز نبودیم مجبوریم راههایی رو طی کنیم که تاحالا نرفتیم دیگه، نه؟!
اما، این فقط یک طرف ماجرا است! در حقیقت طرفی که اتفاقا این روزها زیاد ازش صحبت میشه و به ظاهر مردم هم ازش استقبال میکنند. عموما هم همه جا در مورد خیر و برکتی که پشت این مدل کارهای بینرشتهای و میانموضوعی قرار داره صحبت میشه. ای کاش همیشه هم این جوری بود، ولی خب اگه یکمی با دقت بیشتری نگاه کنیم متوجه میشیم اینکه این جور مواقع ماجرا ختم به خیر نمیشه که هیچ، تازه این طرف در واقع طرف پر از ریسک ماجراست! یکی از چالشهای جدی این رهیافت اینه که آدمهایی که در زمینهای تخصص دارن در مورد زمینه دیگه شروع به اظهار نظر میکنن در حالی که به جهلشون نسبت به پیشزمینههای اون مسئله واقف نیستند و فکر میکنند که کاملا حق با اونهاست در حالی که یا تحلیلشون غلطه یا به نتیجهگیری اشتباهی میرسند. به افرادی که در زمینهای خارج از تخصص اصلیشون اظهار نظر غلط میکنند اصطلاحا متجاوزان معرفتی میگن؛Epistemic trespassers
به دعوت بچههای انجمن علمی فیزیک دانشگاه تهران در مورد شبکههای پیچیده حرف زدم. ویدیو جلسات ضبط شده. در ادامه اسلایدها رو گذاشتم.
قسمت اول: پیچیدگی و تحول انگاره
در این قسمت ابتدا به سراغ انگاره پیچیدگی میرویم و پیرامون تحول انگاره در فیزیک در دهههای گذشته صحبت میکنیم. نشان میدهیم که فیزیک آماری در گذار از ریزمقیاس به بزرگمقیاس با چه چالشهایی روبهرو بوده. سپس به دنبال توجیه رفتارهای جمعی در سیستمهای فیزیکی و زیستی به اهمیت برهمکنشهای نابدیهی و شبکههای پیچیده میرسیم.
در ادامه قسمت قبل، به دنبال توجیه رفتارهای جمعی در سیستمهای فیزیکی و زیستی به اهمیت برهمکنشهای نابدیهی و شبکههای پیچیده میرسیم و به ویژگیهای این شبکهها و پدیدههای دینامیکی روی آنها میپردازیم. سرانجام در مورد مدلسازیهای انتشار ویروس کرونا صحبت خواهیم کرد!
۲۵امین گردهمایی انجمن علمی ژرفا با موضوع سیستمهای پیچیده با همکاری انجمنهای علمی فیزیک، همبند، شناسا از دانشگاه صنعتی شریف و مرکز شبکههای پیچیده و علم دادهٔ اجتماعی دانشگاه شهید بهشتی در تاریخ ۲۴ام اردیبهشت ماه سال ۱۳۹۸ برگزار شد.
💰 اقتصاد و فیزیک سیستمهای پیچیده – دکتر سامان مقیمی
🧠 مغز از پیچیده تا بغرنج – دکتر عبدالحسین عباسیان
🧬 پیچیدگی زیستی: در جستجوی تصویری واقعبینانه از ژنوتیپ و شایستگی – دکتر عطا کالیراد
این نوشته رو به مناسبت بیست و پنجمین گردهمایی ژرفا با موضوع سیستمهای پیچیده برای شماره ۸۱۸ روزنامه دانشگاه صنعتی شریف نوشتم.
برای دیدن نگاره با کیفیت بیشتر کلیک کنید. حق نشر متعلق به شماره ۸۱۸ روزنامه دانشگاه صنعتی شریف.
انسان به دنبال قدرت پیشبینی
از قرن ۱۷ میلادی ما انسانها به امید پیدا کردن الگوهایی در طبیعت، با جدیت خاصی شروع به مطالعه دنیای اطرافمان به صورت کمی کردیم. رفتهرفته عددها مهمتر شدند و همه هم و غممان تبدیل به این شد که بعد از به دست آوردن یکسری عدد، پیشبینی کنیم که عدد بعدی چیست! گاهی این پیشبینی در مورد مکان یک سیاره در آسمان بود بعد از چند ماه رصد یا دمای یک پیستون پر از گاز و مایع بعد از طی کردن یک فرایند ترمودینامیکی. گاهی هم آن عدد مطلوب، زاویهی پرتاب یک توپ بود به لشکر دشمن! الگوهای حاکم بین اعداد همیشه موضوع هیجانانگیز و سودآوری برای مردم بود چرا که قدرت «پیشبینی» را در پی داشت.
قدرت پیشبینی،مزیت رقابتی علم بر فلسفه بود که از دل مدلسازیهای عددمحور به دست میآمد. قرن ۱۹ و ۲۰ میلادی طی شد و نوبت به هزاره سوم رسید. انسان قرن ۲۱ام که به گمانش همه علوم را خوب میشناخت، با پرسشهای جدیدی روبهرو شد. پرسشهایی که این بار مرز بین علوم را نشانه گرفته بودند. پرسشهایی از این جنس که حالا که فیزیک را بهخوبی میشناسیم، آیا میتوانیم یک ترکیب آلی را به خوبی توصیف کنیم یا مثلا شیوه تاشدگی یک پروتئین را با دقت خوبی پیشبینی کنیم؟! یا اگر متخصص زیستشناسی باشیم پیشبینی رفتار جامعه انسانها در شرایط بحران اقتصادی برایمان ممکن است؟! در مورد رفتار بازار بورس چه؟ اکنون که سلولهای عصبی را میشناسیم آیا کارکرد مغز را میتوانیم توصیف کنیم؟ آیا میتوانیم بگوییم که برای سلولهای عصبی چه اتفاقی میافتد که فردی دچار بیماریهایی مانند صرع یا پارکینسون میشود؟ یا پرسشهایی از این قبیل که چرا هنوز مدیریت ترافیک و جلوگیری از مسدود شدن جادهها برایمان دشوار است؛ مگر ما همان بشری نیستیم که به ماه سفر کردهایم و با توسعه مکانیک کوانتومی بمب اتم ساختهایم؟! چرا بعد از حل کردن این همه مسئله بغرنج، نمیتوانیم زمان بحرانی برای همهگیری یک شایعه یا بیماری جدید در دنیا را محاسبه کنیم و برنامه دقیقی برای چگونگی واکسیناسیون مردم را تدوین کنیم؟ علیرغم این همه پیشرفت در علوم مختلف، چرا در حل این قبیل مسائل ناتوان ماندهایم؟!
چرا شناخت دنیای اتمها برای شناخت دنیای شیمی کافی نیست؟! یا چرا «بیشتر، متفاوت است»؟
همه اینها پرسشهایی بود که بهخاطر ظاهر سادهشان انسان قرن بیست و یکمی نخست فکر میکرد که «علیالاصول» باید بشود جوابشان را دانست. بالاخره طی سه قرن گذشته، ریاضیات بسیار گسترش یافته بود و فیزیک – علم اتمها و کهکشانها – را به خوبی توسعه داده بودیم. فیزیک هم که مادر شیمی است و شیمی مادر زیستشناسی و زیستشناسی توصیفکننده موجودات زنده و انسان هم یک موجود زنده است. رفتار بازار بورس یا اقتصاد جهانی یا همهگیری یک بیماری هم بر اساس عملکرد همین موجودات زنده است. خب پس لابد با مقداری محاسبه میتوان به این پرسشها پاسخ داد. با این وجود، رفته رفته متوجه شدیم که فهم ما از سیستمهایی مانند مغز انسان یا اقتصاد جهانی دچار نواقص جدی است و پیشبینی و کنترل رفتار آنها برای ما بسیار دشوار است. گویا این سیستمها دارای پیچیدگی عجیبی هستند. به عبارتی، این سیستمها، پیچیده هستند از آنجا که ما با آنکه اجزایشان را میشناسیم و رفتار تکتک آنها را به خوبی میتوانیم پیشبینی کنیم، ولی «رفتار جمعی» آنها تحت یک ساختار جدید را نمیتوانیم به خوبی توصیف کنیم! میدانیم که عملکرد سلولهای عصبی سازنده مغز چگونه است، اما عملکرد مغز را نمیتوانیم توصیف کنیم. مثلا نمیدانیم تکلیف حافظه چیست! میدانیم که در سلولهای عصبی حافظه وجود ندارد ولی با این حال، در مجموعهای از همین سلولها وجود دارد! همین مجموعه کارهای عجیب و غریبتری هم میکند. مثلا سلولهای عصبی مغز به طور جمعی از خود، آگاهی نشان میدهند. در حالی که آگاهی در هیچ کجای سلول عصبی بیچاره وجود ندارد. تلاش برای حل این قبیل تناقضها که در مقیاس ریز اگر همه چیز آشنا باشد، لزومی ندارد در مقیاس درشتتر رفتار سیستم را بتوانیم توصیف کنیم آغازگر انگارهای جدید در علم بود؛ انگاره پیچیدگی.
اگر به دنبال کتاب مناسبی برای یادگیری سیستمهای پیچیده هستید، این کتاب پیشنهاد جدی ما است 🙂
بشر قرن ۲۱، به دنبال شناخت سیستمهای پیچیده است. سیستمهایی که از تعداد زیادی اجزا تشکیل شدهاند و نوعی نظم خودبهخودی بر آنها حاکم است. در این سیستمها در مقیاس ریز، اجزایشان برهمکنشهای موضعی دارند ولی در مقیاس درشت، رفتارهای «پدیداره» از خود نشان میدهند که شبیه به رفتار اجزای آن در مقیاس ریز نیست. راستش، ما ناچار به درک سیستمهای پیچیده هستیم. برای ما که همیشه مجذوب قدرت پیشبینی علم شدهایم مهم است که بدانیم اگر آنفولانزا در آفریقا شایع شد با چه احتمالی یک آلمانی در چه روزی بیمار میشود و با چه احتمالی یک ایرانی در چند روز بعد. برای ما مهم است، چرا که شبکه واگیری بیماری از لحاظ ریاضیاتی موجود سادهای نیست و مطالعه یک فرایند دینامیکی روی چنین شبکهای بدون کمک گرفتن از کامپیوترها غیرممکن است. برای ما حل همزمان تعداد زیادی معادله دیفرانسیل غیرخطی که به همدیگر وابسته هستند با قلم و کاغذ اصلا راحت نیست. حداقل تجربه سال اول و دوم زندگی دانشگاهیمان این را به ما گوشزد میکند!
سیستمهای پیچیده مهم هستند، چرا که انگاره پیچیدگی عینک جدیدی برای مطالعه طبیعت به ما میدهد. انگاره پیچیدگی به ما میگوید مستقل از اینکه مسئلهای تا پیش از این در کدام حوزه خاص از علم بررسی میشده، باید با نگاهی از پایین به بالا به دنبال حل آن مسئله باشیم و همزمان از همه امکانات فنی و تحلیلیمان برای حل آن استفاده کنیم. برای مثال، مسئله مغز، یک مسئله در فیزیک یا شیمی یا زیستشناسی یا علوم کامپیوتر نیست. در مکتب/نگاه/انگاره پیچیدگی، مسئله مغز سوالی است که متخصصان حوزههای مختلف با ابزارهایی که دارند سعی میکنند در یک محیط مشارکتی راهی برای حل آن پیدا کنند.
انگاره پیچیدگی به ما میگوید با تبدیل کردن یک سیستم به اجزا سازنده آن و شناخت اجزا نمیتوانیم به درک درستی از آن سیستم برسیم. مکتب پیچیدگی در برابر مکتب تقلیلگرایی (reductionism) قرار دارد.
(این نوشته از دکتر محمد خرمی در مورد تقلیلگرایی را بخوانید.)
در قلب توده بزرگی از مادهی تاریک، در نقطهای از کهکشان مارپیچی بزرگمان، بر روی سیارهی خارقالعادهای که به دور خورشید با شکوهمان میچرخد، در ادامهی زنجیرهای که هنوز تنها اثری از حیات زنده در کیهانمان است، ما نیز شروع به زندگی کردیم. به عنوان گونهای با قدرت تفکر، همیشه به دنبال زبانی برای برقراری ارتباط با محیط اطرافمان بوده و هستیم. گاه با هدف رفع نیاز، گاه برای رفع حس کنجکاوی سیری ناپذیرمان و حتی گاهی در اثر ترس! اما هدف هرچه بود و هرچه هست، امروز درجای عجیبی از تاریخ علم ایستادهایم و با غرور به جهانی نگاه میکنیم که نه آنطور که ما دلمان میخواهد، بلکه آن گونه که واقعا هست، در برابر ما ایستاده است.
ما همیشه میخواستیم با طبیعتمان سخن بگوییم، و در طول تاریخ، فیزیک راهی بود که برای این هدف انتخاب کردیم. فیزیک زبان مشترک ما و طبیعت شد. ما مشاهده میکردیم، بعدها یاد گرفتیم ثبت کنیم، بر پایهی مشاهداتمان فرضیه سازی کردیم و جلو رفتیم. زمینمان را تخت تصور میکردیم، هر کدام از سیارات و ستاره ها را خدایی میپنداشتیم که باید نیایش کنیم، وگرنه بر ما عذاب میفرستند. در ذهنمان خدایان ناشناختهای ساختیم که شب و روز را پدید میآوردند. خدایانی که غروب خورشید را میخوردند و صبح باز او را به دنیا میآوردند. خدایانی که صبح از شرق برمیخاستند، در طول روز در آسمان سیر میکردند و غروب مانند پیرمردان در بستر میمردند. رعد و برق، خشم خدایان بود و زلزله خشم مادرمان زمین.
فرضیه ساختیم، خیالبافی کردیم و جلو آمدیم. سفر کردیم، اختراع کردیم، تا آنجا که زمین و آسمان را هر روز بهتر و بهتر شناختیم. فرضیاتمان به مرور حقیقیتر میشدند، از محیطمان به زیباترین وجه استفاده میکردیم، ویژگیهایش را میدانستیم، دارو میساختیم، ظروف زیبا، وسایل نقلیه، ساختمانهای باشکوه ، اما هنوز پیوند عمیقی برقرار نبود. با طبیعتمان به زیبایی زندگی میکردیم اما زبانش را نمیدانستیم. همیشه نگاهمان به آسمان هم معطوف بود. آسمان پر رمز و راز را میدیدیم. ستارگانی را که هر شبمان را زیبا میساختند، در صورتهای فلکی دسته بندی کردیم. علم اخترشناسی را به جود آوردیم و هر شب آسمان را رصد میکردیم. همه چیز را میدیدیم، اما هنوز علتها ناشناخته بود.
نظریه زمینمرکزی بطلمیوس
بطلمیوس که بین سالهای ۹۰ تا ۱۶۸ میلادی زندگی میکرد، معتقد بود زمین در مرکز جهان قرار دارد، و ماه و خورشید و سایر سیارات، به دور آن میچرخند. در این نظریه، سیارات مداری نداشتند و انگار بر روی صفحهای شیشهای به نام فلک چسبیده بودند و فلک به دور زمین در گردش بود. او معتقد بود که ۸ یا ۹ فلک وجود دارد و بر روی فلک آخر، ستارهها چسبیدهاند.
یک نقاشی قدیمی برآمده از طرز تفکر بطلمیوسی (زمینمرکزی) – نگاره از ویکیپدیا
پس از این فلک، که به آن فلک الافلاک میگفتند، خداوند و فرشتگان زندگی میکردند. این نظریه که به آن زمین مرکزی میگویند شاید یکی از نخستین نظریات جامع و منسجم ما درباره ی کیهانمان بود. این باور نزد ما پذیرفته شده بود. ما در مرکز جهان هستی، بر روی سیارهی زیبایمان نشسته بودیم و همه به دور ما میگشتند. کلیسا نیز این فرضیه را بشدت تبلیغ میکرد. خیالی خوش و پرغرور اما ناپایدار. تا بالاخره در تاریخمان گالیله پیدا شد. او بود که گفت نه تنها ما مرکز جهان نیستیم، بلکه ما و چند سیارهی دیگر همه و همه به دور خورشید زیبایمان میگردیم. او نگاه ما را به طبیعت و به ویژه علم مکانیک دگرگون کرد، و در یک کلام، او نخستین پیوند میان طبیعت و ریاضیات را در قلب علم حرکت شناسی نشان داد. وقتی به او فکر میکنم، و به جهانی که پیش از او میشناختیم، تصمیم و کار بزرگش بسیار ترسناک به نظرم میرسد. تصور کنید در خانهای نشستهایم، دیوارهایش را با رنگهای بسیار زیبا نقاشی کردهایم و تصور میکنیم تمام حقیقت، هرآن چیزی است که در نقاشیهایمان کشیدهایم. ناگهان مردی از راه میرسد، دیوارها را خراب میکند،نقاشیها را میسوزاند، ما را وسط تاریکی بیانتهایی رهایمان میکند و تنها مشعلی به دستمان میدهد. او نمیداند نتیجهی جستجویمان چه خواهد بود، اما باور دارد حقیقت بسیار زیباتر و موثرتر از تمام نقاشیهایمان بر در و دیوار خانهمان است. او به درستی و زیبایی حقیقت باور دارد. ما این مشعل را گرفتیم و جلو آمدیم.
نیوتون و ادامهی راه
مفهوم گرانش را فهمیدیم. حرکت سیارات را توجیه کردیم. مهندسی نوینی بر پایهی معادلاتش بنا کردیم. علم مهندسی هر روز زندگی را سادهتر میکرد. اما سوالات ما پایانی نداشت. مطالعه بر روی نور از زمان نیوتون جدیتر دنبال میشد. تلسکوپ گالیله که یکی از دستاوردهایش کشف چند قمر از اقمار مشتری بود، به وسیلهی نیوتون اصلاح شد و کار رصد آسمان را اندکی بهبود بخشید. همچنین مطالعهی ما بر روی الکتریسته و مغناطیس روز به روز بیشتر میشد و کسانی ماند لنز، فارادی، آمپر و دیگران ماهیت بار الکتریکی را معرفی کردند. سرانجام دوران طلایی فیزیک فرا رسید. در اواخر قرن نوزدهم، تامسون مدل اتمیاش را ارائه کرد. رادرفورد اولین بار مفهوم هسته را معرفی کرد. پروتونها و نوترونها شناخته شدند و سرانجام مدل سیارهای توسط نیلز بور ارائه شد. مدلی که اگر درست بود بنابر نظریهی الکترومغناطیس، به ناپایداری اتمها و نابودی اتم منجر میشد. در این زمان بشر به آزمایشهایی دست میزد که یکی پس از دیگری ناتوانی فیزیک نیوتونی را در توضیح مسائلی روشنتر میساخت. اینطور به نظر میرسید که باز راهمان را گم کردهایم.
اما نه!
ما میدانستیم ماشینهایمان، هواپیماها و تمام علم ساختمان، بر پایهی فیزیک نیوتونی دقیق و زیبا کار میکنند و جلو میروند. اینجا بود که به اصل بسیار زیبای همخوانی رسیدیم. اصلی که سنگ بنا و شرط اساسی تمام نظریاتمان شد:
اگر نظریه ی جامعی ارائه میشود، این نظریه باید در شرایط خاصی که مکانیک نیوتونی برقرار است، معادلات نیوتون را بدست دهد.
برای مثال، اگر به دنبال نظریهی جامعی هستیم که قلب اتم را نیز برایمان توضیح دهد، چنانچه در معادلاتمان باز از اتم به اجسام عادی و سرعتهای معمولی رسیدیم، باز معادلات باید همان معادلات نیوتون شوند. و این اصل چراغ راهمان شد. تابش جسم سیاه، اثر فوتوالکتریک، اثر کامپتون و … هر یک بیش از پیش ما را به سمت نظریهی شگفتانگیز کوانتوم سوق داد.
دوگانگی موج و ذره یکی از مفاهیم عجیب مکانیک کوانتومی- نگاره از ویکیپدیا
با مکانیک نیوتونی و درک ماهیت موجی-ذرهای در ابعاد کوانتومی، هایزنبرگ ، شرودینگر و دیراک زبانی ساختند بسیار مدرن که ما را به اعماق ماده راه داد. در اوایل قرن بیستم بود که اینیشتین با تئوری زیبای نسبیت خاصش از راه رسید. نظریهای که در پاسخ به مسئلهی یکسان بودن سرعت نور نسبت به هر ناظر لخت با هر سرعتی نوشته شده بود. این نظریه نشان داد که در سرعتهای بالا، زمان هم از نگاه ناظرهای مختلف متفاوت است و به این صورت، مفاهیم قدیمی فضا و زمان به هم گره خوردند و مفهومی بنیادیتر به نام فضا-زمان شکل گرفت. اما زیبایی بینظیر معادلات نسبیت خاص درآن بود که اگر سرعت متحرک نسبت به سرعت نور کم میبود -مثلا در حد سرعت حرکت ما و وسایل نقلیهمان- معادلات باز به همان معادلات آشنای نیوتون میرسید. پس ظاهرا ما همه چیز را میدانستیم. در قلب ماده مکانیک کوانتوم جواب سوالاتمان را میداد. برایمان هسته و اتم را توضیح داد. اتم شکافتیم. انرژی گرفتیم و با توحشی که هنوز در وجودمان تمامی ندارد بمب ساختیم. در سرعتهای بالا، معادلات نسبیت حلال مشکلاتمان شد و هنگامی که سرعت کم میشد و ابعاد ماده به ابعاد معمولی میرسید، معادلات نیوتون زندگی روزمرهمان را پاسخگو بود.
نیروی گرانشی چه؟
آیا گرانش همانگونه که نیوتون تصور کرده بود، شکلی از نیرو بود؟ و این باز آلبرت اینیشتین بزرگ پس از حدودا یک دهه از ارائهی نسبیت خاص، نسبیت عام را مطرح کرد و از گرانش نه به عنوان یک نیرو که به عنوان اثری هندسی نام برد. در واقه آنچه به عنوان نیروی گرانشی میشناسیم چیزی نیست جز خمیدگی فضا-زمان در اثر وجود ماده. از دل این تئوری ، سیاهچالهها، کرمچالهها و امواج گرانشی سربرآوردند. ترکیب این نظریه با شواهد رصدی مبنی بر انبساط کیهان، معادلات فریدمان در توصیف کیهان را بدست داد. این معادلات ما را به بیگ بنگ رساندند. جایی که احتمالا آغاز فضا-زمان و در نتیجه کیهان زیبای ماست. سرانجام با اضافه کردن نظریهی تورم و همچنین کشف اثرات مادهی تاریک و انرژِی تاریک، به مدل استاندارد کیهانشناسی رسیدیم. مدلی که کیهانی را شرح میدهد که از مهبانگ آغاز کرده، ناگهان تورم یافته و سپس ذرات در آن شکل گرفتهاند. ذرات ماده و ضد ماده و همچنین چیزی به نام مادهی تاریک که البته هنوز هویتش را نمیدانیم. ماده بر ضد ماده غلبه کرده و همین موجب شکلگیری کهکشانهای زیبا، سیارات و ستارهها شده است. ماده معمولی که میشناسیم که تنها ۵ درصد از کل جهان را تشکیل داده است. این ماده شامل کوارکها که تشکیل دهندهی نوترون و پروتوناند، نوترینوها، آنتی نوترینوها و ذرات دیگر است که همه و همه در مدل استاندارد ذرات بنیادی به زیبایی کنار هم نشستهاند.
پس از موفقیتهای مکانیک کوانتومی، مثل هر نظریهی دیگری، معایبش هم آشکار شد و یکی از آن عیبها، ناتوانی مکانیک کوانتومی در حل مسائلی بود که طی آنها ذره خلق میشد. این موارد ما را به سمت نظریهی میدانهای کوانتومی سوق داد، که ریچارد فاینمن آن را پایه ریزی کرد و رسما دید ما به جهان زیر اتمی تکامل زیبایی یافت. در سالهای اخیر با پیشرفتهای چشمگیر تکنولوژی و علوم مهندسی، بالاخره وجود ذرهی هیگز تایید شد. تابش زمینهی کیهانی هر روز مطالعه میشود. سال گذشته پیشبینی صد سالهی آلبرت اینیشتین تحقق یافت و امواج گرانشی آشکار شدند. پس این طور به نظر میرسد که هر روز بیشتر از روز قبل با طبیعتمان به زبان مشترکی میرسیم. هر روز بیش از قبل زیبایی ریاضیاتمان، و نظریاتی که مینویسیم آشکار میشود.
پرسشهای پیشرو
اما هنوز علامت سوالهای بزرگی در پیش است. مادهی تاریک واقعا چیست؟ انرژی تاریک چیست؟ این دو روی هم رفته ۹۵ درصد از جهان ما را تشکیل میدهند و هنوز برایمان ناشناختهاند. نظریات جدیدمان تا چه اندازه کارآمدند؟ تئوری ریسمان، نظریهی ابرتقارن، گرانش تعمیم یافته، کیهان شناسی مدرن و … . هر روز بیش از قبل پیشرفت میکنیم و به کشف حقیقت نزدیک میشویم. اما واضح است که در پی اینچنین تلاشی به قدمت عمر ما بر روی این کرهی خاکی، سوالات زیادی حل نشده باقی ماندهاند و این چالش بزرگی پیش روی زیباترین وجه ریاضیات، یعنی فیزیک نظریست.
اوبث اشاره می کرد که تلاش ما برای یافتن حقیقت، در واقع تمام اعتماد به نفسمان را از بین برد . چرا که زمانی ما مرکز جهان بودیم و همه چیز معطوف به ما بود. اما دانشمندان نشان دادند که ما گونهای ناتوان در گوشهای از این جهانیم و روزی تنها خورشیدی که میشناسیم نابودمان خواهد کرد و مولکولهای ما تجزیه خواهد شد و آن روز پایان ماست. این جمله و نگاهش اگرچه از دید یک فیلسوف جالب و قابل تامل است، اما من قویا معتقدم حقیقت، بسیار زیباتر از امنیت ساختگی به وسیلهی توهم است. حقیقت هرچه هست، به ذات خود زیباست و این زیبایی دوچندان میشود وقتی به زبان ریاضی بیان میگردد. این جادوی فیزیک است.
همانگونه که زمانی فاینمن گفت:
«شاعران گفتهاند که علم زیبایی ستاره ها را ضایع میکند، چون که آنها را صرفا کرههایی از اتمها و مولکولهای گاز میدانند. اما من هم میتوانم ستارهها را در آسمان شب کویر ببینم و شکوه و زیباییشان را حس کنم. میتوانم این چرخ فلک را با چشم بزرگ تلسکوپ پالومار تماشا کنم و ببینم که ستاره ها دارند از همدیگر، از نقطه ی آغازی که شاید زمانی سرچشمهی همگیشان بوده است دور میشوند. جستوجو برای فهمیدن این چیزها گمان نمیکنم لطمهای به رمز و راز زیبایی این چرخ فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمیزنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد چه شعر ها که برایش نمیسرایند اما اگر در قالب کرهی عظیم چرخانی از متان و آمونیاک باشد سکوت اختیار میکنند؟»
اگر شما هم به دنبال زیباییهای جهان بینظیرمان هستید، به دنیای ریاضیات خوش آمدید.