قبلا کتاب‌ها و دوره‌هایی که دانشجوهای سال اول و دوم کارشناسی فیزیک بهشون نیازدارند رو معرفی کرده بودم. همین طور بحث مفصلی در مورد دوره‌ها (کورس‌ها) اینجا و اینجا کرده بودم. معمولا بچه‌ها سال دوم و سوم دروس الکترومغناطیس و مکانیک‌کوانتومی رو می‌گیرند و شاید بشه گفت اصلی‌ترین درس‌های دوره‌ی کارشناسی فیزیک همین‌ دوتا درس باشه. برای همین من سعی می‌کنم طی این پست کمی از تجربیاتم بگم:

۱) الکترومغناطیس:

Introduction to Electrodynamics (4th Edition)

«آشنایی با الکترودینامیک، دیوید گریفیث»

چیزی که لازمه تا این درس رو راحت شروع کنید و در حین ترم کم‌تر اذیت بشید مرور مفاهیم اصلی فیزیک پایه۲ و آنالیزبرداری هست که احتمالا آخرای ریاضی پایه۲ و ریاضی‌فیزیک باهاش مواجه شدید. الکترومغناطیس از لحاظ مفهومی زیاد سخت نیست ولی از لحاظ تکنیکی سخت‌ترین درس کارشناسی به نظر می‌رسه چون که کار کردن با آنالیز برداری زیاد خوشایند ملت نیست! اگر دنبال یک کتاب آموزشی خوب می‌گردید که به خوبی درس رو توضیح داده باشه، مثال‌های خوبی زده باشه و در نهایت تمرین‌های مناسبی رو در اختیارتون بذاره بدون هیچ شکی سراغ کتاب «آشنایی با الکترودینامیک، دیوید گریفیث» برید. نسخه‌ ۴ام این کتاب تفاوت چندانی با نسخه‌ی قبلی نداره با این وجود مسئله‌های به شدت جالب و قابل تفکری بهش اضافه شده. در ضمن گریفیث از جمله کسانی هست که خودش برای کتاب‌هاش حل‌المسائل می‌نویسه پس شما می‌تونید به راحتی پاسخ صحیح همه پرسش‌ها و تمرین‌های کتاب رو داشته باشید. بعد از گریفیث به شما کتاب «الکترودینامیک کلاسیک، والتر گراینر» رو پیشنهاد می‌کنم و بعد از اون کتاب «الکتریسیته و مغناطیس، پرسل و مورین». این دو کتاب‌های خیلی خوبی هستند به ویژه اینکه مثال‌های متنوعی دارند. به نظر من این سه کتاب بهترین کتاب‌هایی هستند که دانشجوهای سال دوم و سوم کارشناسی می‌تونند ازشون برای یادگیری الکترومغناطیس استفاده کنند. با این وجود کتاب‌های دیگه‌ای هم هستند از جمله:

جولیان سیمور شوینگر فیزیکدان آمریکایی بود که همراه با ریچارد فاینمن، سین‌ایترو تومونوجا موفق به کشف الکترودینامیک کوانتومی (QED) شد. شوینگر جایزه نوبل فیزیک سال ۱۹۶۵ را از آن خود کرد.

جولیان سیمور شوینگر

این کتاب‌ها کمی قدیمی شدند با این حال بعضی از اساتید (که اونها هم قدیمی شدند) ممکنه این کتاب‌ها رو به عنوان کتاب مرجع معرفی کنند. با این وجود تجربه‌ی شخصی من میگه که این کتاب‌ها، کتاب‌هایی نیستند که موقع خوندنشون آدم خسته نشه.  ایمان خیلی وقت پیش کتاب «آشنایی با الکترودینامیک، دیوید گریفیث» با «مبانی نظریه الکترومغناطیس، ریتز و میلفورد» رو مقایسه کرده، می‌تونید این مقایسه رو بخونید! 

اگر دنبال این هستید که کتابی داشته باشید که مطالب رو با ریاضیات استوارتری بررسی کرده باشه و به موضوع الکترودینامیک بیشتر ریاضیاتی نگاه کرده باشه کتاب «الکترودینامیک جکسون» رو بخونید. این کتاب معمولا مرجع درس الکترودینامیک برای مقطع کارشناسی ارشد هست. اگر هم دنبال این هستید که مطالب رو عمیقا بهفمید و فوق‌العاده لذت ببرید و از فرط هیجان نتونید روی صندلی بندشید به این کتاب‌ها (Lecture Notes) مراجعه کنید:

در نهایت پیشنهاد من اینه که با کتاب «آشنایی با الکترودینامیک، دیوید گریفیث» پیش برید و تا جایی که می‌تونید مسئله‌هاش رو حل کنید و در کنار اون هر موقع که فرصت کردید به نوشته‌های شویینگر مراجعه کنید! در مورد کورس هم به پست «لیسانس فیزیک با بیژامه» مراجعه کنید!

 

91r-pAmEmNL

«آشنایی با مکانیک کوانتومی، دیوید گریفیث»

۲) مکانیک کوانتومی:

قبلا بحث مفصلی در مورد کورس‌های موجود برای مکانیک کوانتومی کردم و مجددا توصیه می‌کنم که حتما همراه مطالعه‌تون و کلاس رفتنتون یک کورس ببینید. مجددا اولین کتابی که معرفی می‌کنم کتاب «آشنایی با مکانیک کوانتومی، دیوید گریفیث» هست. تمامی مواردی که برای کتاب الکترومغناطیس گریفیث گفتم برای کتاب کوانتومش هم صادقه! گریفیث واقعا معلم فوق‌العاده‌ای هست. بعد از گریفیث «مکانیک کوانتومی، مفاهیم و کاربردها، نورالدین زتیلی» رو پیشنهاد می‌کنم به خاطر تعدد زیاد سوال‌های حل‌ شده‌ش.

اگر دنبال یک مرجع فارسی خوب هستید به درس‌گفتارهای دکتر کریمی‌پور مراجعه کنید! این درس‌گفتارها به شدت قوی نوشته شدند و می‌تونه همراه با کورس ایشون در دانشگاه شریف یک دوره‌ی آموزشی مناسبی رو برای شما فراهم کنه!

حقیقتش کتاب‌های خوب دیگه ای هم میشه لیست کرد، به نظر من بعد از گریفیث این کتاب‌ها خوب هستند:

و بعد از این‌ها، کتاب‌های زیر به عنوان مرجع:

در نهایت یادتون باشه که بهترین کتاب، پرمسئله‌ترین کتابه برای شما و اینکه انتخاب کتاب کاملا سلیقه‌ای هست، شاید سلیقه‌ی شما با سلیقه‌ی من یا استادتون سازگار نباشه و شما کتاب دیگه‌ای رو در اولویت قرار بدید! به هر حال صلاح مملکت خویش خسروان دانند!

یادمه زمانی بچه‌هایی که می‌خواستند برند رشته‌ی هنر (دوم دبیرستان زمان ما، نظام یکمی قدیم!) معمولا از طرف خانواده نهی می‌شدند، چون که رشته ریاضی‌-فیزیک و علوم تجربی گزینه‌های نزدیک‌تری هستند برای «یه چیزی شدن» تا هنر. خونواده‌ها و مدارس کاملا مزدورانه سعی می‌کردند دانش‌آموز بیچاره رو متقاعد کنند که وارد رشته‌های ریاضی و تجربی بشه چون که آینده بهتری در انتظارش خواهد بود! توجیه اکثر خونواده‌ها هم این بود: «درسته که به موسیقی علاقه‌داری ولی برای اینکه بتونی کار گیر بیاری بهتره بری درس مهندسی بخونی (مثلا!) و اینکه تو می‌تونی در کنار ریاضی و فیزیک خوندن (توی مدرسه و بعد دانشگاه) ، موسیقی هم یاد بگیری ولی نمی‌تونی بری رشته‌ی هنر و بعد در کنارش ریاضی یا فیزیک یاد بگیری که!» مسئله این بود که انگار با رفتن به موسسه‌ای که موسیقی تدریس می‌کرد، یادگیری موسیقی امکان‌پذیر بود در حالی که خارج از محیط مدرسه و دانشگاه یادگیری ریاضی و فیزیک خیر. به نظر من این توجیه‌ها یکی از بدترین انتقام‌هایی بود که نظام آموزشی بیمار ما از علم گرفت. امیدوارم این طرز تفکر امروز از بین‌ رفته باشه چون که امروز واقعا میشه دانشگاه نرفت ولی ریاضی و فیزیک یادگرفت!

توی این پست قصد دارم نشون بدم که تمام دروسی که یک دانشجوی کارشناسی فیزیک میگذرونه رو بدون رفتن به دانشگاه میشه گذروند، حتی با کیفیت بالاتر! امروز با وجود آموزش آنلاین این امکان هست که شما توی خونتون، زیر کولر و با بیژامه بشیند و مکانیک کوانتومی یا الکترومغناطیس یادبگیرید، اون هم از بهترین اساتید بهترین دانشگاه‌های دنیا!

دانشگاه‌های معتبر جهان که کلاس‌های درس خود را رایگان از طریق وب منتشر می‌کنند.

دانشگاه‌های معتبر جهان که کلاس‌های درس خود را رایگان از طریق وب منتشر می‌کنند.

دروس دانشجوهای فیزیک به سه دسته‌ی: ۱) دروس پایه ۲) دروس تخصصی ۳) دروس انتخابی تقسیم می‌شند که من سعی می‌کنم تا اونجایی که یادم هست لینک کورس‌‌(دوره)‌هایی که مرتبط با هر درس هست رو بذارم.

۱) دروس پایه:

نام درس

ارائه کننده

ریاضی‌پایه۱

Coursera , MIT OCW , مکتب‌‌خونه

ریاضی‌پایه ۲‍

  Coursera , MIT OCW , مکتب‌‌خونه، Khan Academy

فیزیک‌پایه۱

Coursera , edX, MIT OCW, مکتب‌‌خونه (۱) و (۲) ,  Yale University

فیزیک‌پایه۲

 edX, MIT OCW , مکتب‌‌خونه,  Yale University

فیزیک‌پایه۳

 edX, MIT OCW 

شیمی عمومی

UC Berkeley , The Ohio State University, MIT OCWKhan Academy

معادلات دیفرانسیل

 (1) , (2) edX, MIT OCW, مکتب‌‌خونه ، دانشگاه تهران ،  Khan AcademyUCLA

مبانی کامپیوتر

Python, Matla، مکتب‌خونهPerimeter

 

۲) دروس تخصصی:

نام درس

ارائه کننده

فیزیک جدید

edX

مکانیک تحلیلی

Stanford , edX

اپتیک

Arizona State University , edX, MIT OCW

ترمودینامیک

 edX(1) (2), MIT OCW, مکتب‌خونه

مکانیک آماری

 Stanford ,(2) (1)  Coursera (1) (2) , MIT OCW, مکتب‌خونه, Perimeter 

ریاضی‌فیزیک

MIT OCW(1)((2), Perimeter, مکتب‌خونه

الکترومغناطیس

,Arizona State University , مکتب‌خونه (1) (2), Stanford

مکانیک کوانتومی

مکتب‌خونه، (2)(1) Coursera, Stanford, UC Berkeley (1) (2), OxfordUC DavisPerimeter ,edX(1) (2), MIT

الکترونیک

مکتب‌خونه,  MIT OCW

فیزیک حالت‌جامد

OxfordPerimeter

 

۳) دروس انتخابی:

نام درس

ارائه کننده

ذرات بنیادی

Cern , Perimeter

پلاسما

edX

آب‌و‌هواشناسی

Coursera

اخترفیزیک

PerimeterCoursera , edX

کیهانشناسی

Coursera ,StanfordedX, MIT OCWPerimeter، مکتب‌خونه (۱) (۲)

نجوم مقدماتی

Coursera(1)(2) , edX, مکتب‌خونه

مبانی فلسفی مکانیک کوانتومی

مکتب‌خونه

میدان‌های کوانتومی

مکتب‌خونه(۱)(۲)(۳) , Perimeter

مکانیک سیالات/ایرودینامیک

UC Berkeley , edX, MIT OCW, مکتب‌خونه(۱)(۲)

بیوفیزیک

مکتب‌خونه

نسبیت خاص

WorldScienceU, ,StanfordedXPerimeter، مکتب‌خونه 

نسبیت عام

 ,StanfordPerimeter، مکتب‌خونه (1)(2)

دینامیک غیر خطی و‌ آشوب

 Cornell University, مکتب‌خونه

فیزیک اتمی و اپتیک

 MIT OCW (1) (2

نظریه ریسمان

 Stanford, Harvard

 

  • در ضمن، ممکنه من یک‌سری از درس‌ها و کورس‌ها رو از قلم انداخته باشم. شما به راحتی میتونید با جستجو(سرچ) هر چیزی رو که بخواید پیدا کنید. راستی ;کورس‌های آموزشی موسسه پریمیتر رو از دست ندید! همین‌طور به لینک‌های پیشنهادی سر بزنید.
  • حتما به این لینک سر بزنید. همین‌طور این لینک و این‌لینک! اونجا می‌تونید ویدیوی‌های زیادی پیدا کنید.

 

  • سوالی که ممکنه براتون مطرح بشه اینه که: پس واقعا دانشگاه رفتن وقت آدم رو تلف می‌کنه؟ یا مثلا نریم دانشگاه دیگه؟ یا دانشگاه رفتنمون اشتباه بود؟

جواب این سوال منفیه! دانشگاه فقط محل ارائه‌ی یک سری درس نیست! دانشگاه‌ها پایه و اساس پژوهش هستند و نه صرفا محل برگزاری یک‌سری کلاس! دانشگاه محل اجتماعات علمی و تحقیقاتی هست و به هیچ وجه نباید در دانشگاه رو بست! در ضمن شما توی دانشگاه با انسان‌های متفاوتی تعامل می‌کنید، انسان‌هایی که در بین وفور و پراکندگی منابع و راه‌های موجود برای رسیدن به سطح خوبی از علم می‌تونند شما رو راهنمایی و هدایت کنند. در حقیقت این‌که شما فقط انسان باهوشی باشید و یا اینکه مطالعه‌ی زیادی داشته باشید، کافی نیست. شاید در مقاطع اولیه تحصیل این قضیه‌ زیاد خودش رو نشون نده ولی زمانی که پای پژوهش به میون بیاد اون موقع هدایت علمی مناسب خودش رو به خوبی نشون میده.  مهم‌ترین تفاوت دانشگاه‌ها و موسسات‌ علمی تراز اول جهان با بقیه جاها در نوع کلاس‌هاشون و ساختمون‌هاشون نیست، بلکه وجود افراد به معنی واقعی متخصص هست که وظیفه‌ی هدایت علمی رو درست ایفا می‌کنند. این بحث خیلی مفصلیه، امیدوارم بشه طی چندتا پادکست توی رادیوفیزیک بهش پرداخت.

در پایان، از  همه‌ی دوستانم توی سایر رشته‌ها درخواست می‌کنم که این لیست رو در مورد رشته‌ی خودشون منتشر کنند.

  • مطالب مرتبط:
  1. آموزش آنلاین چه چیزی برای ما دارد؟!
  2. چگونه یک فیزیکدان خوب شویم؟!
  3. دانشگاه یک کتابخانه بزرگ نیست / دکتر فیروز آرش
  4. شرح دفاع «جان هنری نيومن» از ارزش بنيادي آموزش دانشگاهی: واكاوی ماموريت دانشگاه / دکتر فیروز آرش

 

  • جدید:

برسام این کار رو برای رشته «علوم کامپیوتر» انجام داده: لیسانس علوم کامپیوتر بدون پیژامه

A collection of short works from Richard Feynman

تیم‌ترجمه سیتپور شروع به ترجمه بهترین آثار کوتاه فاینمن نموده است.

کتاب The Pleasure Of Finding Things Out مجموعه‌ای از سخنرانی‌ها، مصاحبه‌ها و مقالات چاپ شده فاینمن است. سعی ما بر ترجمه همه‌ی آثار موجود در این کتاب می‌باشد. در کتاب نام‌برده ۱۳ مطلب موجود است که تاکنون برخی از آن‌ها ترجمه شده‌اند، از جمله: «علم چیست؟» و «فضای زیادی در سطوح پایین وجود دارد!»

درصورت تمایل این کتاب را دانلود کنید و عنوان مطلبی که علاقمند به ترجمه آن هستید را در قسمت نظرات بنویسید و یا به نشانی abbascarimi در gmail ایمیل کنید!

دانلود کتاب The Pleasure Of Finding Things Out

تا کنون مقاله‌های زیر توسط اعضای تیم ترجمه، ترجمه شده‌اند، در صورت تمایل مقاله‌هایی غیر از این‌موارد انتخاب کنید:

The Pleasure of Finding Things Out (1

2) Cargo Cult Science

 

(این لیست آپدیت می‌شود)

 

ما به یاد کسانی که راه را هموار ساختند هستیم و به آنها خواهیم پیوست!

منتظر شما هستیم

تیم ترجمه سیتپور

معمولا دانشجوهای سال دوم دروس پایه رو کامل گذروندند ولی اگر شما یک دانشجوی سال دوم هستید و هنوز دروس‌پایه رو کامل نگذروندید پیشنهاد می‌کنم پست «معرفی کتاب و دوره برای دانشجویان سال اول فیزیک» رو بخونید. درس‌های اصلی سال دوم شامل «ریاضی فیزیک» ،‌«مکانیک تحلیلی»، «فیزیک مدرن» و احتمالا «الکترومغناطیس» هست. (البته من توی این پست در مورد الکترومغناطیس نمی‌نویسم.) بازم یادآوری کنم یادتون باشه گوگل دوست شماست! می‌تونید سرچ کنید و منابع خیلی خوبی پیدا کنید، یا اینکه از یوتیوب استفاده کنید و کلی دوره خوب پیدا کنید و از یادگیری‌تون لذت ببرید. فراموش نکنید که مسئله زیاد حل کنید و هیچ چیز مثل تمرین زیاد بهتون کمک نمی‌کنه.  پست لیسانس فیزیک با بیژامه رو بخونید!

۱)ریاضی فیزیک (روش‌های ریاضی در فیزیک):

یکی از بدقلق‌ترین درس‌های کل دوره‌ی کارشناسی به نظر من همین درسه. چون که ۳واحده ولی در حقیقت ۶ واحده! هر واحدش یک برهم‌نهی از یک واحد ریاضی و یک واحد فیزیکه! خلاصه ملقمه‌ای از موضوع‌های مختلف رو باید یاد بگیرید طی دو ترم. برای همین پیشنهاد می‌کنم این درس رو خیلی جدی دنبال کنید و برای هر مبحثش یک کتاب در مورد اون مبحث پیدا کنید و دقیق مطالعه کنید. مثلا برای قسمت آنالیز مختلط کتاب «چرچیل» رو بخونید! در حالت کلی کتاب‌های «آرفکن» و «صدری حسنی» منابع اصلی هستند که به نظر من صدری حسنی بیان بهتری داره. در مورد آرفکن هم حتما از آخرین نسخه‌ش استفاده کنید چون که خیلی بهتر شده ولی حتما به بقیه کتاب‌ها هم نگاه کنید:

1) Mathematical Methods: For Students of Physics and Related Fields; Sadri Hassani
2) Mathematical Methods for Physicists, Seventh Edition: A Comprehensive Guide; George B. Arfken , Hans J. Weber
3) Mathematical Methods for Physics and Engineering: A Comprehensive Guide Paperback; K. F. Riley, M. P. Hobson, S. J. Bence

4) Introduction to Mathematical Physics: Methods & Concepts by Chun Wa Wong

5) Physical Mathematics, Kevin Cahill

6) Mathematical Methods in the Physical Sciences, Mary L. Boas

کتابی هم هست که اگر دوست داشته باشید ریاضی بیشتری یاد بگیرید (فراتر از سطح کتاب‌هایی که نام بردم) خوبه که سراغش برید:

***) Mathematical Physics: A Modern Introduction to Its Foundations

در مورد دوره هم بهتره مبحث به مبحث دنبالش برید، مثلا وقتی به مبحث جبرخطی رسیدید سراغ دوره جبرخطی MIT برید و …

۲) مکانیک تحلیلی (مکانیک کلاسیک):

درس بسیار جالب، جذاب و کلیدی به همراه فرمالیسم‌های زیباتر و قوی‌تری برای مکانیک کلاسیک هست! کتاب‌های متنوعی با سطح‌های مختلفی هست که من پیشنهاد میکنم به همه‌شون رجوع کنید چون که ممکنه موضوعی رو خوب متوجه نشید اون موقع باید سراغ کتابی برید که ساده‌تر گفته. یا اینکه بعد از خوندن مطلبی به‌وجد بیاید و بخوایید که بیشتر یا دقیق‌تر بدونید، اون‌موقع باید به یک کتاب قوی‌تر یا جامع‌تر رجوع کنید تا یادگیری‌تون رو کامل کنید. بنابراین من کتاب‌ها رو به سه دسته‌ی ابتدایی، مناسب و قوی تقسیم می‌کنم:

– کتاب‌‌های قوی و جامع:

1) Classical Mechanics (3rd Edition); Herbert Goldstein , Charles P. Poole Jr. , John L. Safko
2) Mechanics, Third Edition: Volume 1 (Course of Theoretical Physics S) L D Landau, E.M. Lifshitz

-کتاب‌های مناسب:

3) Classical Dynamics of Particles and Systems; Stephen T. Thornton , Jerry B. Marion
4) Classical Mechanics: Systems of Particles and Hamiltonian Dynamics; Walter Greiner
5) Introduction to Classical Mechanics: With Problems and Solutions; David Morin

-کتاب ابتدایی:

6) Analytical Mechanics; Grant R. Fowles , George L. Cassiday

Professor Susskind

Professor Susskind

به نظر من خوبه که با کتاب «مریون» یا «گرینر» شروع کنید و هرزگاهی هم به «گلدستین» مراجعه کنید، همین طور مثال‌‌های زیاد کتاب «مورین»‌ رو دنبال کنید. در مورد دوره هم کورس آقای ساسکیند (دانشگاه استفورد) هست، از دستش ندید!

۳) فیزیک مدرن:

هم فال هست و هم تماشا! یک درس پر از داستان به‌همراه موضوعات جدید و موضوعات تازه که به عنوان یک مقدمه برای درس‌هایی که بعد از اون خواهید داشت، هست. شخصا کتاب شماره ۱ رو بیشتر پسندیدم و به نظرم از کتاب کرین بهتره!

1)University Physics with Modern Physics (13th Edition); Hugh D. Young, Roger A. Freedman
2) Modern Physics Hardcover –3ed edition, Kenneth S. Krane

یکی از مشکلاتی که معمولا سال‌اولی‌ها باهاش مواجه می‌شند اینه که دیگه مثل دبیرستان خبری از یک کتاب و سیستم آموزشی یک‌پارچه نیست و هر استادی بنابر تجربیات شخصی و علاقمندی‌هاش از روی یک (یا چند کتاب) استفاده میکنه که ممکنه با یک استاد دیگه کاملا متفاوت باشه. برای همین ممکنه که دانشجوی تازه‌وارد یکمی سردرگم بشه! توی این پست می‌خوام یک سری از کتاب‌ها و دوره‌هایی که به کار یک دانشجوی سال اول میاد رو معرفی کنم. ولی قبل از شروع اجازه بدید یک نکته‌ی خیلی مهم رو بگم؛ استفاده از کتب فارسی ممنوع! دیگه کتاب‌های درسی‌تون رو فارسی نخونید و از نسخه‌های انگلیسی استفاده کنید! می‌دونم که خیلی‌ها زبان خوبی ندارند ولی خونسرد باشید لطفا! من خیر و صلاحتون رو می‌خوام 🙂 مطالعه به زبان انگلیسی (زبان علم) مزیت‌های زیادی داره؛ از جمله اینکه شما دسترسی فوق‌العاده بیشتری به منابع دارید، کتاب‌های مختلف، دوره‌های متنوع، مقاله‌ها و مجله‌های معتبر و … . در حقیقت شما وقتی دارید علم رو دنبال می‌کنید باید با زبان علم دنبال کنید (امروز زبان علم زبان انگلیسیه). به هر حال روزی فرامیرسه که شما باید مقاله‌ای بنویسید یا توی کنفرانسی شرکت کنید یا … اون روز دیگه نمی‌تونید بگید که من فارسی می‌نویسم! خلاصه این‌که اگر از ترم اول دانشگاه شروع کنید به انگلیسی خوندن کم‌کم به سطح مطلوبی می‌رسید. فراموش نکنید که کتاب‌های علمی با ساده‌ترین زبان نوشته می‌شند برای همین به‌ راحتی قابل فهم هستند، کافیه یکمی باهاشون درگیر بشید تا دستتون بیاد که چی میگند و منظور از فلان اصطلاح چیه!

خیلی از بچه‌ها به‌ اشتباه فکر می‌کنند که ترم‌های اول برای انگلیسی خوندن زوده و بعد از گذشت چند ترم باید این‌ کار رو شروع کرد، درصورتی که این یک طرز فکر کاملا نادرسته، به چند دلیل؛ اول اینکه شما کلیت مباحثی که توی سال اول مطرح میشه رو باهاش آشنا هستید،‌ همگی با مفهوم نیرو، سرعت و قوانین نیوتون آشنایید، بنابراین خود مفهوم رو می‌دونید و با خوندن کتاب‌ها به انگلیسی از همون اول، سریع با اصلاحات انگلیسی آشنا می‌شید و خیلی راحت‌تر ارتباط برقرار می‌کنید. مثلا وقتی نوشته‌های زیر رو ببینید به وضوح معنی جمله رو می‌فهمید:

Newton first law = قانون اول نیوتون               second derivative of a function= مشتق دوم یک تابع

اما اگر این‌کار رو به ترم‌های بالاتر بسپارید اولا اینکه چون عادت کردید به فارسی خوندن دیگه رغبت نمی‌کنید که سراغ منابع با زبان انگلیسی برید، در ثانی دیگه اصلا نمی‌تونید بفهمید که کتاب داره چی میگه، چون نه تنها زبان بلکه خود مفهوم هم برای شما تازگی داره. دلیل دوم هم اینه که معمولا سال اول فرصت بیشتری هست، شما همزمان میتونید زبان خودتون رو تقویت کنید یا اگه جایی رو خوندید و نفهمیدید به یک کتاب فارسی نگاه کنید و مفهوم رو یادبگیرید و دوباره به مطالعه به انگلیسی برگردید! پس از اولین لحظات سعی کنید انگلیسی بخونید و یادتون باشه که دانشجویی که انگلیسی می‌خونه یک سر و گردن از دانشجویی که فارسی می‌خونه بالاتره!

منظور از دوره (کورس – course)  دیدن، دیدن ویدیوهای آموزشی که یا به صورت کلاس یا به صورت‌های دیگه ارائه میشه هست. به نظر من همزمان با هر درس مهمی که می‌گذرونید دیدن دوره‌های معتبر (همون درس) خیلی بهتون کمک می‌کنه. برای همین اگر با جاهایی مثل: MIT OCW، edx  و Coursera  آشنا نیستید، سریع آشنا بشید! با مراجعه به این سایت‌ها می‌تونید ویدیوهای آموزشی خوبی پیدا کنید. در ضمن دیدن دوره خیلی کمک میکنه تا انگلیسی شما قوی بشه و بتونید با علم درست ارتباط برقرار کنید! پست لیسانس فیزیک با بیژامه رو بخونید!

خب بریم سراغ معرفی! من اسم کتاب‌ها رو به انگلیسی می‌نویسم:

۱) فیزیک پایه (۱و۲و۳):

1)University Physics with Modern Physics (13th Edition); Hugh D. Young, Roger A. Freedman
2)Physics; David Halliday, Robert Resnick
3) The Feynman Lectures on Physics; Richard P. Feynman, Robert B. Leighton, Matthew Sands

معمولا کتاب‌«هالیدی» منبع کتاب فیزیک پایه هست ولی متاسفانه هرچی نسخه‌های جدیدتر این‌کتاب اومده قدرت نسخه‌های قبلی 

رو نداشته. مخصوصا اون نسخه هایی که با عنوان «مبانی فیزیک هالیدی» هستند به جای «فیزیک هالیدی». پس به نظر من اگر دانشجوی فیزیک هستید اصلا سراغ کتاب «مبانی فیزیک هالیدی» نرید! اجازه بدید بچه‌های مهندسی این کتاب رو بخرند و نه شما! بنابراین یک کتاب دیگه معرفی میکنم به اسم «فیزیک دانشگاهی» که کتاب خیلی خوببه و تصاویر خیلی گویایی داره البته به همراه سوالات زیاد! 

در مورد دوره هم شدیدا توصیه می‌کنم که دوره فیزیک‌پایه‌ی والتر لویین رو از دانشگاه MIT تهیه کنید و ببینید!

۲) ریاضیات پایه (۱و۲):

1) Calculus, Vol (1): One-Variable Calculus, with an Introduction to Linear Algebra; Tom M. Apostol
Calculus, Vol. 2: Multi-Variable Calculus and Linear Algebra with Applications to Differential Equations and Probability; Tom M. Apostol
2)Thomas’ Calculus: Early Transcendentals (13th Edition); George B. Thomas Jr., Maurice D. Weir, Joel R. Hass

برای دوره هم پیشنهاد میکنم Calculus Revisited: Single Variable Calculus رو از MIT ببینید. قدیمی ولی فوق العاده است این دوره!

۳) معادلات دیفرانسیل:

1) Elementary Differential Equations and Boundary Value Problems, 10th Edition; William E. Boyce, Richard C. DiPrima

برای دوره هم: دوره معادلات دیفرانسیل ام‌آی‌تی

در نهایت اینکه یادتون باشه گوگل دوست شماست! می‌تونید سرچ کنید و منابع خیلی خوبی پیدا کنید، یا اینکه از یوتیوب استفاده کنید و کلی دوره خوب پیدا کنید و از یادگیری‌تون لذت ببرید. فراموش نکنید که مسئله زیاد حل کنید و هیچ چیز مثل تمرین زیاد کمک کننده نیست. به عنوان یک حقه، سایت libgen.org رو به خاطر بسپارید، هر کتابی که لازم داشتید رو می‌تونید اونجا رایگان دانلود کنید. کار خوبی نیست ولی ما مجبوریم فعلا!

همین طور این پست رو ببینید: چگونه یک فیزیک‌دان خوب شویم؟

توی قسمت قبلی دیدیم که اگر هر تابع f رو داشته باشیم می‌تونیم برای اون تابع مجموعه‌ی ژولیای مربوط به اون رو پیدا کنیم که خب یکمی از کامپیوتر هم کمک گرفتیم. کار ما این بود که یک تابع رو بر می‌داشتیم شرایط اولیه‌ای (یک سری نقطه توی فضای مختلطی (موهومی)) بهش می‌دادیم، مقدار تابع رو به ازای اون شرایط اولیه به دست می‌اوردیم و همین طور دوباره این مقدار رو به تابع می‌دادیم و این روند رو ادامه میدادیم تا ببینیم آیا شرایط اولیه‌ای که انتخاب کردیم به بی‌نهایت میل میکنه یا نه، اگر نمی‌کرد اون موقع مجموعه‌ی ژولیا اون تابع رو تشکیل میداد.  همین طور گفتیم که از بین همه‌ی توابع، توابعی که به صورت چندجمله‌ای های مربعی می‌باشند بیشتر مشهور هستند؛ توابعی با فورم: $$f(z)=z^2 +c$$توی این پست در مورد علت این شهرت توضیح میدم؛

تابع ${f(z)=z^2 +c}$ رو در نظر بگیرید؛ فراموش نکنید که c می‌تونه هر عددی – ولی حتما مختلط – باشه. حالا اگر با نقطه‌ی z=0 شروع کنیم، به این دنباله‌ می‌رسیم:

  $$  c , c² + c , (c²+c)² + c , ((c²+c)²+c)² + c , (((c²+c)²+c)²+c)² + c , …$$

اگر این دنباله واگرا نباشه، یعنی اگر c هایی انتخاب کنیم که در نهایت این دنباله به بی‌نهایت نرسه اون موقع مجموعه‌ی ژولیایی که توسط این cها برای تابع  ${f(z)=z^2 +c}$ ساخته میشه، «همبند» هست. احتمالای توی نظریه‌ی گراف با مفهموم همبند بودن آشنا شدین (معمولا سال آخر دبیرستان بچه‌های رشته‌ی ریاضی فیزیک نظریه‌ی گراف رو توی درس ریاضیات گسسته می‌خونند!) اگر نشدین، همبند بودن یک جور مفهموم متصل بودن رو داره، وقتی یک گراف یا شبکه‌ای همبند باشه اونموقع اگر شما از یک نقطه‌ای شروع به حرکت کردید، می‌تونید به هر نقطه‌ای که دلتون می‌خواد برید وبدون اینکه جایی مسیرتون قطع بشه. خلاصه این که اگر دنباله‌ای که ساختیم واگرا

مجموعه مندلبرو

نشد اون موقع ما یک مجموعه‌ی ژولیای همبند می‌تونیم بسازیم. (اثبات این مطلب فراتر از حوصله‌ی ماست!) خب حالا این مجموعه‌ی ژولیای همبند به چه دردی می‌خوره آیا؟! اجازه بدید تا یک مجموعه‌ی جدید معرفی کنیم به نام «مجموعه‌ی مندلبرو».

«مجموعه مندلبرو شامل نقاطی (c) از صفحه‌ی مختلط هست که به ازای آن ها مجموعه‌ی ژولیا تابع ${f(z)=z^2 +c}$ همبند باشد.»

شما می‌تونید یک برنامه بنویسید تا براتون مقادیری که C ممکنه بگیره رو پیدا کنه ولی یک نکته‌ای هست و اون اینه که همه‌ی مجموعه‌های ژولیا همبند شامل نقطه‌ی 0 = 0+ z= 0i  هستند! بنابراین «اربیت» یا «چرخش» یا «تکرار» مبدا برای این دسته از مجموعه ها، همیشه باید یک مقدار کران‌دار باشه و به بی‌نهایت میل نکنه، پس نقطه‌ی صفر در همه‌ی مجموعه‌های ژولیای همبند صدق میکنه. به طور مشابه در همه‌ی مجموعه‌های ژولیای ناهمبند نقطه‌ی صفر وجود نداره! خب این یک سنگ محکی شد برای تشخیص اینکه آیا نقطه c دلخواهی عضو مجموعه‌ی مندلبرو هست یا نه! یعنی کافیه تا ما «اربیت» یا «چرخش» یا «تکرار» نقطه‌ی z=0 رو برای تابع  ${f(z)=z^2 +c}$ بررسی کنیم، اگر مقادیری که به دست میاند (همون «اربیت» یا «چرخش») کران‌دار باشند اون موقع اون c مورد نظر ما عضو مجموعه مندلبرو هست ولی اگر به بی‌نهایت میل کنه اون‌موقع اون c دیگه عضو مجموعه مندلبرو نیست! شرمنده 😀

مندلبرو در حال کار در IBM

مجموعه‌ی مندلبرو یکی از موضوعات دینامیک مختلطه که برای اولین بار ایده‌ش اوایل قرن بیستم توسط ریاضی‌دانان فرانسوی بهنام «فاتو» و«ژولیا» مطرح شد. اون موقع‌ها هنوز کامپیوتر زیاد رونق نداشت برای همین مثلا فاتو نتونست شهود و تصویر خوبی از این مجموعه ارائه بده. تا اینکه مندلبرو اول مارس ۱۹۸۰(اواخر قرن بیستم!) به لطف کامپیوترهای شرکت IBM تونست این کار رو انجام بده و بعدش هم این موضوع رو گسترش زیادی داد. آدم‌های زیادی بعد از مندلبرو روی این موضوع کار کردند ولی به خاطر خدمات مندلبرو یا به احترام مندلبرو، اسم این مجوعه رو «مجموعه مندلبرو» گذاشتند!

این مجموعه در حقیقت یک فرکتال هست با مرز بسیار بسیار پیچیده، جوری که شیشیکورا ثابت کرد (۱۹۹۸) که بعد این مرز ۲ هست! این فرکتال برخلاف مجموعه‌ی ژولیا کاملا خودمتشابه نیست و اگر روی شکل زوم کنید این رو به راحتی متوجه خواهید شد!

همین طور این مجموعه توی صفحه‌ی مختلط، توی دیسکی یه شعاع ۲ قرار میگیره و  تقاطع اون با محور حقیقی بازه [۰/۲۵, ۲-] هست. حدودا دو سال پیش مساحت مجموعه مندلبرو 0.0000000028 ± 1.5065918849 واحدمربع تخمین زده شد! پیشنهاد می‌کنم حتما به صفحه‌ی ویکی پدیای این مجوعه عجیب و غریب  سر بزنید، مخصوصا اگر دوست دارید که الگوریتم‌هایی که برای تولید این دسته از فرکتال‌ها مورد استفاده قرار می‌گیرند چه جوری هستند!

برای مطالعه، پیشنهاد میکنم کتاب زیر رو بخونید، خیلی خوب توضیح داده هم فرکتال‌ها رو هم آشوب رو!

David P. Feldman, Chaos and Fractals, An Elementary Introduction, Oxford University

به عنوان حسن ختام، یک جمله از مندلبرو رو نقل میکنم (از سخنرانی تد ۲۰۱۰) : «خب، اجازه دهید تمام کنم. این شکل در اینجا تنها از یک تمرین در ریاضیات محض بوجود آمد. ظهور شگفتی های بی پایان از قواعد ساده، که بی نهایت تکرار می شوند.»

سلام

موضوعی که توی این پست به طور خلاصه میخواهیم ازش حرف بزنیم و اطلاعات کلی ای دربارش پیدا کنیم هولوگرام هاست که خب در بینش به تشابه کارکرد هولوگرام ها با مغز هم میپردازیم. احتمالا اگر کلمه ی هولوگرام رو تا به حال شنیدیم بیشتر و تنها ، ویژگی سه بعدی بودن اونها برامون گفته شده، توی این پست با دیگر خصوصیات جالب هولوگرام ها آشنا میشیم و در ضمن هم به معرفی کتابی که این پست تقریبا خلاصه ای از فصل اول اون کتابه میپردازیم. خب، پریبرام کسی بود که با جمع بندیه پژوهش هایی که از هولوگرام ها به دست اومده بود تونست به سوالی که براش پیش اومده بود پاسخ بده. معمایی که پریبرام را نخست به راه انداخت تا الگوی هولوگرافیک خودشو مطرح کند از این پرسش برخاست که خاطرات در مغز انسان کجا و چگونه ذخیره میشن. در آن دوران اکثر دانشمندان معتقد بودند که خاطرات در مغز انسان جایگاه ویژه ای دارن ، یعنی هر خاطره که شخص دارد همه دارنده ی جایگاه خاص در سلول های مغزند که انگرام نامیده میشن. در پی همین تفکر هم پن فیلد جراح مغز کانادایی شواهد متقاعد کننده ای عرضه کرد که  خاطرات خاص، جایگاه خاص و ویژه ای دارند. پن فیلد با جراحی روی مغز مبتلایان به صرع نقاط مختلف سلول های مغز آن ها را به وسیله ی شوک الکتریکی تحریک میکرد و با شگفتی دریافت که هرگاه ناحیه گیج گاه یکی از بیماران کاملا بیهوش خود را تحریک میکرد بیمار خاطرات وقایع گذشته ی زندگی خود را با جزییات کاملا واضح به یاد می آورد. مثلا پسر بچه ای صدای مادرش را در حال صحبت پای تلفن شنید و پس از چند شوک الکترود توانست تمامی مکالمه را از نو تکرار کند و … . حتی وقتی پن فیلد سعی کرد که آن ها را گمراه بکند و به آن ها بگوید که نقطه ای دیگر از مغز آن ها را تحریک کرده که در واقع نکرده بود همواره همان خاطره ی قبلی فراخوانده میشد و پن فیلد این چنین نتیجه گرفت که هر آن چه که تا به حال تجربه کرده ایم در مغز ما ثبت شده است. پریبرام دلیلی برای شک کردن به نظریه ی پن فیلد نداشت.اما این پژوهش های لاشلی بود که نحوه ی اندیشه ی او را به کل تغییر داد. کاری که لاشلی میکرد عبارت از این بود که به موش ها تعلیم میداد دست به اعمال گوناگون بزنند،مثل گذشتن از مارپیچ ها.بعد تکه های مختلفی از مغز موش ها را با عمل جراحی برمیداشت و دوباره به محک آزمایش میگذاشت. او آن قسمت از مغز موش ها را برمیداشت که حاوی خاطره ی گذشتن از مارپیچ است،وقتی این کار عملی شد با شگفتی دریافت که صرف نظر از این که کدام قسمت مغز برداشته شده خاطره ی آن ها هیچ گاه از بین نرفته است.  برای پریبرام تنها پاسخ ممکن این بود که خاطره ها مکان خاصی در مغز ندارند و به طور کلی در سراسر مغز پراکنده شده اند و این شده که خواندن مقاله ای در ساینتیفیک امریکن که به توصیف چگونگی ساخت نخستین هولوگرام میپرداخت پاسخ نهایی چگونگی کارکرد مغز را پیش پای او نهاد. از این جاست که ما وارد بحث هولوگرام ها و ویژگی های آن میشویم . شما برای این که سر از کار پریبرام درآورید و آشنایی بیشتری درباره ی ارتباط مغز و هولوگرام پیدا کنید میتونید به کتاب جهان هولوگرافیک مایکل تالبوت رجوع کنید و از خواندن آن لذت ببرید. اما هولوگرام؛ یکی از چیز هایی که هولوگرافی را ممکن میسازد پدیده ای است به نام تداخل. تداخل عبارت از نقشی ضربدری است که از دو یا سه موج نظیر امواج آب که در هم تداخل پیدا کرده حاصل می آید. هر نوع پدیده ی موج گونه می تواند یک طرح تداخلی ایجاد کند.نظیر امواج رادیو و نور. و از آن جا که اشعه ی لیزر پرتویی بسیار خالص و تکفام از نور است، برای ایجاد طرح تداخلی مناسب است. حالا وقتی یک اشعه ی لیزر به دو تابه ی مجزا تقسیم شود، هولوگرام به وجود می آید. اولین تابه با برخورد به شی که قرار است از آن عکس گرفته شود به عقب می جهد. سپس تابه ی دوم با انعکاس نور تابه ی اول برخورد میکند و حاصلش یک الگوی تداخلی است که روی قطعه ای فیلم ضبط میشود. به چشم بیننده ، تصویر توی فیلم به هیچ رو شبیه شی عکاسی شده نیست. Untitledبا تاباندن تابه ی سوم به فیلم، تصویری سه بعدی از شی اصلی در طرف دیگر فیلم ظاهر میشود.  به واقع میتوان دور و بر یک تصویر هولوگرافیک قدم زد و از زوایای مختلف بدان نگریست ، انگار به یک شی واقعی نگاه می کنیم. اما هرگاه بخواهید این تصویر را لمس کنید ، دست شما از میان آن گذر میکند و در می یابید که در واقع چیزی آن جا نیست. کیفیت سه بعدی بودن هولوگرام تنها وجه شاخص آن نیست.اگر تکه ای از فیلم هولوگرافیک تصویری از سیب را از میان دو نیمه کنیم و سپس اشعه ی لیزر بر آن بتابانیم ، هر نیمه حاوی تصویر کاملی از سیب خواهد بود. حتی اگر این نیمه را باز به دو نیمه و نیمه را دوباره به دو نیمه تقسیم کنیم، تصویر کاملی از سیب در هر یک از قسمت های کوچک فیلم به دست خواهد آمد (هر اندازه قسمت ها کوچکتر میشوند تصاویر محو تر خواهد شد). بر خلاف عکس های معمولی ، هر تکه کوچک قسمتی از فیلم هولوگرافیک حاوی کلیه ی اطلاعاتی است که در همه ی فیلم ضبط شده است. همین نکته بود که پریبرام را به هیجان آورد و فهمید که خاطرات در مغز به جای این که مکان مشخصی داشته باشند در مغز پراکنده اند. اگر هر بخش تکه ای فیلم هولوگرافیک حاوی تمام اطلاعات لازم جهت ساختن تصویر کامل آن باشد، پس به نظر ممکن می آید که هر بخش از مغز نیز حاوی تمام اطلاعات لازم جهت فراخواندن همه ی خاطره باشند. بخش شاید جذاب تر هولوگرام ، بررسی ویژگی های آن و شباهت کارایی مغز و هولوگرام است که حالا به بررسی آنها میپردازیم.

به نظرتون مغز چه جوری میتونه این همه اطلاعات را در همچین فضای کوچکی ذخیره بکنه؟خب جالبه اینو بدونید که در طول عمر هر فرد معمولی مغز او چیزی حدود 280000000000000000000 یا 20^10*2.8 تکه اطلاعات ذخیره میکند.هولوگرام هم از قابلیت حیرت انگیزی برای ذخیره ی اطلاعات برخورداره. با تغییر زاویه ای که از برخورد دو موج لیزری روی فیلم عکاسی به دست آمده میتوان تصاویر گوناگون بسیاری روی همان سطح ضبط کرد. هر تصویر ضبط شده را میتوان با نور دادن به فیلم توسط اشعه لیزری و از همان زاویه ای که دو موج قبلی ساطع شده اند،دوباره به دست آورد.یک مربع یک اینچی فیلم قادر است همان قدر اطلاعات ذخیره کند که در پنجاه انجیل ذخیره شده است! البته من نمیدونم 50 انجیل حاوی چه قد اطلاعاته و بهتر بود در مقایسه با اطلاعات ذخیره شده در مغز میگفت ولی خب احتمالا خیلی زیاده…

یک ویژگی دیگه…ایده ی هولوگرافیک مثال دیگری است از گرایشهای تداعی کننده ی خاطره. اول نور یک اشعه ی لیزر را در نظر بگیریم که به دو شی همزمان تابیده و باز میگردد، مثلا به یک صندلی راحتی و یک یپپ. سپس میگذاریم نوری  که از دو شی مذکور بازمیگردند با هم تلاقی کنند، و حاصل آن را روی فیلم ضبط میکنیم.سپس هرگاه به صندلی راحتی توسط اشعه ی لیزر نور بتابانیم و نور انعکاس یافته را از داخل فیلم بگذرانیم ، یک تصویر سه بعدی پیپ نمایان میشود ، و بر عکس.هرگاه همین کار را با پیپ انجام دهیم ، تصویر هولوگرافیک صندلی راحتی پدیدار خواهد شد. همین ویژگی در مغز مشابه فرآیندی است که بعضی اشیا ، از گذشته ی ما خاطرات خاصی را برمی انگیزانند.

ویژگی بعدی ای که راجع بش میخونیم هولوگرافی تشخیصه.در هولوگرافی تشخیص تصویر هولوگرافیک از یک شی به همان شیوه ی معمول ضبط میشود، جز آن که اشعه ی لیزر را به آینه ی خاصی که آینه ی متمرکز کننده نام دارد می تابانند و سپس نور منعکس شده را به سطح فیلم ظاهر نشده می تابانند. اگر یک شی دیگر را که با شی اول مشابه، ولی نه کاملا همسان است زیر اشعه ی لیزر قرار میدهیم و نور منعکس شده از آینه را به فیلم بتابانیم. پس از این که فیلم ظاهر شد نقطه ی روشنی روی آن پدیدار میشود.هر چه شباهت میان شی اول و شی دوم بیشتر باشد نقطه ی نورانی روشن تر و درخشان تر میشود. اگر دو شی مذکور هیچ شباهتی به هم نداشته باشند، هیچ نقطه ی نورانی ای پدیدار نخواهد شد.با قرار دادن یک فتوسل حساس به نور در پشت فیلم هولوگرافیک، میتوان در واقع از این مجموعه به عنوان یک ساز و کار مکانیکی تشخیص بهره برد که در مغز هم شناسایی چهره های آشنا به همین شکل است.

تکنیک مشابهی که هولوگرافی تداخلی نام دارد هم میتواند توضیح دهد که چگونه میتوان مشخصات آشنا و نا آشنای یک تصویر، مثل چهره ی کسی را که سالهاست ندیده ایم تشخیص داد. در این تکنیک شیئی را از میان تکه ای فیلم هولوگرافیک که حاوی تصویر خود شی است میبینیم.حال اگر هر یک از مشخصات شی پس از آنکه تصویرش ضبط شد تغییر کند، نور منعکس شده نیز تغییر خواهد کرد.کسی که به فیلم نگاه میکند بی درنگ در میابد که شی چگونه عوض شده یا اصلا عوض نشده است.در این تکنیک کار چنان حساس است که حتی فشار انگشت روی سنگ یا آجر هم بلافاصله نشان داده میشود. امروزه این تکنیک کاربرد عملی پیدا کرده و در صنعت آزمایش مواد مختلف به کار میرود.

این برخی از کاربرد های هولوگرام ها بود که خب برای  بیشتر دونستن دربارش دوباره شما رو به خوندن کتاب جهان هولوگرافیک دعوت میکنم…

حالا کمی از زبان ریاضی هولوگرام میگیم و این موضوع رو تمام میکنیم. در حالی که نظریه های دنیس گابور( که از برندگان جایزه ی نوبل هست) که باعث تحول و گسترش تئوری هولوگرام شده بود نخستین بار توسط خود او صورت بندی و بر شمرده شد، در اواخر دهه ی شصت(میلادی) از نظریه پریبرام حتی خیلی بیشتر از ایده های گابور پشتیبانی شد.وقتی گابور به ایده ی هولوگرافیک اندیشید ، کاری به اشعه ی لیزر نداشت.هدفش بیشتر ایجاد تحول در میکروسکوپ الکترونی بود.رویکرد او ریاضی وار بود و ریاضیاتی که به کار برد نوعی حساب دیفرانسیل و انتگرال بود که ژان فوریه ابداع کرده بود.به طور خلاصه آن چه که فوریه پرورانده بود نوعی روش ریاضی وار بود جهت تبدیل هرگونه طرح و الگویی هر چند پیچیده به زبان امواج ساده.در عین حال این را هم نشان داد که که این اشکال موج گونه را چگونه میتوان به همان شکل اولیه برگرداند.معادله ای که این فرآیند را نشان میدهد به نام مبدل های فوریه معروف است. به کمک مبدل های فوریه، گابور توانست تصویر شی را در فضای تار و مه آلود الگوهای تداخلی روی تکه ای فیلم هولوگرافیک ضبط کند.سپس سعی کرد به کمک آن ها راهی بیابد که که دوباره همان الگوهای تداخلی را به تصویر شی اولیه بازگرداند.

Untitled2حالا که گریزی به زبان موج گونه ی فوریه ی زدیم بد نیست از یک کاربرد جالب فوریه یاد کنیم مبنی بر این که حتی حرکات جسمانی ما هم در مغز ما با همان زبان موج گونه ی فوریه حک شده است.نیکلای برنشتاین چند داوطلب را لباس تنگ سیاه پوشاند و در آرنچ ها و زانو های آن ها و سایر مفاصلشان نقاط سفیدی گذاشت. سپس آنها را رو به روی زمینه ای سیاه قرار داد و از آن ها در حال فعالیت های گوناگون جسمانی مثل رقصیدن ، راه رفتن ، جهیدن ، و تایپ کردن فیلم گرفت.وقتی فیلم را ظاهر کرد ، دریافت که تنها نقاط سفیدی پدیدار بودند که به بالا و پایین و چپ و راست در جهات گوناگون و در هم و بر هم حرکت میکردند.او جهت بهره بری بیشتر از کشفیاتش ، خطوط گوناگونی را که از نقاط سفید پدید آمده بود تجزیه و تحلیل کرد و همه را به یک زبان موج گونه تبدیل نمود. و با imagesکمال تعجب دریافت که اشکال موج گونه حاوی الگو های پنهانی هستند که که به او اجازه میدهند حرکات بعدی آزمون شونده ها را تا حد یک اینچ پیش بینی کند!

مطلب ما همین جا به پایان میرسه!

تصویر سمت راست هم کتاب جهان هولوگرافیک هست که اگر از دونستن این مطالب لذت بردین شما رو به خوندن این کتاب که ترجمه ی بسیارخوب و روانی هم داره دعوت میکنم…