رفتن به نوشته‌ها

برچسب: تاریخ علم

ماجرای کشف غول‌های یخیِ منظومۀ شمسی

آسمان شب همیشه موردِتوجه بشر بوده است و ازجملۀ اولین مواردی که انسان‌ها با رصد مداوم آسمان دریافتند وجود اجرامی در آسمان بود که در میان ستاره‌های بی‌شمارِ ثابت حرکت می‌کردند. این موضوع در میان نوشته‌های خطوط میخیِ نگارش‌شده توسط مردم تمدن میان‌رودان بر روی قدیمی‌ترین لوح‌های گلیِ کشف‌شده کاملاً نمایان است. به عقیدۀ میان‌رودانی‌های باستانی، در آسمان هفت سیاره حضور داشتند که به آن‌ها باهم «بیبو» به‌معنای لغوی «گوسفند سرگردان» گفته می‌شد: ماه، خورشید و پنج سیارۀ عُطارِد، زهره، مریخ، مشتری و زحل که همگی با چشم غیرمسلّح قابل‌رؤیت هستند. اما حدود پنج‌هزار سال طول کشید تا سیارۀ بعدی، یعنی اورانوس کشف شود. همچنین با فاصلۀ زمانی کوتاهی، از وجود نپتون پرده‌برداری شد تا درنتیجه، دو سیارۀ دیگر به شمار سیارات باستانی اضافه شود.

در این نوشته، به‌ بهانهٔ سالروز کشف سیارهٔ نپتون در ۲۳ سپتامبر۱۸۴۶، به ماجرای کشف جالب دو سیارۀ اورانوس و نپتون می‌پردازیم که امروزه آن‌ها را با عنوان غول‌های یخیِ منظومۀ شمسی می‌شناسیم.

اورانوس، سیاره‌ای که هیچ‌گاه به چشم نیامده بود

اورانوس، هفتمین سیارۀ منظومۀ شمسی، در آسمان شب ما با قدر ۵/۳۸ تا ۶/۰۳ ظاهر می‌شود و این یعنی این سیاره را در یک آسمان تاریک، حتی با چشم غیرمسلّح نیز — هرچند کمی نیاز به تیزبینی دارد — می‌توان دید. در واقع در تمام طول هزاران سال تمدن بشری، سیارۀ اورانوس در مقابل دیدگانمان بود، ولی هیچ‌گاه نتوانسته بودیم آن را کشف کنیم؛ تنها حدود ۲۵۰ سال است که اورانوس را رسماً به‌عنوان یکی از سیارات منظومۀ شمسی می‌شناسیم.

شاید مهم‌ترین دلیلِ این تأخیر در کشف اورانوس، جابه‌جایی بسیار کُند آن در پس‌زمینۀ ستارگان باشد. از آنجایی که فاصلۀ متوسط اورانوس تا خورشید حدود ۲۰ واحد نجومی است و حدود ۸۴ سال طول می‌کشد تا یک دور به‌دور خورشید بگردد، مقدار جابه‌جایی آن در پهنۀ آسمان بسیار ناچیز است (از مرتبۀ چند ثانیۀ قوسی در هر شب). همین موضوع باعث شده، علی‌رغم رصدهایی که قبل از کشف اورانوس از این سیاره ثبت شده است، ماهیت آن پنهان باقی بماند؛ کمااینکه در کاتالوگ‌های ستارگانی که توسط «جان فلمستید» در ۱۶۹۰ میلادی یا حتی توسط «ابرخُس» در زمان یونان باستان تهیه شده، همیشه به‌عنوان یکی از ستارگان (ثوابت) گزارش شده بود. اما زمان گذشت تا آنکه قرعۀ فال به‌نام «ویلیام هرشل» زده شد.

در این دو تصویر می‌توان حرکت سیارۀ اورانوس را در مقابل ستارگان صورت فلکی حمل مشاهده کرد. تصویر بالا در 22 نوامبر و تصویر پایین در 17 دسامبر 2022 گرفته شده است.

جناب هرشل اولین بار در ۱۳ مارس ۱۷۸۱ میلادی با کمک یک تلسکوپ در حیاط خانه‌اش اورانوس را رصد کرد. ابتدا تصور کرد چیزی که دیده، یک دنباله‌دار است؛ چون برخلاف ستارگان که با تغییر بزرگ‌نماییِ تلسکوپ اندازۀ ظاهری‌شان تغییری نمی‌کند، این جرم آسمانی اندازه‌اش تغییر می‌کرد. اما رفته‌رفته، با رصدهای بیشتر توسط منجمان دیگر، نتایج جالبی به‌دست آمد؛ مثلاً با محاسبۀ مدار آن، مشخص شد برخلاف دنباله‌دارها که در مدارهای بسیار کشیده به‌دور خورشید می‌گردند، مدار جرم جدید ورای مدار سیارۀ زحل و تقریباً به‌شکل دایره است. یا اینکه مثلاً هیچ ردّی از یک دنباله‌ در اطراف آن رصد نشد. این شواهد منجر به این شد که هرشل در سال ۱۷۸۳ میلادی رسماً اعلام کند ستاره‌ای که دو سال قبل دیده بود، درواقع یکی از سیارات اصلی منظومۀ شمسی است.

این کشف باعث شد تا جورج سوم، پادشاه وقتِ بریتانیا، حقوقی به‌صورت سالیانه به‌عنوان پاداش برای ویلیام هرشل در نظر بگیرد. هرشل نیز پیشنهاد داد نام سیارۀ جدید را «ستارۀ جورج» بگذارند؛ با این استدلال که اگر سیارات قبلی همه در زمان باستان کشف شده و نام اساطیر رومیان و یونیان باستان را بر آن‌ها گذاشته‌اند، پس این سیاره را نیز به‌نام پادشاه جورج بگذاریم تا آیندگان بدانند این سیاره در چه زمانی کشف شده است! البته نام‌های دیگری نیز ازجمله «نپتون» و حتی «هرشل» پیشنهاد شد؛ اما همان‌طور که مشخص است، این سیاره را امروزه به‌نام «اورانوس» می‌شناسیم. این نامی است که «یوهان بودی»، منجم آلمانی، آن را برای اولین‌بار در سال ۱۷۸۲ پیشنهاد داد و بعدها همه‌گیر شد.

سیاره‌ٔ اورانوس و حلقه‌هایش از دید تلسکوپ فضایی جیمز‌وِب.

غولی غول دیگر را صدا می‌زند

کشف اورانوس به‌عنوان یکی از بزرگ‌ترین دستاوردهای علمی قرن ۱۸ میلادی، در کانون توجه جامعۀ علمی قرار گرفت و در سال‌های بعد، رصدهای مختلفی برای مطالعۀ بیشتر آن انجام شد. «پیِر سیمون لاپلاس» — حل معادلاتی که امروزه به‌عنوان معادلات لاپلاس می‌شناسیم، ازجملۀ کارهای علمی ایشان است — در کتاب مکانیک سماوی خود معادلات ریاضیاتیِ مربوط به اختلالات گرانشی دوطرفه‌ای که سیارات به یکدیگر وارد می‌کنند را توسعه داده بود. بر همین اساس، می‌توان با استفاده از محاسبات عددی، جداولی از موقعیت سیارات در آسمان تنظیم کرد. لاپلاس وظیفۀ استخراج این جداول را که کار کمرشکنی هم بود، به چند نفر از همکارانش سپرد؛ ازجمله یکی از دانشجویان لاپلاس به‌نام «آلکسی بوار» که وظیفۀ محاسبۀ جداول موقعیت سه غول منظومۀ شمسی یعنی سیارۀ مشتری، زحل و اورانوس را بر‌ عهده گرفت.

مسئله درمورد مشتری و زحل تقریباً سرراست بود، اما درمورد سیارۀ اورانوس به نظر کار گره خورده بود؛ بوار، حتی با در نظر گرفتن اختلالات گرانشی ناشی از بقیۀ سیارات بر روی اورانوس، نمی‌توانست پارامترهای مداری‌ای که با رصدهای قبلیِ انجام‌شده مطابقت داشته باشد را برای آن پیدا کند. وقتی بوار جداول اورانوس را در سال ۱۸۲۱ منتشر کرد، در مقدمۀ آن نوشت که علت این عدم تطابق می‌تواند یا به‌دلیل دقت پایین رصدهای قبلی باشد، یا وجود یک جرمی که اثرات گرانشی آن بر روی اورانوس این اختلالات اضافی را ایجاد می‌کند.

رفته‌رفته منجمان با رصدهای بیشتر سیارۀ اورانوس، به ایدۀ وجود یک سیارۀ جدیدِ اخلالگر اقبال بیشتری نشان دادند. یکی از افرادی که به این مسئله علاقه‌مند شده بود «فردریش بسل» بزرگ — فردی که معمولاً با توابع بسل آن را می‌شناسیم — بود. او وظیفۀ جمع‌آوری و تحلیل رصدهای اورانوس را به دانشجویش فردریش فلمینگ سپرد؛ اما فلمینگ جوان‌مرگ شد. خودِ جناب بسل هم پس از تحمل یک دورۀ طولانی بیماری، در سال ۱۸۴۶ میلادی درگذشت و نتوانست در این زمینه اقدام مؤثری انجام دهد. اما درنهایت، دو دانشمند دیگر به‌نام‌های «جان آدامز» در انگلستان و «اوربن لو وریه» در فرانسه توانستند به‌طور مستقل و تقریباً هم‌زمان، پارامترهای مداری سیارۀ جدید را محاسبه و مکان آن را در آسمان پیش‌بینی کنند.

دست‌نوشته‌های جان آدامز درمورد محاسبات اختلالات مدار اورانوس.

آدامز در انگلستان توانست با استفاده از معادلات «پیتر هانسن» برای مدار سیارات، پارامترهای مداری سیارۀ اخلالگر را در اکتبر ۱۸۴۵ محاسبه کند؛ اما او در انتشار نتایجش تعلل کرد و همچنین «جیمز چلیس» که مسئول رصد این سیاره در رصدخانۀ کمبریج شده بود، با کمی سهل‌انگاری، علی‌رغم مشاهدۀ سیاره، نتوانست آن را تشخیص دهد. در عوض، لو وریه و همکارانش توانستند سیارۀ جدید یعنی «نپتون» را زودتر از تیم انگلیسی کشف کنند.

سیارۀ جدید آنجاست

در سال ۱۸۴۵ میلادی مسئلۀ پیدا کردن موقعیت سیارۀ ناشناخته به لو وریه، ریاضی‌دان فرانسوی، سپرده شد. او اولاً تمام رصدها تا آن سال، به‌خصوص نتایج رصدخانۀ پاریس و همچنین نتایج رصدخانۀ گرینویچ که به‌تازگی برایش ارسال کرده بودند را بررسی کرد. ثانیاً محاسباتی که بوار برای جداول اورانوس انجام داده بود را دوباره انجام داد و اشکالات کارش را تصحیح کرد. سپس سعی کرد با استفاده از معادلات لاپلاس مسئلۀ محاسبۀ پارامترهای مداری سیارۀ ناشناخته را کشف کند. این مسئله‌ای کاملاً جدید بود؛ چون تا پیش از آن، موقعیت سیارات با در نظر گرفتن اختلالات گرانشی از سوی سیارات دیگری که مکانشان از قبل مشخص بود تعیین می‌شد، اما در اینجا مسئله معکوس است؛ یعنی باید موقعیت یک سیاره‌ای را پیدا کنیم که در واقع هیچ چیزی جز اثر اختلالات گرانشی آن بر روی سیارۀ دیگر نمی‌دانیم. این مسئلۀ بسیار سختی است؛ چون پارامترهای مجهول زیادی وجود دارد. ضمناً در آن زمان، حتی درمورد سیارۀ اورانوس هم، به‌دلیل ناهم‌خوانی رصدها با محاسبات، پارامترهای مداری آن کاملاً مشخص نبود. بنابراین لو وریه باید درواقع این پارامترها را هم‌زمان برای اورانوس و سیارۀ جدید به دست می‌آورد؛ مسئله‌ای با ۱۲ مجهول!

معمولاً در فیزیک در هنگام مواجهۀ با چنین مسائلی سعی می‌کنیم با در نظر گرفتن فرض‌هایی معقول، مسئله را ساده‌تر کنیم. لو وریه با کمک رابطۀ تیتیوس-بوده فرض کرد که فاصلۀ سیارۀ جدید از خورشید حدود دو برابر فاصلۀ سیارۀ قبلی، یعنی اورانوس تا خورشید است. همچنین از آنجایی که مدار سه سیارۀ قبلی انحراف بسیار کمی نسبت به صفحۀ دایرة‌البروج دارند، فرض کرد که مدار سیارۀ جدید کاملاً منطبق بر صفحۀ دایرة‌البروج است (اصطلاحاً میل مداری آن صفر است). این دو فرض را برای سیارۀ اورانوس هم در نظر گرفت. بنابراین با در نظر گرفتن این ۴ فرض، تعداد مجهولات به ۸ عدد رسید که با احتساب جرم سیاره، تعداد کل مجهولات ۹ عدد شد.

جزئیات محاسبات لو وریه بسیار پیچیده و طولانی و از حوصلۀ بحث خارج است. یک فیزیک‌دان فرانسوی به‌نام «ژان-بتیست بیو» تلاش کرد طی سال‌های ۱۸۴۶ و ۱۸۴۷، روش‌های لو وریه را برای حل این مسئله شرح دهد. نتیجۀ کار او شش مقاله شد! او وقتی به مقالۀ سوم رسیده بود نوشت: «هرچقدر در وظیفه‌ای که متقبّل شده‌ام جلوتر می‌روم، ظاهراً سختی موضوع افزایش می‌یابد.»

لو وریه نتایج اولیۀ خود را در ۱ ژانویه ۱۸۴۶ به آکادمی علوم فرانسه ارائه کرد و ۹ ماه بعد، نتایج دقیق‌تر را طی مقاله‌ای منتشر کرد. او در این مقاله مکان سیاره را در حدود ۵ درجه‌ای سمت شرق ستارۀ دلتای صورت فلکی جَدی اعلام کرد و حتی تقریبی از اندازۀ ظاهری قرص آن و روشنایی‌اش در آسمان — احتمالاً برای ترغیب بیشتر رصدگران — ارائه داد. متأسفانه در آن زمان تلسکوپ رصدخانۀ پاریس در وضعیت مطلوبی نبود و همچنین نقشۀ دقیقی هم از آن قسمت موردِنظر آسمان در رصدخانه وجود نداشت تا بتوانند ستارگان در آسمان را با مشاهدۀ خود مقایسه کنند. بنابراین لو وریه بلافاصله شروع به نامه‌نگاری‌ با رصدخانه‌های مختلف در کشورهای دیگر کرد. او برخلاف آدامز که در انتشار نتایج محاسباتش دچار تردید بود، با قاطعیت فراوان به منجمان رصدگر اعلام کرد:

اوربن لو وریه

«به محلی که من تعیین کرده‌ام نگاه کنید تا در آنجا سیاره را ببینید.»

اوربن لو وریه

در ۱۸سپتامبر۱۸۴۶ لو وریه نامه‌‌ای به «یوهان گاله» در رصدخانۀ برلین فرستاد. این نامه پنج روز بعد، یعنی در ۲۳ سپتامبر به دست او رسید. گاله اجازه‌های لازم را از «یوهان اِنکه»، مدیر رصدخانه، دریافت و مقدمات لازم را با کمک یک دانشجوی ارشد از کوپنهاگ به‌نام «هنریش لوئیس دارست» مهیا کرد. خوشبختانه یک نقشۀ آسمان از دانشگاه برلین نیز در رصدخانه موجود بود که همۀ ستارگان تا قدر ظاهری ۱۰ را در مجدودۀ موردنظر در برداشت. این‌گونه بود که گاله دقیقاً در شب همان روزی که نامۀ لو وریه را دریافت کرد، توانست با تلسکوپ شکستیِ ۹/۵ اینچی رصدخانه، با اختلاف اندکی در حدود ۱ درجه از محل تعیین‌شده، سیارۀ نپتون را کشف کند! او این رصد را در شب بعد نیز تکرار کرد و از صحت‌و‌سقم آن مطمئن شد. روز بعد گاله و اِنکه نامه‌ای برای لو وریه نوشتند و ضمن شرح رصد سیارۀ مذکور، این کشف بزرگ را به او تبریک گفتند.

تصویر تلسکوپی که با آن سیارۀ نپتون کشف شد. امروزه این تلسکوپ در موزۀ آلمان نگهداری می‌شود.

بلافاصله بعد از اعلام کشف سیارۀ جدید، بسیاری از منجمان و دانشمندان دیگر ازجمله خودِ لو وریه آن را رصد کردند. لووریه که بسیار خوشحال از کشف انجام‌گرفته بود، در ۵ اکتبر نوشت: «این موفقیت این آرزو را در پی دارد که بعد از رصدهای سیارۀ جدید طی ۳۰-۴۰ سال آینده، امکانی فراهم شود تا با استفادۀ از آن، مدار سیارۀ بعدی — به ترتیبِ فاصلۀ از خورشید — کشف شود و همین‌طور این ماجرا ادامه پیدا کند.» البته بعدها اجرام دیگرِ دورتری مانند سیارۀ کوتولۀ پلوتو و اِریس کشف شدند، اما نه از طریق تأثیرات گرانشی‌شان بر روی مدار نپتون — این دو آن‌چنان کم‌جرم و دور هستند که عملاً هیچ اثر محسوسی بر روی مدار نپتون ندارند — بلکه از طریق پیمایش‌هایی که توسط حسگرهای تصویربرداری CCD انجام شد.

تصویری که به‌تازگی توسط تلسکوپ فضایی جیمزوِب از سیارۀ نپتون منتشر شده.
در این تصویر حلقه‌های نپتون به همراه اقمار آن دیده می‌شوند.

نحوۀ کشف دو سیارۀ اورانوس و نپتون، مانند هر ماجرای بزرگ دیگری در تاریخ علم، بسیار درس‌آموز است؛ گاهی پیشرفت در ساخت یک ابزار، کشف اتفاقیِ سیاره‌ای را رقم می‌زند‌ و گاهی قدرت پیش‌گویی مدل ریاضیاتی از وجود یک سیاره پرده‌برداری می‌کند؛ اما در همۀ این دستاوردهای علمی می‌توان ردّپای وجوه انسانی را مشاهده کرد؛ ما انسان‌ها تلاش می‌کنیم تا با وجود همۀ ضعف‌ها و ناتوانی‌ها، از همۀ ظرفیت‌ها و توانمندی‌هایمان استفاده کنیم تا بیشتر یاد بگیریم و بیشتر عالم پیرامونمان را درک کنیم.

کشف نپتون و مسائل وارون

برای بیشتر دانستن به این مقاله نگاه کنید:

Inverse statistical problems: from the inverse Ising problem to data science

پی‌نوشت:

نوشتهٔ بالا در نشریهٔ علمی کوارک (انجمن علمی دانشکده فیزیک دانشگاه شهید بهشتی) در شمارهٔ دوم – بهار ۱۴۰۲ منتشر شده است.

زندگی گالیله

گالیلئو گالیله قطعاً یکی از مشهورترین چهره‌های تاریخ علم است؛ نه فقط به‌دلیل نقش برجسته‌اش در گسترش و پیشرفت علم فیزیک و نجوم، بلکه به‌خاطر ماجرای اختلافش با کلیسا بر سر حمایت از نظریهٔ خورشیدمرکزیِ کوپرنیک. همین امر باعث شده است آثار زیادی تا به امروز در رابطه با زندگی گالیله تألیف شود. نمایشنامهٔ «زندگی گالیله» نوشتهٔ برتولت برشت، نویسندهٔ بزرگ آلمانی، یکی از آثار شاخص ادبی در این زمینه است که تابه‌حال چندین‌بار به زبان های مختلف روی صحنه رفته.

علاوه بر دردسترس‌بودن نسخهٔ فیزیکی این کتاب در کتاب‌فروشی‌های مختلف، این اثر را می‌توانید در قالب‌های دیگر نیز از طریق لینک‌های زیر بخوانید و بشنوید و ببینید:

همچنین در ادامه می‌توانید گفتگوی مهدی موسوی را با دکتر امیرمحمد گمینی، عضو هیئت علمی پژوهشکدهٔ تاریخ علم دانشگاه تهران، در رابطه با نمایشنامهٔ «زندگی گالیله» مشاهده کنید. در این گفتگو که در بستر لایو اینستاگرامی برگزار شده، کتاب برشت از منظر تاریخی و فلسفی مورد بررسی قرار گرفته و درمورد سؤالات زیر بحث شده است:

  • آیا گالیله سوسیالیست بود؟
  • آیا اختلاف گالیله با کلیسا بر سر ایمان و عقلانیت بود؟
  • آیا گالیله نظریه خورشید مرکزی را اثبات کرده بود؟
  • آیا رصدهای گالیله نجوم بطلمیوسی را به طور قطع مردود کرده بود؟

(اصلاحیه: خانم منجم یونانی در قرن چهارم میلادی هوپاتیا نام داشت.)

به‌علاوه نسخهٔ صوتی این اثر را می‌توانید در پادکست تاریخ علم و اندیشه بشنوید.

فراز‌ و‌ فرودهای تاریخی علم نجوم

بخش اول از سری‌ گفت‌وگوهای «پشت‌پرده نجوم»

«پشت‌پرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفت‌و‌گو شده و هم‌چنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبه‌علم داشته است.

تاریخ همیشه عبرت‌آموز است! به‌ همین‌ خاطر، در اولین قسمت از برنامه‌ی «پشت‌پرده نجوم» با دکتر امیر‌محمد گمینی، عضو هیئت علمی پژوهشکده تاریخ علم دانشگاه تهران، در‌مورد علم نجوم در بستر تاریخ گفت‌وگو کردیم. ویدیوی این گفت‌و‌گو ضبط شده و در ادامه‌ این مطلب آمده است.

علم در طول تاریخ، فراز‌ و‌ فرود‌های زیادی داشته است. این تصور که بخواهیم تاریخ علم نجوم را تنها به نظرات انقلابی از قبیل: مدل زمین‌مرکزی بطلمیوسی و مدل خورشید‌مرکزی کپرنیکی، یا چند چهرهٔ سرشناس مانند گالیله و نیوتن تقلیل بدهیم، برداشت درستی نیست. 

در این گفت‌و‌گو به سؤالات زیادی در‌ رابطه با تصورات رایج در‌مورد تاریخ علم (به‌ویژه علم نجوم) پاسخ داده شده است؛ از جمله آن‌که: آیا در تمدن اسلامی، انقلاب علمی اتفاق افتاد؟ دانشمندان مسلمان چه نگاهی به مسئله علم و دین داشته‌اند؟ عوامل مؤثر در روابط انسانی و اجتماعی تا چه حد می‌توانند روی پیشرفت علم تأثیرگذار باشند؟

بخش اول «پشت‌ پرده نجوم»
ویدیوی گفت‌و‌گوی محمد‌مهدی موسوی (فیزیک‌پیشه) و دکتر گمینی (عضو هیات‌علمی پژوهشکده تاریخ علم دانشگاه تهران) درمورد فراز و فرودهای تاریخی علم نجوم

معرفی کتاب

در این گفت‌و‌گو دو کتاب معرفی شدند:

  • «دایره‌های مینایی»، نوشته دکتر امیر‌محمد گمینی، که می‌توانید آن را از اینجا تهیه کنید. معرفی اجمالی کتاب:
کتاب «دایره‌های مینایی، نوشته امیرمحمد گمینی

کیهان‌شناسیِ علمی از چه زمانی پا‌ گرفت و در یونان و تمدن اسلامی تا چه حد از روش تجربی و ریاضی استفاده می‌کرد و چقدر تحت تأثیر فلسفه طبیعی بود؟ منجمان تمدن اسلامی چه راهکارهایی را برای حل مشکلات علمی زمان خود پی گرفتند؟ برای پاسخ به سوالات و پرسش‌هایی دیگر درباره تحولات علمی و تبادل نظرهای رایج در نجوم تمدن اسلامی نیاز به پژوهش‌هایی مبتنی بر نسخ خطی به جا‌مانده و آخرین دستاوردهای مورّخان دانشگاهی علم قدیم است. این کتاب نتایج این پژوهش‌ها را در کنار پژوهش‌هایی جدیدتر برای متخصّصان و غیرمتخصّصان علاقه‌مند به رشته تاریخ علم معرفی می‌کند. مخاطب این کتاب افرادی هستند که به تاریخ تحولات علوم در گذشته‌های دور و نزدیک دلبسته‌اند یا می‌خواهند با دستاوردهای فکری و فرهنگی تمدن اسلامی در حوزه علم هیئت آشنا شوند.

  • «زندگینامه علمی دانشمندان اسلامی» که توسط جمعی از پژوهشگران نوشته شده و می‌توانید از اینجا آن را تهیه کنید. معرفی اجمالی این اثر دو‌جلدی:

«زندگینامه علمی دانشمندان اسلامی» بیان شرح احوال، آثار و آرای علمی ۱۲۶ نفر از دانشمندان اسلامی است که در ریاضیات و علوم وابسته به آن مانند نجوم، نورشناسی، موسیقی و علم‌الحیل و علوم‌طبیعی مانند فیزیک، شیمی، کیمیا، طب و زیست‌شناسی کار کرده‌اند.

کتاب «زندگینامه علمی دانشمندان اسلامی»،

همچنین احوال برخی از جغرافی‌دانان، تاریخ‌نویسان و بعضی از فلاسفه نیز بیشتر از باب حکمت ایشان، در این مجموعه آمده است. می توان گفت که زندگی و کار مهم‌ترین دانشمندان اسلامی در این مجموعه بررسی شده و برخی مقالات آن از لحاظ تفصیل و عمق و وسعت دامنة تحقیق، بی‌نظیر یا کم‌نظیرند.

دانشمندان اسلامی که احوالشان در این مجموعه آمده همه اسلامی‌اند. بی‌آنکه همه مسلمان باشند و همه ـ از ایرانی و عرب و مغربی و مسلمان و یهودی و مسیحی ـ در سایه درخت پربار تمدن اسلامی زیسته و کار کرده‌اند.

جلد اول این مجموعه، شامل مقالات حروف «الف» تا «ح» است. جلد دوم، علاوه بر بقیه مقالات، دارای یک فهرست راهنمای تفصیلی و واژه‌نامه‌ای مشتمل بر معادل‌های برخی واژه‌ها و توضیح برخی از اصطلاحات علمی خواهد بود، تا خوانندگانی که از این کتاب برای تحقیق در تاریخ علوم در اسلام یا در دروس مربوط به این موضوع استفاده می‌کنند، از آن بهتر بهره ببرند.

کلام پایانی

در پایان، شاید اشاره به این چند جمله از کارل سِیگِن در کتاب «جهان دیو‌زده» خالی از لطف نباشد:

«چالش بزرگ برای مروجان علم آن است که تاریخ واقعیِ پر‌ پیچ‌و‌خم اکتشافات بزرگش و سوءتفاهم‌ها و امتناع لجوجانه‌ی گاه‌و‌بیگاهِ دانشمندان از تغییر مسیر را شفاف کنند. بسیاری از ـ شاید اغلب ـ درسنامه‌های علمی که برای دانشجویان نوشته شده‌، نسبت به این مسئله با‌ بی‌توجهی عمل کرده‌اند. ارائه‌ی جذابِ معرفتی که عصاره‌ی قرن‌ها پرسش‌گریِ جمعیِ صبورانه درباره طبیعت بوده، بسیار راحت‌تر از بیان جزئیاتِ دستگاهِ درهم‌وبرهمِ عصاره‌گیری است. روش علم، با همان ظاهر ملال‌آور و گرفته‌اش، بسیار مهم‌تر از یافته‌های علم است.»

مسیر چهارصد‌ساله تلسکوپ‌ها

از هزاران سال پیش، بشر با مشاهده آسمان بالای سر، سعی کرد با رصدهای مداوم، الگوهای نهفته در آن را پیدا کرده تا بتواند پدیده‌های آسمانی را پیش‌بینی کند و مدلی برای کیهان ارايه دهد. در طول تمام این اعصار، تنها ابزار برای دریافت اطلاعات از آسمان یا همان نورِ‌ اجرام آسمانی، چشم انسان بود. حتی بیش از صد ابزار نجومی هم که در سده‌های میانه توسط دانشمندان اسلامی ساخته شد، تنها دقت اندازه‌گیری موقعیت اجرام و محاسبات را افزایش می‌داد (برای آشنایی با تاریخ نجوم پیش از دوره نوزایی به اینجا مراجعه کنید). اما با اختراع تلسکوپ در قرن هفدهم میلادی، نقطه عطفی در تاریخ علم اخترشناسی رقم خورد؛ چرا که افق تاز‌ه‌ای را  در مقابل بشر، برای دستیابی به داده‌های بیشتر و آزمودن مدل‌های اخترشناسی گشود. 

آن‌طور که در تاریخ مشهور است، اختراع تلسکوپ، اولین بار در ۱۶۰۸ میلادی توسط یک عینک‌ساز هلندی به نام هانس لیپرشی ثبت شده است. در همان سال خبر این اختراع به گالیلئو گالیله رسید و وی توانست با بهبود دادن طراحی آن، از تلسکوپی که ساخته بود، نخستین بار برای دیدن آسمان استفاده کند. وی نتیجه اکتشافات خود، از رصدها‌یی که با تلسکوپ انجام داده بود را در ۱۶۱۰ میلادی در کتابی با عنوان «فرستاده ستاره‌ای» (Starry Messenger) منتشر کرد. این اکتشافات می‌توانستند شواهدی باشند بر درستی مدل خورشید-محوری و رد فلسفه ارسطویی: گالیله برای نخستین بار توانست لکه‌های خورشیدی و هم‌چنین کوه‌ها و دره‌های سطح ماه را مشاهده کند. این به معنی این بود که اجرام سماوی برخلاف نظر رایج، اجرامی ایده‌آل و بی‌هیچ عیب و نقص نیستند. هم‌چنین گالیله چهار قمر مشتری را که امروزه به «قمرهای گالیله‌ای» معروفند، رصد کرد که در واقع نشان می‌داد، مرکزهای حرکت دیگری نیز وجود دارند. بنابراین ماه می‌تواند در عین حال که به دور زمین می‌چرخد، به دور خورشید نیز حرکت کند. پدیده دیگری که اولین‌بار با استفاده از تلسکوپ دیده شد، رویت همه فازهای هلال سیاره زهره بود. این مشاهده به‌خوبی با مدل خورشید-مرکزی سازگاری داشت؛ در سال‌های بعدی، کارهای نظری نیوتن در رابطه با مفهوم اینرسی و قانون جهانی جاذبه موجب ابطال مدل زمین-مرکزی و مقبولیت مدل کپرنیکی شد. بنابراین، اختراع تلسکوپ در همان سال‌های ابتدایی، نقشی مهم در درک بهتر بشر از جهان ایفا کرد. 

از چهارصد سال پیش تاکنون، طراحی‌های مختلفی برای تلسکوپ‌ها پیشنهاد شده است. پیشرفت‌های صورت گرفته در زمینه طراحی و ساخت تلسکوپ‌ها، موجب شده‌اند تا بسیاری از ابیراهی‌های اپتیکی مربوطه، اصلاح شوند. در ادامه، سعی می‌کنیم با رویکردی تاریخی، این مسیر را نشان دهیم و در این بستر، با طراحی‌های مختلف تلسکوپ‌ها تا حدودی آشنا شویم.

 عدسی‌هایی که رو به آسمان نشانه رفتند!

تلسکوپ‌هایی که در ساختار اصلی‌شان از عدسی‌ها استفاده می‌شود، به «تلسکوپ‌های شکستی» موسومند. تلسکوپ‌های شکستی، از یک عدسی شیئی و یک عدسی چشمی تشکیل شده‌اند که کمک می‌کنند نور بیشتری در چشم انسان کانونی شود، تا تصویر روشن‌تر و شفاف‌تری از جرم آسمانی به‌دست آید. تلسکوپی که لیپرشی و گالیله ساختند، از یک عدسی محدب به عنوان شیئی و یک عدسی مقعر به عنوان چشمی تشکیل شده بود. در این نوع تلسکوپ که امروزه با عنوان «تلسکوپ گالیله‌ای» شناخته می‌شود،‌ عدسی محدب، پرتوها را کانونی می‌کند؛ اما عدسی مقعر، پیش از نقطه کانونی عدسی شیئی، مسیر پرتو‌ها را تغییر می‌دهد و آن‌ها را به‌صورت موازی درمی‌آورد تا وارد چشم شوند. تصویر به‌دست آمده، بزرگ‌نمایی‌شده و به‌صورت مستقیم است. گالیله توانست در نهایت، تلسکوپی با قطر عدسی شیئی ۳۷ سانتی‌متر و طول حدود ۱ متر بسازد. این تلسکوپ قابلیت بزرگ‌نمایی ۲۳ برابر را داشت.

طرحی شماتیک از یک تلسکوپ گالیله‌ای

در ۱۶۱۱ میلادی، یوهانس کپلر، طراحی جدیدی برای ساخت تلسکوپ ارائه داد که در آن، از دو عدسی محدب استفاده می‌شد. عدسی محدب چشمی، به اندازه فاصله کانونی‌اش، بعد از نقطه کانونی عدسی اولیه قرار می‌گیرد و نور را موازی می‌کند. مزیت این نوع طراحی نسبت به تلسکوپ گالیله‌ای،‌ میدان دید بسیار بزرگتر آن است. هرچند، تصویری که بدست می‌آيد، به‌صورت وارون می‌باشد. در سال‌های بعد، تلسکوپ‌هایی با این طراحی که به «تلسکوپ‌های کپلری» معروف‌اند، توسط افرادی مانند کریستف شاینر و ویلیام گَسکویگن ساخته شدند. اما نخستین تلسکوپ کپلری قدرتمند را کریستین هویگنس، در ۱۶۵۵ میلادی ساخت. این تلسکوپ، دارای عدسی شیئی‌ به قطر ۵۷ میلی‌متر و فاصله کانونی ۳.۷ متر بود. هویگنس، با استفاده از این تلسکوپ، توانست درخشان‌ترین قمر زحل، یعنی تیتان را کشف کند و برای نخستین‌بار، در ۱۶۵۹ میلادی، توصیف درستی از حلقه‌های زحل ارائه دهد.

طرحی شماتیک از یک تلسکوپ کپلری

اجسام از آنچه در آینه می‌بینید، از شما دورتر هستند!

 نوع دیگری از تلسکوپ‌ها، «تلسکوپ‌های بازتابی‌» هستند که در آن به‌ جای عدسی، از آینه‌ها استفاده ‌می‌شود. اگرچه خودِِ گالیله نیز از این موضوع آگاه بود که می‌توان به جای عدسی از آینه‌های انحنادار نیز استفاده کرد، اما شاید بتوان جِیمز گریگوری را نخستین کسی دانست که به طور مفصل به این موضوع پرداخت و تلسکوپی متشکل از دو آینه طراحی کرد؛ هرچند هیچ‌گاه نتوانست ایده خود را عملی کند و کسی را متقاعد سازد تا تلسکوپی با این طراحی بسازد. امروزه این نوع تلسکوپ، با عنوان «تلسکوپ‌های گریگوری» شناخته می‌شوند؛ گریگوری مدعی شد که این نوع طراحی می‌تواند مشکل ابیراهی رنگی و کروی تلسکوپ‌ها را رفع کند.

تلسکوپ‌های گریگوری، از دو آینه مقعر تشکیل شده‌اند. آینه اولیه، از نوع سهمی‌‌گون و آینه ثانویه، از نوع بیضی‌‌گون هستند؛ به‌طوری که پرتوها از آینه اولیه بازتاب داده شده و همگرا می‌شوند؛ و آینه ثانویه که کمی بعد از نقطه کانونی واقع شده است، پرتوها را از میان حفره‌ای که در وسط آینه اولیه قرار دارد، در بیرون از تلسکوپ، کانونی می‌کند. 

طرحی شماتیک از یک تلسکوپ گریگوری

  در ۱۶۶۶ میلادی، آيزاک نیوتن بر پایه نظریه خود در مورد شکست نور و رنگ‌ها، به این نتیجه رسید که مشکل ابیراهی رنگی تلسکوپ‌های شکستی، به‌دلیل کاستی‌ها در ساخت عدسی نیست. بلکه همه مواد شکستی، باعث شکست نور می‌شوند و دارای این ابیراهی هستند. بنابراین پرداختن به ساخت تلسکوپ‌های شکستی، بی‌فایده هست. البته بعدها، با الگوگیری از ساختمان چشم انسان، افرادی مانند چِستر مور هال و جان دولاند، توانستند با استفاده از ترکیب لنزهایی متشکل از مواد شکستی مختلف، لنزهایی بدون ابیراهی رنگی، موسوم به لنزهای بی‌رنگ بسازند.

نیوتن در ۱۶۶۸ میلادی، نخستین تلسکوپ خود را ساخت. تلسکوپ او شبیه به تلسکوپ گریگوری بود، با این تفاوت که بجای آینه ثانویه مقعر، از یک آینه تخت استفاده کرد. نیوتن برای سادگی، از یک آینه کروی برای آینه شیئی استفاده کرد. این آینه از جنس فلز اسپکیولوم (آلیاژی از قلع و مس) ساخته شده، قطر آن حدود ۳.۳ سانتی‌متر و فاصله کانونی آن ۱۶.۵ سانتی‌متر بود. او توانست با این تلسکوپ، قمرهای گالیله‌ای مشتری و فازهای هلال ماه را مشاهده کند. تلسکوپ نیوتنی، نسبت به تلسکوپ‌های شکستی، دارای مزیت‌های زیر بود:

۱) ابیراهی رنگی نداشت.

۲) ساخت آن بسیار آسان‌تر بود.

۳) فاصله کانونی کوتاه‌تری نسبت به مشابه نمونه شکستی خود داشت که باعث می‌شد، جمع و جور‌تر و قابلیت حمل راحت‌تری داشته باشد.

۴) ساخت آن ارزان‌تر بود.

۵) میدان دید بزرگ‌تری داشت. 

نوع دیگری از تلسکوپ‌های بازتابی، «تلسکوپ‌های کاسگرینی» هستند که توسط لاورنت کاسگرین در ۱۶۷۲ میلادی پیشنهاد داده شدند. این تلسکوپ، از یک آینه اولیه بیضی‌گون مقعر و یک آینه ثانویه هذلولی‌گون محدب، تشکیل شده است. آینه ثانویه، در جایی قبل از فاصله کانونی آینه اولیه قرار گرفته و پرتوهای نور را از حفره‌ای که در وسط آن قرار دارد، به بیرون هدایت و کانونی می‌کند. این امر، موجب آن می‌شود تا بتوان تلسکوپ‌هایی ساخت که با طول کوتاه‌تر، فاصله‌‌های کانونی موثرِ بلندتری برای آینه اولیه داشته باشند. هم‌چنین، میدان دید نیز افزایش می‌‌یابد.

طرحی شماتیک از یک تلسکوپ کاسگرینی

در سال‌های بعد، پیشرفت‌هایی در زمینه طراحی و ساخت آینه‌های بیضی‌گون و هذلولی‌گون، از جنس فلز اسپکیولوم صورت گرفت. هم‌چنین در بین سال‌های ۱۷۷۸ تا ۱۷۸۹ میلادی، ویلیام هرشل تلسکوپ‌های بازتابی بزرگی ساخت که بزرگترین آن‌ها تلسکوپی بود که ۱۲۰ سانتی‌متر قطر و ۱۲ متر طول داشت. این تلسکوپ تا ۵۰ سال بعدی، بزرگترین تلسکوپ دنیا بود. او برای این‌که بازتاب ضعیفِ نور، توسط آینه‌های اسپکیولومی را بهبود بخشد، آینه ثانویه را حذف کرد و به‌جای آن سعی کرد با چرخاندن آینه اصلی، نور را در جایی کانونی کند که بتواند به‌طور مستقیم، تصویر را مشاهده کند. این نوع تلسکوپ، ‌بعدها به «تلسکوپ هرشلی» معروف شد.

هرشل توانست با تلسکوپ‌هایی که ساخته بود، برای نخستین‌ بار سیاره اورانوس و چند قمر، از جمله انسلادوس و میماس از اقمار زحل را کشف کند. هم‌چنین وی توانست چند کاتالوگ‌ از چند هزار جرم عمق آسمان تهیه کند که شامل خوشه‌های ستاره‌ای و سحابی‌ها بودند؛ بسیاری از اجرامی که هرشل آن‌ها را سحابی نامیده بود، بعد‌ها در قرن بیستم، با محاسبه فاصله‌شان توسط جان اسلیفر و ادوین هابل، نشان داده شد، در واقع خود، کهکشان‌هایی هستند که در خارج از راه شیری قرار دارند.

نقاشی از تلسکوپ ۱۲ متری ویلیام هرشل، با قطر عدسی شیئی ۱۲۰ سانتی‌متر

همان طور که اشاره شد، میزان بازتاب نور از آینه‌هایی که از جنس فلز آلیاژی اسپکیولوم بودند، مطلوب نبود. به‌علاوه، این نوع آینه‌ها پس از مدتی تیره می‌شدند و کیفیت خود را از دست می‌دادند؛ بنابراین نیاز بود تا با آینه‌ای جدید تعویض شوند. در پی حل این مشکل،‌ در ۱۸۵۷ میلادی، کارل آگوست فون استینهیل و لئون فوکو، توانستند با ابداع روشی، این مشکل را تا حدی حل کنند؛ آن‌ها طی فرآیندی، یک لایه از نقره را بر روی یک آینه شیشه‌ای لایه‌نشانی کردند. این کار نه تنها میزان بازتاب و ماندگاری را افزایش می‌داد، بلکه هم‌چنین این مزیت را داشت که در صورت نیاز، این لایه برداشته شده و دوباره لایه‌نشانی شود؛ بدون این‌که لازم باشد شکل آینه شیشه‌ای زیرین، تغییر یابد. در سال‌های بعد، تلسکوپ‌های بسیار بزرگی با استفاده از این نوع آینه‌ها ساخته شدند. پیشرفت دیگر در زمینه آینه‌های تلسکوپ، در ۱۹۳۲ میلادی حاصل شد؛ جان دوناوان استرانگ، با استفاده از تکنیک تبخیر خلا گرمایی، توانست آلومینیوم را روی آینه لایه‌نشانی کند. مزیت لایه آلومینیومی این است که ماندگاری بیشتری نسبت به نقره دارد.

از جمله مهم‌ترین طراحی‌های دیگری که در طول این سالیان، برای تلسکوپ‌های بازتابی پیشنهاد شدند، «تلسکوپ‌های ریچی-کرتین» هستند. این نوع تلسکوپ، در دهه اول قرن بیستم میلادی، توسط جورج ویلیام ریچی و هِنری کرتین معرفی شد. ساختار کلی تلسکوپ ریچی-کرتین، مانند تلسکوپ‌های کاسگرینی است، با این تفاوت که در این مدل، هر دو آینه از نوع هذلولی‌گون هستند. این امر موجب می‌شود، علاوه بر ابیراهی کروی، ابیراهی کما یا اشک نیز تصحیح شود. بسیاری از تلسکوپ‌های بزرگ امروزی، مانند تلسکوپ فضایی هابل، تلسکوپ‌های کِک و تلسکوپ وی‌ال‌تی، از نوع تلسکوپ‌های ریچی-کرتین هستند.

همیشه راه سومی نیز وجود دارد!

علاوه بر تلسکوپ‌های شکستی و بازتابی، نوع دیگری از تلسکوپ‌ها نیز وجود دارند که در طراحی‌شان، ترکیبی از عدسی‌ها و آينه‌ها به‌کار رفته‌ است. این نوع تلسکوپ‌ها را کاتادیوپتریک یا «تلسکوپ‌های لنز-آیینه‌ای» می‌نامند. از جمله معروف‌ترین آن‌ها می‌توان به تلسکوپ‌های «اشمیت-کاسگرین» و «ماکستوف-کاسگرین» اشاره کرد.

تلسکوپ‌های اشمیت-کاسگرین، از دو آینه کروی مقعر و محدب تشکیل شده‌اند، که در موقعیت آینه‌های یک تلسکوپ کاسگرین قرار دارند. به‌علاوه، یک «صفحه اصلاح‌گرِ اشمیت»، در مسیر پرتوهای ورودی و در محل آينه ثانویه قرار می‌گیرد. این صفحه، در واقع یک نوع عدسی نا‌کروی است که دارای ابیراهی کرویِ برابر، اما مخالفِ ابیراهی کروی آینه اولیه می‌باشد؛ بنابراین، از این طریق ابیراهی کروی اصلاح می‌شود. به علت راحتی ساخت آینه‌های کروی، این تلسکوپ بیشتر در بین منجمان آماتور طرفدار دارد.

طرحی شماتیک از یک تلسکوپ اشمیت-کاسگرین

   تلسکوپ‌های ماکستوف، نخستین بار توسط دیمیتری دیمیتریویچ ماکستوف، در ۱۹۴۱ اختراع شد. او با الگوگیری از تلسکوپ اشمیت، از یک عدسی هلالی کاو برای اصلاح آینه کروی استفاده کرد. این صفحه اصلاح‌گر یا «پوسته اصلاح‌گر هلالی»، معمولا به‌طور کامل در گشودگی ورودی تلسکوپ قرار می‌گیرد. مزیت این طراحی این است که در آن، همه سطوح تقریبا «متقارنِ کروی» هستند. این طراحی، ابیراهی‌های نا‌هم‌محور، هم‌چون ابیراهی اشک را اصلاح می‌کند. ضمن آنکه ابیراهی رنگی نیز از بین می‌رود. تلسکوپ‌های ماکستوف را معمولا با چیدمان کاسگرینی طراحی می‌کنند. با این تفاوت که مشابه تلسکوپ‌های اشمیت-کاسگرینی، از دو آینه کروی استفاده می‌شود.

طرحی شماتیک از یک تلسکوپ ماکستوف-کاسگرین

تلسکوپ‌های امروزی

امروزه تقریبا همه تلسکوپ‌های پیشرفته از نوع بازتابی هستند؛ چرا که ساخت آینه‌های بزرگ، آسان‌تر و ارزان‌تر از عدسی‌های بزرگ می‌باشند. ضمن آن‌که تلسکوپ‌های شکستی را نمی‌توان در عمل، از یک حدی بزرگ‌تر ساخت؛ بزرگترین تلسکوپ شکستی جهان، در رصد‌خانه یِرکیز قرار دارد. قطر دهانه این تلسکوپ، ۱۰۰ سانتی‌متر می‌باشد. هر تلسکوپ شکستی بزرگ‌تر از این اندازه، ناپایدار است و تحت وزن خود، فرو‌می‌ریزد. 

تصویری از بزگترین تلسکوپ شکستی ساخت بشر در رصدخانه یِرکیز

بزرگ‌ترین تلسکوپ فعال در حال حاضر، تلسکوپ بزرگ جزایر قناری است که دارای آینه‌ای به قطر ۱۰ متر و ۴۰ سانتی‌متر می‌باشد. آینه اصلی این تلسکوپ، مانند بسیاری از تلسکوپ‌های بزرگ دیگر، شبیه به طرح لانه زنبور، از کنار هم قرار گرفتنِ آینه‌های شش ضلعی کوچک‌تر تشکیل شده است. این تکنیک باعث می‌شود تا بتوان آینه‌های بزرگتری برای تلسکوپ‌ها ساخته شوند. از دیگر تلسکوپ‌های بزرگی که در آینده نزدیک ساخته خواهند شد، می‌توان به «تلسکوپ بزرگ ماژلان» ۲۴.۵ متری، «تلسکوپ سی متری»، و «تلسکوپ بسیار بزرگ اروپایی» که آینه‌ای با قطر ۳۹.۳ متر خواهد داشت، اشاره کرد. هم‌چنین در قرن بیستم، تلسکوپ‌هایی نیز ساخته شدند که در مدارهایی به دور زمین قرار داده شوند. به این نوع تلسکوپ‌ها، «تلسکوپ‌های فضایی» گفته می‌شود که شاید معروف‌‌ترین آن‌ها، «تلسکوپ فضایی هابل» است.

مقایسه اندازه قطر دهانه تلسکوپ‌های مختلف در طول زمان

از جمله فناوری‌های مهمی که باعث شدند تا بتوان تلسکوپ‌های بزرگ‌تر و با کیفیت تصویربرداری بهترِ امروزی را ساخت، سیستم‌های «اپتیک فعال» و «اپتیک تطبیقی» بودند. یک‌ سری از عوامل هستند که باعث ایجاد خطا در داده‌های دریافتی از تلسکوپ می‌شوند؛ از جمله می‌توان به موارد زیر اشاره کرد: خطاهای ناشی از ساخت و غیر‌هم‌خط بودن المان‌های اپتیکی در تلسکوپ؛ تغییر شکل آینه، در اثر وزن خودِش؛ تغییرات دمایی و وزش باد در محیط گنبد رصدخانه و اطراف آن؛ و توربولانس یا آشفتگی جو. این عوامل روی شکل جبهه‌موج نور فرودی تاثیر می‌گذارند و شکل آن را از حالت تختْ خارج می‌کنند. با استفاده از سیستم‌های اپتیک فعال و اپتیک تطبیقی می‌توان شکل تغییر‌یافته جبهه موج را مشخص کرد و تغییراتی در جهت عکس، در شکل آینه اصلی ـ با استفاده از آرایه‌ای از بازوهای مکانیکی در پشت آن ـ یا با جابه‌جایی آینه ثانویه، به‌وجود آورد. بنابراین، از این طریق شکل جبهه موج اصلاح می‌شود و تصویر نهایی، شفاف و با‌کیفیت خواهد بود.

تصویر گرفته شده توسط تلسکوپ VLT، قبل و بعد از به‌کارگیری سیستم اپتیک تطبیقی

تفاوت بین سیستم اپتیک فعال و اپتیک تطبیقی، در فرکانس یا نرخ اِعمال تصحیحات است؛ سیستم‌های اپتیک فعال، برای اِعمال تصحیحات با فرکانس‌های پایین، و سیستم‌های اپتیک تطبیقی، برای تصحیحات با فرکانس بالا کاربرد دارند. برای نمونه، از عواملی که در بالا به آن‌ها اشاره شد، اثرات آشفتگی جو بر روی جبهه‌موج فرودی را می‌توان به‌وسیله سیستم‌ اپتیک تطبیقی اصلاح کرد؛ چرا که تغییرات جوی بسیار سریع هستند و به همین دلیل باید تصحیحات مربوطه، با فرکانس‌های بالا ـ بیشتر از ۲۰ بار در ثانیه ـ صورت گیرند. اثرات بقیه عواملی را که به آن‌ها اشاره شد، عمدتا می‌توان با استفاده از سیستم‌ اپتیک فعال اصلاح کرد.

یکی دیگر از روش‌هایی که در ساخت بعضی از تلسکوپ‌های پیشرفته به‌کار گرفته شده، روش تداخل‌سنجی است؛ برای مثال، رصد‌خانه کک، از دو تلسکوپ بازتابی که هر کدام آینه‌ای به قطر ۱۰ متر دارند، تشکیل شده است. این دو تلسکوپ می‌توانند با روش تداخل‌سنجی با یک‌دیگر ترکیب شده و در واقع یک تلسکوپ با قطر دهانه مؤثر ۸۵ متر را تشکیل دهند. این امر باعث می‌شود قدرت تفکیک، بسیار افزایش یابد و بتوان جزئیات بیشتری از آسمان را مشاهده کرد. 

دیدن نادیدنی‌ها

تلسکوپ‌هایی که تا این‌جا در موردشان صحبت شد، تلسکوپ‌هایی هستند که در محدوده نور مر‌ئی کار می‌کنند. اما همان‌طور که می‌دانیم، چشم ما تنها قادر به آشکارسازی و دیدنِ بخش بسیار کوچکی از طیف موج الکترومغناطیسی یا نوری است که از اجرام آسمانی به ما می‌رسند. اما برای مثال، همان‌گونه که به‌وسیله تصویربرداری فروسرخ، اجسام و موجودات را در تاریکی شب می‌توان مشاهده کرد، داده‌های بسیار زیادی در آسمان وجود دارند که چشم ما قادر به آشکارسازی آن‌ها نیست.

   در ۱۹۳۱ میلادی، کارل جانسکی کشف کرد که راه شیری در واقع یک منبع تولید امواج رادیویی است. بنابراین، زمینه تازه‌ای در زمینه مطالعات نجومی، به نام نجوم رادیویی به‌وجود آمد. بعد از جنگ جهانی دوم، زمینه برای ساخت تلسکوپ‌های رادیویی بزرگ فراهم شد. امروزه آرایه‌های بزرگی از تلسکوپ‌های رادیویی وجود دارند که با استفاده از روش تداخل‌سنجی، به‌مانند یک تلسکوپ رادیویی بزرگ عمل می‌کنند. اخیرا، اولین تصویر مستقیم از یک ابرسیاه‌چاله نیز توسط ترکیبی از هشت آرایه از تلسکوپ‌های رادیویی، ثبت شد (جزئیات مربوط به این مطلب را می‌توانید در اینجا بخوانید). 

   در قرن بیستم، تلسکوپ‌هایی در طول‌موج‌های دیگر نیز ساخته شدند. امروزه تلسکوپ‌هایی در محدوده طول‌موج‌های فروسرخ، فرابنفش، پرتو ایکس و گاما فعال هستند. به‌دلیل اینکه جو زمین مانع از رسیدن نور در این طول‌موج‌ها به سطح زمین می‌شود، در واقع همه آن‌ها تلسکوپ‌های فضایی هستند.

 وطنم! ای شکوه پابرجا!

 طرح رصدخانه ملی ایران، به‌عنوان اولین طرح کلان در زمینه علوم پایه در کشور، در سال ۱۳۷۹ آغاز شد و امروزه در مراحل پایانی ساخت قرار دارد. رصدخانه ملی می‌تواند نقش به‌سزایی در گسترش و پیشرفت علم نجوم در کشور داشته باشد. زمینه‌های پژوهشی این طرح می‌تواند شامل موارد زیر باشد: مطالعه چگونگی تشکیل ساختارها در کیهان، تحول کهکشان‌ها، مطالعه منشا ماده تاریک و انرژی تاریک، مطالعه فضای میان‌ستاره‌ای با استفاده از ابزار طیف‌سنجی، جستجوی سیارات فراخورشیدی و غیره.

موقعیت این رصدخانه در ارتفاعات کوه گرگش، با موقعیت بسیار مناسب برای رصد آسمان است. این رصدخانه، در حال حاضر، شامل یک ایستگاه مکان‌پایی و یک سامانه میدان دید باز INOLA (سرواژه Iranian National Observatory Lens Array) است که مشغول به فعالیت هستند. بخش اصلی رصدخانه، مربوط به یک تلسکوپ بازتابی بزرگ از نوع ریچی-کرتین، با عنوان INO340 خواهد بود. این تلسکوپ در محدوده طول موج ۳۲۵ تا ۲۷۰۰ نانومتر، کار می‌کند که البته تمرکز آن، روی محدوده مرئی خواهد بود. قطر آینه اصلی آن، ۳.۴ متر است. ضخامت این آینه، حدود ۱۸ سانتی‌متر بوده و با دقت ۱ نانومتر تراش خورده و جلا داده شده است و در ساختمانی که در محل رصدخانه ساخته می‌شود، با آلومینیوم لایه‌نشانی خواهد شد. (برای اطلاعات بیشتر به سایت رصدخانه ملی ایران مراجعه کنید)

   هرچند این تلسکوپ، از حیث اندازه، یک تلسکوپ میان‌رده به‌ شمار می‌آید، ولی علاوه بر اهداف علمی و پژوهشی که در بالا به آن‌ها اشاره شد، می‌تواند به‌دلیل موقعیت منحصر‌به‌فرد و هم‌چنین شرایط خوب رصدی، سهم مهمی در پروژه‌های بین‌المللی داشته باشد. ضمن آن‌که، طرح‌های کلانی از این دست، می‌تواند باعث پیشرفت فناوری‌های پیشرفته در کشور شود. 

هرچند در شرایط کنونی جامعه شاید بیشتر به رویا شبیه باشد، اما امیدوارم در سال‌های آینده، شاهد تعداد بیشتری از این طرح‌های علمی باشیم تا کشورمان آباد شود! :))