دقت کردین که «عمده» شعرا یا نویسندههای بزرگ، دکتری ادبیات ندارن یا بازیگرای درجه یک سینما هیچ موقع خیلی جدی درس سینما نخوندن؟ یا از طرف دیگه نه رونالدو تربیت بدنی خونده و نه میلیاردرهای جهان دکتری اقتصاد یا مدیریت مالی دارن؟ ولی در مورد علم چی؟! دقتکردین همه فیزیکدانها، دکترای فیزیک دارن! شخصا آخرین آدم حسابی که یادمه در علم دکتری نداشت ، مرحوم فریمن دایسون بود که اوایل امسال عمرشو داد به شما. ناگفته نمونه که دایسون با اینکه دکتری نداشت اما کار دانشگاهی داشت درست مانند بقیه همکارهاش که دکتری داشتند.
اصلا چون امروز هر فیزیکدانی دکتری داره، منجر به این برداشت شده که هر کسی که مثلا دکتری فیزیک داره رو فیزیکدان فرض کنن و هر کس که دکتری ریاضی داره رو آقا و خانم ریاضیدان صدا بزنن، خصوصا توی رسانهها! فکر کنید سه چهار سال دیگه من خودمو علومکامپیوتردان معرفی کنم جایی؛ بیچاره تورینگ، بیچارهتر کنوث! خلاصه که در علوم پایه، کارکرد دانشگاه خیلی متفاوت از بقیه رشتهها شده. امروز تقریبا شما باید «دکتر» باشین تا در جامعه علمی بتونید ارتباط برقرار کنید. حتی نسبت به قرن بیستم هم مفهوم آکادمیا کاملا تعریف جدیدی داره انگار چه برسه به سدههای گذشته. همین قدر بگم که اگه آدم دانشگاهی نباشین، حتی در توییتر هم زیاد تحویلتون نمیگیرن چه برسه مثلا داخل کنفرانسی چیزی. بگذریم!
برخلاف گذشته که علما عمدتا هر کدوم شغل و منصبی داشتند و در کنارش به علم میپرداختند الان شغلهای دانشگاهی مختلفی وجود داره که کسب و کار اصلی آدمها رو تشکیل میده. در تاریخ اومده که ابنهیثم شغل کارمندی (دیوانی) داشته و بارها سعی کرده خودش رو به دیوونگی بزنه بلکه بتونه این شغلها رو رها کنه و یک زندگی کاملا علمی داشته باشه. یا مثلا نیوتون مدتی شغلش ریاست ضرابخانهٔ سلطنتی بوده و در همان دوران هم «نورشناخت» رو منتشر کرده. ماجرای معروفی وجود داره به این نقل که یه شب که نیوتون خسته از ضرابخونه بر میگرده خونهش میبینه برنولی (یوهانشون که استاد اویلر بود) نامه زده که آقا ببین این مسئله رو میتونی حل کنی، و نیوتون هم تا قبل آفتابطلوع مسئله رو حل میکنه و جوابش رو با اولین پست فردا صبح – به صورت گمنام – برای برنولی ارسال میکنه!
ویلچک (برنده نوبل فیزیک در ۲۰۰۴) اینجا توضیح میده که چاپ مقاله در دنیای امروز فرایند کاملا متفاوتی رو طی میکنه. مثلا مقاله معروف ۱۹۱۵ (نسبیت) آینشتین با متر و معیارهای امروزی قاعدتا در هیچ مجلهای چاپ نمیشد! چون اولا مقاله با بحث فلسفی آرومی در مورد مفهوم فضا و زمان شروع میشه و بعدش آینشتین به سراغ ریاضیات شناختهشده حساب تنسوری میره، اونم با شرح و تفصیل، جوری که نصف مقاله رو همینا پر میکنه. در حالی که امروز این چیزها «زاید» حساب میشن و کسی اینقدر طولانی مقدمه نمینویسه. اصلا بعضی مجلهها قیدهای خاصی روی اندازه مقاله دارن، مثلا میگن حداکثر فلانقدر کلمه باید داشته باشه یا در بهمانتعداد صفحه نهایتا باشه. از طرف دیگه، مقاله نسبیت آینشتین نه تنها هیچی شکلی نداره، بلکه به هیچ مقاله قبلی هم ارجاع نمیده! امروز اگه کسی این جوری مقاله بنویسه، قبل از اینکه به دست ویراستار مجله (editor) برسه، مقاله کلا کلهپا میشه و کارش به زبالهدان تاریخ کشیده میشه. نوشته ویلچک رو بخونید.
خلاصه که امروز دنیای علم قر و فرهای زیادی داره که مثل هر چیز دیگه خوبیها و بدیهای خودشو به همراه میاره. قصد من از این نوشته این نبود که بگم دنیای امروز بده! در دنیای دیروز شاید آدمی مثل من باید دربهدر دنبال یه لقمه نون میدوید به جای اینکه صبح به صبح بره دانشگاه، قهوه بخوره، کار علمی کنه و حقوق بگیره! اینو نوشتم چون تصور همه آدمای تازه وارد به علم، معمولا پره از داستانها و گاهی افسانههای چهرههای معروف تاریخ علم. با ورود به دوره دکتری آدم یک دفعه با دنیای متفاوتی روبهرو میشه که قبلا خیال میکرد شکل دیگهای داشته باشه.
«پشتپرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفتوگو شده و همچنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبهعلم داشته است.
تاریخ همیشه عبرتآموز است! به همین خاطر، در اولین قسمت از برنامهی «پشتپرده نجوم» با دکتر امیرمحمد گمینی، عضو هیئت علمی پژوهشکده تاریخ علم دانشگاه تهران، درمورد علم نجوم در بستر تاریخ گفتوگو کردیم. ویدیوی این گفتوگو ضبط شده و در ادامه این مطلب آمده است.
علم در طول تاریخ، فراز و فرودهای زیادی داشته است. این تصور که بخواهیم تاریخ علم نجوم را تنها به نظرات انقلابی از قبیل: مدل زمینمرکزی بطلمیوسی و مدل خورشیدمرکزی کپرنیکی، یا چند چهرهٔ سرشناس مانند گالیله و نیوتن تقلیل بدهیم، برداشت درستی نیست.
در این گفتوگو به سؤالات زیادی در رابطه با تصورات رایج درمورد تاریخ علم (بهویژه علم نجوم) پاسخ داده شده است؛ از جمله آنکه: آیا در تمدن اسلامی، انقلاب علمی اتفاق افتاد؟ دانشمندان مسلمان چه نگاهی به مسئله علم و دین داشتهاند؟ عوامل مؤثر در روابط انسانی و اجتماعی تا چه حد میتوانند روی پیشرفت علم تأثیرگذار باشند؟
بخش اول «پشت پرده نجوم» ویدیوی گفتوگوی محمدمهدی موسوی (فیزیکپیشه) و دکتر گمینی (عضو هیاتعلمی پژوهشکده تاریخ علم دانشگاه تهران) درمورد فراز و فرودهای تاریخی علم نجوم
معرفی کتاب
در این گفتوگو دو کتاب معرفی شدند:
«دایرههای مینایی»، نوشته دکتر امیرمحمد گمینی، که میتوانید آن را از اینجا تهیه کنید. معرفی اجمالی کتاب:
کتاب «دایرههای مینایی، نوشته امیرمحمد گمینی
کیهانشناسیِ علمی از چه زمانی پا گرفت و در یونان و تمدن اسلامی تا چه حد از روش تجربی و ریاضی استفاده میکرد و چقدر تحت تأثیر فلسفه طبیعی بود؟ منجمان تمدن اسلامی چه راهکارهایی را برای حل مشکلات علمی زمان خود پی گرفتند؟ برای پاسخ به سوالات و پرسشهایی دیگر درباره تحولات علمی و تبادل نظرهای رایج در نجوم تمدن اسلامی نیاز به پژوهشهایی مبتنی بر نسخ خطی به جامانده و آخرین دستاوردهای مورّخان دانشگاهی علم قدیم است. این کتاب نتایج این پژوهشها را در کنار پژوهشهایی جدیدتر برای متخصّصان و غیرمتخصّصان علاقهمند به رشته تاریخ علم معرفی میکند. مخاطب این کتاب افرادی هستند که به تاریخ تحولات علوم در گذشتههای دور و نزدیک دلبستهاند یا میخواهند با دستاوردهای فکری و فرهنگی تمدن اسلامی در حوزه علم هیئت آشنا شوند.
«زندگینامه علمی دانشمندان اسلامی» که توسط جمعی از پژوهشگران نوشته شده و میتوانید از اینجا آن را تهیه کنید. معرفی اجمالی این اثر دوجلدی:
«زندگینامه علمی دانشمندان اسلامی» بیان شرح احوال، آثار و آرای علمی ۱۲۶ نفر از دانشمندان اسلامی است که در ریاضیات و علوم وابسته به آن مانند نجوم، نورشناسی، موسیقی و علمالحیل و علومطبیعی مانند فیزیک، شیمی، کیمیا، طب و زیستشناسی کار کردهاند.
کتاب «زندگینامه علمی دانشمندان اسلامی»،
همچنین احوال برخی از جغرافیدانان، تاریخنویسان و بعضی از فلاسفه نیز بیشتر از باب حکمت ایشان، در این مجموعه آمده است. می توان گفت که زندگی و کار مهمترین دانشمندان اسلامی در این مجموعه بررسی شده و برخی مقالات آن از لحاظ تفصیل و عمق و وسعت دامنة تحقیق، بینظیر یا کمنظیرند.
دانشمندان اسلامی که احوالشان در این مجموعه آمده همه اسلامیاند. بیآنکه همه مسلمان باشند و همه ـ از ایرانی و عرب و مغربی و مسلمان و یهودی و مسیحی ـ در سایه درخت پربار تمدن اسلامی زیسته و کار کردهاند.
جلد اول این مجموعه، شامل مقالات حروف «الف» تا «ح» است. جلد دوم، علاوه بر بقیه مقالات، دارای یک فهرست راهنمای تفصیلی و واژهنامهای مشتمل بر معادلهای برخی واژهها و توضیح برخی از اصطلاحات علمی خواهد بود، تا خوانندگانی که از این کتاب برای تحقیق در تاریخ علوم در اسلام یا در دروس مربوط به این موضوع استفاده میکنند، از آن بهتر بهره ببرند.
کلام پایانی
در پایان، شاید اشاره به این چند جمله از کارل سِیگِن در کتاب «جهان دیوزده» خالی از لطف نباشد:
«چالش بزرگ برای مروجان علم آن است که تاریخ واقعیِ پر پیچوخم اکتشافات بزرگش و سوءتفاهمها و امتناع لجوجانهی گاهوبیگاهِ دانشمندان از تغییر مسیر را شفاف کنند. بسیاری از ـ شاید اغلب ـ درسنامههای علمی که برای دانشجویان نوشته شده، نسبت به این مسئله با بیتوجهی عمل کردهاند. ارائهی جذابِ معرفتی که عصارهی قرنها پرسشگریِ جمعیِ صبورانه درباره طبیعت بوده، بسیار راحتتر از بیان جزئیاتِ دستگاهِ درهموبرهمِ عصارهگیری است. روش علم، با همان ظاهر ملالآور و گرفتهاش، بسیار مهمتر از یافتههای علم است.»
از زمانی که من وارد دانشگاه شدم (مهر ۹۱) تقریبا میشه گفت که دو اتفاق مهم دنیای نور و فوتونیک رو پشت سر گذاشتم. اولی سال جهانی نور بود (۹۳). اونسال دانشگاه بهشتی میزبان «۲۱امین کنفرانس اپتیک و فوتونیک و ۷امین کنفرانس مهندسی و فناوری فوتونیک» در ایران بود و من به عنوان خبرنگار این کنفرانس توی اکثر برنامهها شرکت میکردم. خیلی برنامه خوبی بود و حسابی هم خرج کرده بودند! خلاصه که خوش گذشت و از همه جهات برای من منجر به یک تجربه هیجانانگیز شد. به نظرم حرفهایترین رویدادی بود که در عمرم در ایران دیده بودم! اما خب اینکه حالا این همه پول از کجا اومد و چهطور برنامهای با اون کیفیت برگزار شد توی بهشتی رو نمیدونم. بگذریم! رویداد بعدی، مهر ۹۷ بود. اون سال جایزه نوبل فیزیک به سه نفر، با سهمهای مختلف، برای نوآوریهای پیشگامانه در زمینه فیزیک لیزر تعلق گرفت.
از دو سال پیش هم، سازمان ملل، تصمیم گرفت که روز ۱۶ ماه می یا ۲۸ اریبهشت رو به عنوان روز جهانی نور اعلام کنه. علت این تاریخ هم برمیگرده به ۶۰ سال پیش، وقتی که اولین لیزر دنیا کار کرد! مردم امسال به خاطر کرونا، در خونه و پشت کامپیوترهاشون با هشتگ #SEETHELIGHT این روز جشن گرفتند و رویدادهای آنلاین برگزار کردند. این نوشته رو بخونید!
یکی از سه برنده نوبل فیزیک سال ۲۰۱۸، خانومی بود به اسم دانا استریکلند که سومین زنی بود که برنده این جایزه میشد در تاریخ. قبل از ایشون، خانم ماریا مایر برنده این جایزه شده بود که اختلاف زمانی این دو نفر بیشتر از ۵۰ ساله! خانم دانا استریکلند، استاد دانشگاه واترلو کانادا هستند و طبیعتا کارشون فیزیک لیزر هست. فیزیک لیزر در حقیقت زیرمجموعهای از فیزیک اتمی حساب میشه و به تعبیر دیگهای، بخشی از شاخه علم فوتونیک. در مورد فوتونیک، امین مطلبی نوشته که پیشنهاد میکنم اون رو بخونید.
توی این ویدیو خانم استریکلند مفهوم لیزر رو در چند مرحله، از مقدماتی تا حرفهای توضیح میده:
یادگیری فیزیک لیزر
اگر علاقهمند هستید که فیزیک لیزر رو یاد بگیرین طبیعتا باید درسهایی مثل الکترومغناطیس و مکانیک کوانتومی رو خیلی خوب یادبگیرید. دست کم در اندازهای که بچههای رشته فیزیک توی دوره لیسانس یاد میگیرند. قبلا در مورد یادگیری آنلاین این دو موضوع در اینجا نوشتم. به طور خاص، دورههایی که در ادامه اومده بهتون در درک فیزیک لیزر میتونه کمک کنه:
اگر هنوز الکترومغناطیس و مکانیک کوانتومی نمیدونید، خوبه که این چیزها رو ببینید:
سال ۲۰۱۸ زمانی که جایزه نوبل فیزیک اعلام شد، یکی از خبرهای عجیب که دست به دست میشد این بود که خانم استریکلند صفحه ویکیپدیا نداشت! برای خیلیها سوال شده بود که چرا اصلا این اتفاق، یعنی ساخته نشدن صفحه ویکیپدیا برای یه همچین آدمی، افتاده؟! آیا این مربوط به اینه که ایشون خانومه و نه آقا یا چی؟! بازتابی از اون اتفاقات و پاسخ به خیلی از پرسشها رو میتونید در اینجا بخونید. اما بد نیست به عنوان یک حاشیه، اشاره کنم به اینکه حتی الان اگه صفحه گوگل اسکالر خانم استریکلند رو ببینید، عددی که h-index نشون میده شما رو متعجب خواهد کرد؛ عددی به ظاهر کم، برای برنده شدن یک جایزه نوبل در علم! بحث بیشتر در مورد این موضوع، نه کار منه و نه علاقهای دارم که بهش بپردازم. همون توضیح بنیاد ویکیمدیا در مورد صفحه نداشتن ایشون به نظرم ایدههای خوبی از برخورد دنیای بیرون از دانشگاه با دانشگاه رو نشون میده. برهمکنش اهل دانشگاه با همدیگه هم بمونه داخل محافل خودشون. بگذریم!
راستش چیزی که سبب شد این متن رو بنویسم، دیدن این تصویر از گروه خانم استریکلند در دانشگاه واترلو بود:
عکس دسته جمعی از گروه لیزرهای فوقسریع دانشگاه واترلو – ۲۰۱۷ – نگاره از ویکیپدیا
این عکس که شبیه به یک عکس خونوادگی میمونه در حقیقت تصویری از آدمهاییه که در حرفهایترین سطح، مشغول به انجام کار علمی هستند. یکی از این آدمها (خانم مسن آبیپوش) برنده جایزه نوبل در فیزیک هست و بقیه هم تیم تحقیقاتی ایشون رو تشکیل میدن که حضورشون در این عکس، تنوعی از سن و سال، جنسیت، وزن، تیپ، نژاد، فرهنگ، ملیت، عقیده و … رو نشون میده! واقعیت اینه که دانشگاهها این شکلی هستند و طیفی از آدمهای مختلف با سلیقهها و ویژگیها شخصیتی متفاوت رو در بر میگیره که همهشون در یک چیز، دستکم، مشترک هستند: انجام دادن کار زیاد!
به نظرم این تصویر و تصاویر مشابه برای کسایی که دوست دارن وارد کار پژوهشی بشن و آینده شغلی خودشون رو در دانشگاه بسازن این ارمغان رو داره که دانشمند شدن نه به قیافهس و نه به تیپ و عقیده آدما! دانشمند شدن به صبر، پشتکار، حوصله، خونواده حمایتگر و شانس نیاز داره. از طرف دیگه ممکنه این عکس این ایده رو به ذهنها بیاره که این آدمها همیشه این قدر خندان و خوشحال هستند! نه این طوری نیست! حتی ممکنه همیشه هم اینقدر خوش لباس و آراسته نباشن! بالاخره آدمها موقع عکس گرفتن سعی میکنن بهترین حالت از خودشون رو ثبت کنند! برای همین درسته که این جور تصویرها، یک جمع شاد و سرزنده رو نشون میده ولی نباید فراموش کنیم که پشت هر عکس دست جمعی در علم، کلی خون دل، شکست، تلاش مجدد و بدشانسی میتونه نشسته باشه!
جمله آخر این نوشته هم باشه تعمیمی از حرف مریم میرزاخانی که:
علم، زیباییهاشو فقط به اونایی که صبور هستند نشون میده!
پیشتر نوشتهای تخصصیتر در مورد گذار فاز و پدیدههای بحرانی نوشته بودم. این نوشته که ترجمهای از یک مقاله است، بیشتر جنبه تاریخی دارد و برای مخاطب علاقهمند آشنا با پدیدههای بحرانی میتواند جالب باشد!
پدیدههای بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، مفهوم و تاریخ اولیهٔ کشف او را بررسی کردهایم و سپس با طرح مختصر تاریخ پدیدههای بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال میکنیم.
پدیده های بحرانی که امروزه یکی از مهمترین روش ها در بررسی گذار فازها در سیستم های پیچیده، فیزیک ذرات بنیادی و بسیاری دیگر از شاخه های علم فیزیک است به مجموعهای از اتفاقات که در نقاط بحرانی رخ میدهند گفته میشود. پدیده های بحرانی اولین بار در بررسی گذار فازهای مواد دیده شدند. ساده ترین گذار فاز را می توان در تبخیر آب مایع و یا یخ زدن آب و گذار از فاز مایع به جامد و برعکس مشاهده کرد. در مورد آب گرمای ویژه و چگالی آب از متغیرهای قابل بررسی هستند که برای هر کدام می توان یک نمای بحرانی هم پیدا کرد و با استفاده از نظریه مقیاس و گروه های بازبهنجارش و یا نظریه ی میدان میانگین این نماهای بحرانی استخراج میشوند و برای هر پدیده یک کلاس جهان شمولی یافت میشود.
پدیدههای بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، در مقاله ی زیر به قلم برتراند برکه، مالته هنکل و رالف کنا، مفهوم و تاریخ اولیهی کشف او را بررسی کردهایم و سپس با طرح مختصر تاریخ پدیدههای بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال میکنیم.
آلبرت آینشتین یک غول است! یک روایتگر بینظیر در علم! بدون تعارف او برای همیشه نماد فیزیک معاصر خواهد ماند. آینشتین قهرمان دنیای نوجوانی بسیاری از کسانی است که امروز فیزیکدان شدهاند یا قرار است فردا فیزیکدان شوند. همیشه در اعماق قلبم برای آینشتین جایگاه خاصی قائل هستم. دبیرستانی که بودم برایم هیجانانگیزترین چیز این بود که نسبیت آینشتین را بفهمم! بگذریم. غیرممکن است که شخصی در فیزیک معاصر جستاری داشته باشد و ردپایی از او پیدا نکند. عوام او را به خاطر نسبیتش و فرمول $E = mc^2$ میشناسند و صدالبته به خاطر ژولیدگی او! از نگاه من اما، آینشتین نماد واقعی یک فیزیکدان است! نماد کسی که فیزیک را بدون هر گونه دستهبندی بهخوبی میشناسد و در توسعه هر قسمت آن مشارکت جدی داشته است. در این روزها که برخی از دوستان آینشتین را به نفع فیزیک نظری ثبت و ضبط میکنند و قهرمان دنیای کیهانشناسی و نسبیت میدانندش، دوست دارم به شخصیت او از دریچههای مختلف نگاه کنم. برای من بیش از هر چیزی، او استاد بزرگ تمام فیزیک است، کسی که از اشتباهاتش هم درسهای فراوان گرفته تاریخ! در این نوشته به چند گفتاورد که دوستشان دارم اشاره میکنم.
کم نیستند کسانی که از یک ملاقات نیمساعتهشان با آینشتین به عنوان یک اتفاق مهم در زندگیشان یاد نکرده باشند. نقل است که ریچارد فاینمن در اولین دیدارش در سمیناری با این پرسش از طرف آینشتین روبهرو شده که «شما میدانید چای کجاست؟» و فاینمن جوان از این که پاسخ پرسش آینشتین را میدانسته کیفش کوک شده! بعدها، فاینمن در مورد ژرفا و گستره نگاه آینشتین در شاخههای مختلف فیزیک گفت:
آینشتین یک غول بود؛ سرش در میان ابرها بود ولی پاهایش به روی زمین! اما از میان ما، آنان که قامتشان به آن بلندی نیست، بهتر است که انتخاب کنند!
Carver Mead – Collective Electrodynamics: Quantum Foundations of Electromagnetism (2002), p. xix
در این روزها که بلا و سختی از هر دریچهای بیرون زده، از زمین و زمان برایمان میبارد، دانشگاههایمان تبدیل به بنگاههای معاملاتی و محل برگزاری یک سری مراسم تشریفاتی شدهاند شاید بد نباشد که به زندگی کسانی که عمری قهرمانشان دانستهایم زیرچشمی نگاهی داشته باشیم و ببینیم که در نهایت، با خودمان چندچندیم!
«هر عمل آدمی تابعی است از ارادهی خود او یا ارادهی کسی دیگر. اگر این همه آدم ارادهی خود را تابع ارادهی نازیها نکرده بودند، چیزی به نام اردوگاههای مرگ به وجود نمیآمد.» (هرمان، ۱۳۹۰: ۱۰۰؛ به نقل از آلبرت آینشتین)
ـ هرمان، ویلیام؛ اینشتین و شاعر؛ ترجمهی ناصر موفقیان؛ تهران: انتشارات علمی و فرهنگی، (۱۳۹۰) چاپ چهارم.
در قرنطینه خانگی ماندهایم، سختمان است؟ تجربه تحریم و گرانی و بیچارگی داشتهایم؟! دچار درد مهاجرت و غربت هستیم؟ قبول! شرایط سخت است. اما میشود این گونه هم نگاه کرد که قهرمانهایی که عمری ستایششان کردهایم در دوران سختی درخشیدهاند، آنگاه روحیه میگیریم! معروف است که نیوتون، قانون گرانش عمومی را زمانی کشف کرد که به خاطر طاعون مجبور شده بود از کمبریج به لینکلنشر (خانه مادری) برود. همینطور ویلیام شکسپیر، «لیر شاه» را در زمان طاعون نوشت! کتاب «جز و کل» هایزنبرگ را بخوانیم و ببینیم که در آن بحبحه جنگ و بگیر و ببند این عزیزان چگونه هم به علم میپرداختند، هم به سیاست و هم به شرافت! در کتاب «حتما شوخی میکنید آقای فاینمن!» ببینیم که زندگی چگونه بر فاینمن سخت گذشت و هنگامه جنگ چگونه آنها را مجبور به کارهایی کرد که دوست نمیداشتند! برگردیم به آینشتین، نشنال جئوگرافیک در مجموعه سریالهای «نابغه» ، سریالکی ساخته در مورد او که دیدنش خالی از لطف نیست. در زندگی آلبرت آینشتین چیزی که کم نیست، درد است و رنج:
«در زوریخ من اغلب گرسنه بودم. هیچکس نمیداند که هر روز چندتا در را برای پیدا کردن کار میکوبیدم.» (هرمان، ۱۳۹۰: ۸۴؛ به نقل از آلبرت آینشتین)
ـ هرمان، ویلیام؛ اینشتین و شاعر؛ ترجمهی ناصر موفقیان؛ تهران: انتشارات علمی و فرهنگی، (۱۳۹۰) چاپ چهارم.
آثار آینشتین را در اینجا میتوانید ببینید. این نوشته را فقط به این خاطر منتشر کردم که در این شرایط که همه چیز سیاه است بد نیست که به چیزهای بهتری هم فکر کنیم. امید داشته باشیم به آینده و عزم داشته باشیم به یادگیری. در دنیایی که علم و پژوهش تبدیل به دکان شده، یاد کردن از این گونه انسانها خاطرمان را آسوده میکند.
این روزها در میان گفتاوردهای آینشتین، این جمله را هر روز با خود زمزمه میکنم:
هر احمقی میتواند بداند، نکته فهمیدن است!
Any fool can know. The point is to understand Albert Einstein
تصویری از آینشتین به همراه والتر مایر (ریاضیدان و دستیار آینشتین) در پاسادینا، کالیفرنیا، اوایل ۱۹۳۱. والتر مایر به ماشین حساب آینشتین معروف بود!
این روزها در سراسر ایران، برنامههای ترویجی زیادی به مناسبت روز جهانی نجوم برپا شده. برنامههای مختلفی که با یک جستجوی ساده در گوگل میشود از جزئیاتشان باخبر شد. مثل برنامه فردای مرکز علوم و ستارهشناسی تهران یا برنامههایی که جمعه در برج میلاد تهران و رصدخانه زعفرانیه برگزار میشوند. در مورد مهم بودن نجوم، اهل فن به قدر کافی نوشتهاند ([۱]، [۲] و [۳]) و به نظرم نیازی نیست با وجود این همه کتاب خوب به زبان فارسی، نگران این باشیم که اینجا در مورد نجوم بهطور مفصل بنویسیم. از طرف دیگر، ۱۷ سالی است که در ایران مردم به شیوههای مختلف مشغول کارهای ترویجی پیرامون نجوم هستند؛ از برنامههای مناسبتی نهادهای مختلف مردمی و غیرمردمی گرفته تا برنامههای تلوزیونی مثل آسمان شب. وقت آن است که به همه این عزیزان دستمریزاد بگویم! دم برادران صفاریانپور گرم که بسیاری علاقهشان به نجوم را وامدار کارهای حرفهای این دو عزیز هستند. تشکر ویژه از دکتر خواجهپور بهخاطر ترجمه کتاب نجوم به زبان ساده. ممنونیم از دکتر میرترابی بهخاطر سخنرانیهای فوقالعادهشان. از همه کسانی که این مدت هر قدمی در راه ترویج و روایتگری در علم برداشتهاند تشکر میکنیم. اصلا مگر میشود از بابک امین تفرشی بهخاطر عکسهای فوقالعادهاش یا از پوریا ناظمی به خاطر نوشتههایش تشکر نکرد؟! یا مگر میشود این حجم از فعالیتهای مجله نجوم طی این مدت را نادیده گرفت؟! قدردان زحمات همه کسانی که راه را هموار ساختهاند هستیم.
اما در کجای راه هستیم؟
علیرغم همه تلاشهای صورت گرفته، بهعنوان یک دانشجوی فیزیک، از وضع کنونی نجوم چندان دل خوشی ندارم! ۱۷ سال است که مشغول کارهای ترویجی پیرامون نجوم هستیم! ۱۷ سال! وقت آن است که بهطور جدی بپرسیم، از این همه وقت و سرمایه چه چیزی عایدمان شده؟! چقدر به چشماندازی که تصور میکردیم برای نجوم رسیدهایم؟ راستی اصلا چشماندازی در کار بوده؟!
جاستین بیبر ( Justin Drew Bieber) (زادهٔ ۱ مارس ۱۹۹۴)؛ خواننده، ترانهسرا، آهنگساز، نوازنده، بازیگر و سرگرمیساز کانادایی است. نگاره از ویکیپدیا.
بدون تعارف، از نظر من «امروز نجوم در ایران، جاستین بیبر علوم شده است!». مشهور است، دخترها برایش هورا میکشند، کیف پسرها پر است از پیکسلهای نجومی، اردوهای رصدی کماکان از پرطرفدارترین برنامههای دانشگاهی است، در بین پربازدیدترین مستندها، مستندات نجومی در صدر هستند، در بین صفحات مختلف اجتماعی، صفحاتی که به نجوم میپردازند پر از دنبالکننده هستند، برای برخی کارل سیگن از بزرگترین فیزیکدانان قرن اخیر است و چه بسیار کسانی که نیل دگراس تایسون را یک منجم بزرگ میدانند بیآنکه فرق بین نجوم، اخترفیزیک و کیهانشناسی را بدانند! این وسط عدهای هم خود را صاحب فن مینامند بیآنکه دو خط مکانیک سماوی بدانند! خب شاید بگویید این که اشکالی ندارد! عدهای هستند که میخواهند از آسمان زیبای شب لذت ببرند و با دیدن مستندات علمی به وجد آیند! اصلا به شما چه؟! فرمایش شما متین، ولی این برای ۱۷ سال تلاش برای ترویج علم دستاورد خوبی نیست! برنامههای ترویجی برای آشنا کردن مردم کوچه و بازار با علم است. به بیان دیگر، میخواهیم به بهانههای مختلف، کاری کنیم که مردم در زندگی روزمرهشان روش علمی را به کار برند و قاعدتا بازخوردی از این کار را در سطوح بالاتر جامعه ببینیم! مثلا بهطور جدی باید بپرسیم که پس از گذشت ۱۷سال ترویج نجوم، چقدر مردم به طالعبینی اعتقاد دارند؟! راستی به این دقت کردهاید که وقتی مهران مدیری در برنامه دورهمی، هر شب از مهمان خود میپرسد متولدین فلان ماه چه ویژگیهایی دارند، هیچ واکنشی مبنی بر یاوهای که میگوید از مردم دریافت نمیکند؟! ۱۷سال تلاشکردهایم ولی هنوز در تلگرام دنبال این هستیم که ببینیم اگر دوستمان متولد مردادماه است به چه چیزهایی علاقه دارد! اولین هدف در برنامههای ترویجی و روایتگری در علم، بالابردن فرهنگ علمی مردم است که انگار چندان هم در آن موفق نبودهایم! فراموش نکنیم که هنوز کسانی هستند که فکر میکنند زمین تخت است و هیچگونه دستبردار این ایده نیستند! برایش تبلیغ میکنند، سمینار برگزار میکنند و هوررررا میکشند!
در دانشگاههای ما چه خبر است؟
دلنگرانی بعدی من به این خاطر است که پس از گذشت تقریبا دو دهه، ما فعالیتهای حرفهای را به نجوم آماتوری کاهش دادهایم! هیچ خبری از فعالیتهای حرفهای در مقیاس بزرگ نیست! انگیزهی قسمتی از کارهای ترویجی در نجوم این است که افراد علاقمند را به سمت تحصیل و پژوهش در رشته نجوم سوق دهیم. چقدر در این کار موفق بودهایم؟! برای تحصیل نجوم، در مقطع کارشناسی باید وارد رشته فیزیک شوید و اگر در یکی از دانشگاههای خوب کشور باشید و خیلی خوششانس، شاید یک درس ۳ واحدی برای نجوم بگذرانید! خب تا اینجای کار زیاد بد نیست. بههرحال، همین که در رشته فیزیک هستید اصول اولیه نجوم را یاد میگیرید. نکته اینجاست که در چندتا از دانشگاههای کشور، گرایش نجوم در مقطع تحصیلات تکمیلی وجود دارد؟! چند استاد در کل دانشگاههای ایران هستند که حرفهشان نجوم باشد؟! دقت کنید، نجوم، و نه اخترفیزیک یا کیهانشناسی! آیا میدانستید برخی از اساتید که بهطور حرفهای کارشان نجوم بوده، در حال کوچ کردن به سمت کیهانشناسی یا سایر گرایشها هستند؟! مردم، باور کنید که حال نجوم حرفهای این روزها خوب نیست! راستی، از رصدخانه ملیمان چه خبر؟! فراموش نکنید که یکی از هدفهای برنامههای ترویجی این است که پیشرفت علم را به یک دغدغه برای مردم کند! اصلا پس از ۱۷ سال جشن و بزک، آیا مطالبه مردمی برای زودتر به سرانجام رسیدن پروژه رصدخانه ملی وجود دارد؟! ۱۷ سال گذشت، دولت و مجلس برای نجوم چه کردهاند؟! فیزیک، علمی تجربی است و آزمایشگاه میخواهد، آزمایشگاه نجوم، رصدخانه است! بدون رصدخانه حرفهای خبری از تربیت نسل جوانی از منجمین نیست. مگر یک سری کار با دادههای وارداتی!
خلاصه این که…
کویر مرنجاب – برنامه رصد اردیبهشت ۹۳
تقریبا دو دهه است که تمرکز عجیبی روی برنامههای ترویجی برای نجوم داشتهایم. علیرغم همه تلاشها و خوندلها هنوز کارهای زیادی برای انجام دادن وجود دارد. مردم و مسئولین ما هنوز متقاعد نشدهاند که علم، قدرتآفرین است! هنوز با مفهوم توسعه شوخی میکنیم! علم را نشناختهایم، هدف دانشگاه را فراموش کردهایم و نیروی انسانی ارزشمند خود را دو دستی صادر میکنیم و به جای آن خروار خروار مواد آرایشی وارد کشور میکنیم! منجمین حرفهایمان را مجبور به مهاجرت میکنیم و نجوم را به عنوان یک تفریح بزک میکنیم و به مردم به عنوان یک فعالیت حرفهای در علم نشانش میدهیم. بسیاری از علاقمندان به نجوم و حتی خیل زیادی از کسانی که خود را منجم آماتور میدانند، پس از ورود به رشته فیزیک شدیدا از رشته فیزیک و نجوم حرفهای متنفر میشوند! علتش این است که آن نجوم بزکشده، در دانشگاه صورت خود را شسته و اکنون چهره واقعی نجوم برای دانشجوی بیچاره یک چهره خشن و زشت است! نجوم حرفهای را دریابیم!
«النّاسُ ثَلاثَةٌ: فَعالِمٌ رَبّانِىٌّ، وَ مُتَعَلِّمٌ عَلى سَبيلِ نَجاة، وَ هَمَجٌ رَعاعٌ، اَتْباعُ كُلِّ ناعِق، يَميلُونَ مَعَ كُلِّ ريح، لَمْ يَسْتَضيئُوا بِنُورِ الْعِلْمِ، وَ لَمْ يَلْجَاُوا اِلى رُكْن وَثيق. مردم سه گروهند: دانشمند ربّانى، دانشجوى بر راه نجات، و مگسانى ناتوان که به دنبال هر صدایى مى روند، و با هر بادى حرکت مى کنند، به نور دانش روشنى نیافته، و به رکنى محکم پناه نبردهاند.» چقدر از هر دسته در جامعه ما وجود دارد؟!
دست همه عزیزانی که طی ۱۷ سال گذشته در توسعه نجوم نقش داشتهاند را به گرمی میفشاریم. اما اکنون باید تلاش کنیم برنامههای ترویجی هدفمندتری برگزار کنیم!
در این مقاله سعی شده است تا با مروری کوتاه بر سیر تاریخی کیهانشناسی نوین، گوشهای از تلاشهای کیهان شناسان و فیزیکدانان، برای ارایهی توصیفی از تحول کیهان، نمایش داده شود.
به یاد آنان که راه را هموار ساختند…
آلبرت آینشتین – نگاره از ویکیپدیا
در سال ۱۹۱۵ میلادی، آلبرت انیشتین با ارایه نظریهی نسبیت عام، فصلی تازه در علم کیهانشناسی رقم زد و در واقع کیهانشناسی مدرن را پایهریزی نمود. در آن زمان انیشتین بر این باور بود که عمر کیهان بینهایت است و جهان در طول زمان تغییری نمیکند. این درحالی است که جوابهای معادلات نسبیت عام، جهانی را توصیف میکردند که در حال تحول بود. بدین ترتیب انیشتین در مقالهاش در سال ۱۹۱۷ میلادی، برای توصیف جهان ایستای خود، با فرض برقراری اصل کیهانشناسی، عددی ثابت به نام «ثابت کیهانشناسی» را در معادلات خود وارد کرد تا این اثر را خنثی کند. طبق اصل کیهانشناسی، جهان در مقیاسهای بهاندازه کافی بزرگ، همگن و همسانگرد (در همه جهات یکسان) است. البته بعدها با کشف انبساط کیهان، انیشتین اضافه کردن این ثابت در معادلاتش را بزرگترین اشتباهش خواند.
در همان سال، ویلیام دو سیتر جواب دیگری از معادلات را برای جهانی با فضای غیر تخت و خالی از ماده اما شامل ثابت کیهانشناسی، ارایه داد. اگرچه ممکن است این مدل غیر واقعی و بیاهمیت بهنظر بیاید، اما جالب است بدانید که امروزه این مدل در نظریه تورم که مربوط به کیهان آغازین است، نقشی اساسی ایفا میکند. در مدل دوسیتر جهان بهصورت نمایی منبسط می شود.
چگونگی انتقال به سرخ و آبی بسته به (بهترتیب) دور یا نزدیک شدن منبع. نگاره از ویکیپدیا
الکساندر فریدمان (۱۸۸۸-۱۹۲۵)، ریاضیدان و فیزیکدان روسی، در سال ۱۹۲۲ میلادی، مدل دیگری ارایه داد که در واقع میتوان آن را حد وسطی از مدل انیشتین و مدل دوسیتر دانست. اگرچه این مدل در آن زمان چندان مورد اقبال واقع نشد، اما پنج سال بعد در حالی که فریدمان از دنیا رفته بود، این جواب ها توسط ژرژ لومتر، کشیش و فیزیکدان بلژیکی، بطور مستقل بهدست آمدند. وی تلاش کرد تا پیشبینیهای این مدل مبنی بر انبساط کیهان را با نتایج رصدی که به تازگی انجام گرفته بود، مرتبط سازد. این مشاهدات حاکی از آن بود که در طیف کهکشانهای دوردست، اثری موسوم به «انتقال به سرخ» دیده میشود که میتوان آن را در نتیجهی دور شدن کهکشانها و در واقع انبساط کیهان دانست. البته فردی به نام فریتس تسوئیکی نظر دیگری داشت. وی مدلی موسوم به «نور خسته» را پیشنهاد داد که در آن ادعا میشد که نور به دلیل برهمکنش با موادی که بر سر راهش هستند، مقداری از انرژی خود را از دست میدهد و طول موجش افزایش مییابد. بنابراین طیف کهکشانهای دور دست به سمت طول موجهای بلندتر منتقل میشود. امروزه میدانیم که این مدل با داده های رصدی مغایرت داشته و فاقد اعتبار است.
در سال ۱۹۳۱ لومتر مقالهای منتشر کرد که در آن ادعا شده بود که در مدل فریدمان، کیهان باید از یک حالت اولیه تکامل پیدا کرده باشد که شامل مقدار بسیار زیادی از پروتونها، الکترونها و ذرات آلفا بوده است که همگی با چگالی از مرتبهی هستهی اتم در کنار یکدیگر قرار داشتهاند. وی این حالت را «اتم قدیم: Primaeval Atom» نامید. لومتر را میتوان در واقع پدر نظریه مهبانگ دانست. عبارت «مهبانگ» را اولین بار فرد هویل در سال ۱۹۴۹ میلادی، هنگامیکه در یک برنامهی رادیویی بیبیسی در مورد این مدل صحبت میکرد، به حالت طعنه آمیزی بکار برد. اما این تعبیر خیلی زود رایج شده و مورد استفاده قرار گرفت.
گیرندهای که پنزیاس و ویلسون با آن تابش زمینه کیهانی را کشف کردند. نگاره از ویکیپدیا
یکی از مباحث داغی که در سال های ۱۹۴۰ میلادی وجود داشت، موضوع منشأ عناصر شیمیایی بود. در سال ۱۹۴۶ جرج گاموف، فیزیکدان هستهای، با الگوگیری از نظرات لومتر مقالهای منتشر کرد مبنی بر اینکه فازهای اولیهی مدل فریدمان میتوانند محتملترین مکان برای هستهسازی عناصر شیمیایی باشند. گاموف ادعا کرد که اگر در مدل فریدمان به عقب برگردیم میتوانیم به نقطهای به اندازهی کافی چگال و پر انرژی برسیم که در آن فرآیندهایی غیر تعادلی مربوط به هسته سازی امکانپذیر باشند. در همان سال رالف آلفر، دانشجوی گاموف، نیز به او پیوست تا روی محصولات ناشی از این هستهسازی کار کند. دو سال بعد گاموف و آلفر به همراه هانس بیته، مقالهای منتشر کردند و در آن به جزییات موضوع پرداختند. اهمیت این مقاله بر این بود که نشان داد اگر عناصر طبیعی منشأیی کیهانی داشته باشند، نیاز به فازی بسیار داغ و چگال در کیهان اولیه ضروری خواهد بود. در همان سال آلفر و رابرت هرمان محاسبات را دقیقتر کرده و این بار تحولات کیهان اولیهای که در حال انبساط بود هم در نظر گرفتند و به نتیجهای جالب و مهم رسیدند؛ بقایای سرد شدهی فازهای داغ اولیه، هنوز هم باید در کیهان امروزی وجود داشته باشند. آنها دمای این بقایا را در حدود پنج کلوین پیشبینی کردند. امروزه این بقایا با عنوان «تابش پس زمینه کیهانی» شناخته میشوند.
طبق محاسباتی که توسط آلفر و هرمان انجام شد، در دوران هستهسازی حدود ۲۵٪ از اتمهای هیدروژن اولیه به اتم هلیوم تبدیل شده و تنها مقدار بسیار ناچیزی (حدود ۰/۰۰۰۰۱٪ )، تبدیل به اتمهای عناصر سنگینتر شدند. این درحالی بود که مشاهدات نشان میدادند که مقدار عناصر سنگین در جهان، خیلی بیشتر از مقدار پیش بینی شده است. بدین ترتیب نظریه مهبانگ با مشکل بزرگی برای توجیه میزان اتمهای سنگین روبرو بود. (البته چند سال بعد معلوم شد که عناصر سنگینی مانند کربن، اکسیژن و آهن، در دل ستارگان پرجرم و انفجارهای ابرنواختری تولید میشوند.) این موضوع موجب شد تا در سال ۱۹۴۸ میلادی، فرد هویل، توماس گلد و هرمان بوندی، «نظریه حالت پایدار» را بهعنوان جایگزینی برای مدل مهبانگ ارائه دهند. در این نظریه ادعا شده است که جهان، هم در فضا و هم در زمان، همگن و همسانگرد است.(اصل کیهانشناسی کامل) در واقع جهان، همواره به همین شکل و شمایل امروزی وجود داشته است.
«به یک معنا، شاید بهتوان گفت که نظریه حالت پایدار در شبی شروع شد که بوندی، گلد و من، مشتری یکی از سینماها در کمبریج شدیم. اگر درست خاطرم باشد، اسم فیلم «مرگ تاریکی» بود؛ فیلم دنبالهای از چهار داستان از ارواح بود که همانطور که چند تن از شخصیتها در فیلم میگفتند، به نظر میرسید که ربطی میانشان نباشد اما با یک ویژگی جالب که انتهای داستان چهارم به طرز غیرمنتظرهای به ابتدای داستان اول مربوط بود. در نتیجه بهموجب آن، پتانسیل برای یک چرخهی بی پایان وجود داشت. وقتی آن شب سه نفرمان به اتاقهای بوندی در دانشگاه ترینیتی برگشتیم، ناگهان گلد گفت: چه میشود اگر عالم نیز شبیه این باشد!؟ شاید اینطور تصور شود که حالتهای بدون تغییر، لزوما ساکن و راکد هستند. کاری که فیلم داستان ارواح برای ما انجام داد این بود که خیلی سریع این تصور اشتباه را از هر سه نفرمان برطرف کرد. میتوان حالتهای بدون تغییری داشت که پویا باشند. مانند یک رودخانهی آرام در حال جریان. عالم باید پویا باشد؛ چرا که قانون انتقال به سرخ هابل این را اثبات میکند… از اینجا میتوان به سادگی دریافت که نیاز است که خلق پیوستهی ماده وجود داشته باشد.»
هویل نرخ خلق ماده را یک ذره در سانتی متر مکعب در هر ۳۰۰۰۰۰ سال، بهدست آورد. برخلاف بوندی و گلد که رهیافتی فلسفی به نظریه حالت پایدار داشتند، هویل فرضیه خود را از دیدگاه نظریهی میدان بنا نهاد و میدانی به نام «میدان سی: C-Field» را برای خلق ماده در نظر گرفت. این نظریه در همان سال نخست توانست نظر بسیاری از ستارهشناسان و حتی مردم عامه را به خود جلب کند. نظریه حالت پایدار از آنجایی برای ستاره شناسان دارای اهمیت بود که میتوانست توضیح جایگزینی از منشأ عناصر ارایه دهد.
این نگاره، نمایشی هنری از انبساط متریک فضاست که در آن فضا (که شامل قسمتهای فرضی غیرقابل مشاهده جهان هم هست) را در هر لحظه از زمان را میتوان با برشی قرصی از نمودار نمایش داد. توجه کنید که در سمت چپ شکل میتوانید انبساط دراماتیک فضا در دوره تورمی را ببینید. نگاره از ویکیپدیا
تا مدتی، کیهانشناسان به دو گروه که هریک طرفدار یکی از نظریههای حالت پایدار یا مهبانگ بودند، تقسیم شده بودند. تا آنکه شواهد رصدیای مانند «شمارش منابع رادیویی: the Counts of Radio Sources»، بر اعتبار نظریه مهبانگ افزود و سرانجام در سال ۱۹۶۵ میلادی هنگامیکه آرنو پنزیاس و رابرت ویلسون بر روی امواج رادیویی کار میکردند، توانستند به طور کاملا اتفاقی، تابش زمینه کیهانی که از پیش بینیهای مهم نظریه مهبانگ بود را کشف کنند. در واقع این کشف، مهر تأییدی بود بر نظریه مهبانگ که موجب شد تا این نظریه به عنوان نظریهای مورد توافق همگان در بیاد.
البته نظریه مهبانگ قادر نبود تا به بعضی از سوالات اساسی مانند مسئلهی افق یا مسئلهی تخت بودن جهان و یا مسئله تکقطبیهای مغناطیسی پاسخ بدهد. به همین خاطر در سال ۱۹۸۱ میلادی، آلن گوت، با معرفی مدلی موسوم به «مدل تورم» توانست پاسخگوی این سوالات باشد. مدل تورم ادعا میکند که کیهان در بازهی زمانی بین۱۰−۳۶ تا حدود ۱۰−۳۲ثانیه بعد از نقطهی تکینگی اولیه، دستخوش انبساطی با نرخ نمایی شده است! امروزه با استفاده از ابزارهای دقیق رصدی میتوانیم شواهدی دال بر وجود دوران تورم را به ویژه در تابش زمینهی کیهانی مشاهده کنیم.
پیشرفت های رصدی و همچنین پیشرفتهایی که از لحاظ نظری در زمینه رشد ساختارهای بزرگ مقیاس در اواخر قرن بیستم میلادی صورت گرفت، منجر به نتایج زیر شد:
اولا احتمالا بهمقدار نسبتا قابل توجهی مادهی تاریک غیر نسبیتی (مادهی تاریک سرد) وجود دارد.
ثانیا باید یک ثابت کیهانشناسی غیر صفر (لامبدا) وجود داشته باشد.
سرانجام این نتایج موجب شد تا مدل لامبدا سیدیام: ΛCDM Model، در سال ۱۹۹۵، توسط جرمی اوستریکر و پائول استینهاردت پیشنهاد شود. چهار سال بعد، با کشف اینکه جهان به صورت شتابدار در حال انبساط است، این مدل به عنوان مدل پیشرو مورد توجه قرار گرفته و خیلی زود توسط مشاهدات دیگر نیز تأیید شد.