رفتن به نوشته‌ها

نویسنده: کیوان سامانی

دکتر کیوان آقابابائی سامانی
k1samani@gmail.com

ﺣﺬﻑ ﻧﺎﻣﻤﮑﻦ ﻫﺎ: ﺍز قصه ﺗﺎ ﻭﺍﻗﻌﯿﺖ

شرلوک هولمز در کتاب نشانهٔ چهار روشی را برای کشف حقیقت به‌کار می‌برد که می‌توان اسمش را گذاشت روش حذف ناممکن‌ها: وقتی همهٔ حالت‌های ناممکن را کنار گذاشته باشی، آنچه باقی می‌ماند، هرچه‌قدر هم نامحتمل، باید حقیقت باشد.

این روش، مثل بسیاری از روش‌های دیگری که هولمز به کار می‌گیرد، جذاب و هیجان‌انگیز است ولی آیا در عمل و در شرایط واقعی هم می‌توان چنین روش‌هایی را به‌همان سادگی به‌کار برد؟ واقعیت این است که در عمل ممکن است موانع فراوانی کاربردپذیری این روش را به چالش بکشد. در این یادداشت به دو مورد از این موانع نگاه دقیق‌تری می‌اندازیم. نخست این که تشخیص ناممکن بودن بعضی حالت‌ها که در ابتدا محتمل بوده‌اند با چه دقتی انجام می‌شود؟ آیا ممکن نیست خطایی در این تشخیص وجود داشته باشد؟ مثلاً در همین مکالمه‌ که از کتاب نشانهٔ چهار نقل شد هولمز به واتسن می‌گوید: «می‌دانیم که او از در یا از پنجره یا دودکش وارد نشده» این «می‌دانیم» چه‌قدر دقیق است؟ آیا ممکن است خطایی در مشاهده یا جمع‌آوری شواهد وجود داشته باشد که این نتیجه‌گیری را نادقیق کند؟ دوم این که آیا همهٔ حالت‌های ممکن از ابتدا در نظر گرفته‌ شده‌اند؟ مثلاً آیا ممکن است که به‌جز در، پنجره، دودکش و سوراخ سقف راه دیگری هم برای ورود به اتاق بوده باشد که از نظر کارآگاه دور مانده باشد؟ چنین اتفاقاتی تا چه اندازه می‌تواند اعتبار نتیجه‌گیری نهایی را به‌ خطر بیندازد؟

هولمز در حالی‌ که سرش را تکان می‌داد گفت: تو به توصیهٔ من عمل نمی‌کنی. چند بار به تو گفته‌ام که وقتی ناممکن را حذف کرده باشی، آنچه باقی می‌ماند، هر قدر هم بعید، باید حقیقت باشد؟ می‌دانیم که او از در یا از پنجره یا دودکش وارد نشده. این را هم می‌دانیم که نمی‌توانسته در اتاق پنهان شده باشد، چون مخفیگاهی وجود ندارد. پس از کجا آمده؟

– من فریاد زدم از سوراخ سقف آمده؟
– معلوم است که از آنجا آمده.

نشانهٔ چهار، آرتور کانن دویل، ترجمهٔ مژده دقیقی، (انتشارات هرمس ۱۳۷۸).

خطا در تشخیص ناممکن بودن حالت‌ها

برای بررسی خطای آزمون‌هایی که حالت‌های ناممکن را مشخص می‌کنند مثال ساده‌ای در نظر می‌گیرم. فرض کنید $n+1$ جعبه داریم که در یکی از آن‌ها یک توپ وجود دارد. جعبه‌ها را با
$1,2,\cdots, n , z$ برچسب می‌زنیم. هیچ اطلاعات اضافهٔ دیگری که بتواند راهنمایی برای تشخیص جعبهٔ محتوی توپ باشد نداریم، بنابراین فرض می‌کنیم که توپ می‌تواند با احتمال یکسان در هر یک از این $n+1$ جعبه باشد. (می‌توان مسئله را به شکل عام‌تری هم طرح کرد، مثلاً می‌توان فرض کرد که احتمال این که توپ در جعبهٔ شمارهٔ $i$ باشد $p_i$ است و $\sum_{i=1}^n p_i+p_z=1$.)

فرض کنید $A_i$ پیشامد قرار داشتن توپ در جعبهٔ شمارهٔ $i$ باشد. همچنین فرض کنید برای تشخیص این که یک جعبه توپی در درونش ندارد از آزمایشی مانند تکان دادن جعبه یا اسکن کردن آن با پرتو ایکس استفاده کنیم. پیشامدی را که در آن نتیجهٔ آزمایش روی جعبهٔ شمارهٔ $i$ خالی بودن آن را نشان می‌دهد $E_i$ می‌نامیم. این آزمایش ممکن است خطا داشته باشد، به‌این معنی که ممکن است توپ در جعبهٔ شمارهٔ $i$ باشد ولی نتیجهٔ آزمایش خلاف این را گزارش کند. احتمال چنین خطایی را با $r$ نشان می‌دهیم. به بیان ریاضی $P(E_i|A_i)=r$.

جعبه‌های شمارهٔ $1$ تا $n$ را آزمایش می‌کنیم و نتیجهٔ آزمایش این است که توپ در هیچ‌ یک از این جعبه‌ها نیست. طبق روش هولمز می‌توانیم بگوییم که توپ قطعاً در جعبهٔ $z$ است. اما احتمال خطا در آزمایش‌های ما وجود دارد و بنابراین ممکن است توپ در یکی از جعبه‌هایی باشد که آزمایش خالی بودن آن را نشان داده. در چنین شرایطی نمی‌توان گفت که توپ قطعاً در جعبهٔ $z$ است. سؤال درست این است که احتمال قرار داشتن توپ در جعبهٔ $z$ چه‌قدر است. چنین احتمالی با عبارت ریاضی زیر بیان می‌شود
$$P(A_z|\bigcap_{i=1}^{n} E_i) = P(A_z|E_1\cap E_2\cap \cdots \cap E_n) = P(A_z \mid \mathcal{E}).$$ در اینجا $\mathcal{E} := \bigcap_{i=1}^{n} E_i$ اشتراک بین همه پیشامدهاست. با به کارگیری قاعدهٔ بیز: $$\begin{aligned}
P(A_z \mid \mathcal{E}) = \frac{P(A_z \cap \mathcal{E})}{P(\mathcal{E})}
\end{aligned}$$ و در نتیجه $$P(A_z \mid \mathcal{E})= \frac{P(\mathcal{E} \mid A_z)\, P(A_z)}{P(\mathcal{E} \mid A_z)\, P(A_z) + \sum_{i=1}^{n} P(\mathcal{E} \mid A_i)\, P(A_i)}$$

فرض می‌کنیم آزمایش‌های جعبه‌های مختلف مستقل باشند یعنی آزمایش یک جعبه روی نتیجهٔ آزمایش یک جعبهٔ دیگر اثری نداشته باشد. در این‌صورت خواهیم داشت $$P(\mathcal{E}|A_z)=(1-r)^n$$
زیرا اگر توپ در جعبهٔ شمارهٔ $z$ باشد یعنی همهٔ آزمایش‌ها نتیجهٔ درست داده‌اند و احتمال درست بودن نتیجهٔ هر آزمایش $1-r$ است. به‌همین ترتیب به‌سادگی می‌توان دید که
$$P(\mathcal{E}|A_i)=r(1-r)^{n-1}\,, i=1,2,\cdots , n$$ و بنابراین
\begin{eqnarray}
P & = & \frac{(1-r)P(A_z)}{r\left(1-P(A_z)\right)+(1-r)P(A_z)}\nonumber\
& = & \frac{1-r}{nr+1-r}\nonumber
\end{eqnarray} که در آن از $P(A_z)=\frac{1}{n+1}$ استفاده کرده‌ایم.

بیایید نگاهی به نتیجهٔ این رابطه برای یک حالت مشخص بیندازیم. فرض کنید ده جعبه داریم (یعنی $n=9
$) و آزمایش ما برای تشخیص خالی بودن جعبه‌ها ده درصد خطا دارد (به‌ این معنی که به طور میانگین از هر ده آزمایش یکی نتیجهٔ نادرست می‌دهد). در این صورت رابطهٔ بالا می‌گوید که $P=0.5$. یعنی احتمال این که توپ در جعبهٔ آخر (جعبه‌ای که آزمایش نشده) باشد پنجاه درصد است. به‌طور کلی اگر احتمال خطا در آزمایش تشخیص حالت‌های ناممکن برابر با احتمال همان حالتی باشد که در آخر و پس از حذف ناممکن‌ها قرار است به‌عنوان «حقیقت» معرفی شود، خطای تشخیص حقیقت پنجاه درصد خواهد بود!

خطا در تعیین همهٔ حالت‌های ممکن

ایراد دیگری که می‌تواند کارایی این روش را به‌ چالش بکشد این است که از ابتدا همهٔ حالت‌های ممکن را تشخیص نداده باشیم و بعضی از آن‌ها از چشم ما دور مانده باشند. اگر به مثال بخش قبل برگردیم می‌توانیم فرض کنیم که مثلاً یک جعبهٔ دیگر (جعبهٔ شمارهٔ $m$ وجود دارد) که در میان $n+1$ جعبهٔ موجود نیست و مثلاً پشت یک پرده مخفی شده است ولی توپ می‌تواند درون آن جعبه هم باشد. احتمال وجود توپ در آن جعبه را با $P(A_m)$ نشان می‌دهیم. به‌عبارت دیگر اگرچه ما تصور می‌کنیم که حاصل‌جمع احتمال‌های وجود توپ در $n+1$ جعبهٔ موجود برابر با یک است ولی درواقع این احتمال کوچک‌تر از یک است:
$$\sum_{i=1}^n P(A_i)+P(A_z)=1-P(A_m)$$. بنابراین حتی اگر آزمایش‌های ما بی‌خطا باشند و بگویند که توپ در جعبه‌های شمارهٔ $1$ تا $n$ نیست باز هم ممکن است جعبهٔ شمارهٔ $z$ ‌را باز کنیم و ببینیم که خالی است. احتمال چنین نتیجهٔ ناگواری $P(A_m)$ است. برای اجتناب از مواجه شدن با چنین وضعیتی باید حداکثر تلاش را برای تشخیص و به‌حساب‌آوردن همهٔ حالت‌های ممکن به خرج داد.

به‌عنوان آخرین مثال حالتی را در نظر می‌گیریم که هم آزمایش‌ها احیاناً خطا داشته باشند و هم از ابتدا همهٔ حالت‌های ممکن تعیین نشده‌ باشند و مثلاً جعبهٔ شمارهٔ $m$ از قلم افتاده باشد. در این صورت به‌سادگی می‌توان دید که وقتی آزمایش‌ها نشان می‌دهند که توپ در هیچ‌ یک از جعبه‌های $1$ تا $n$ نیست، احتمال پیدا کردن توپ در جعبهٔ $z$ برابر است با
$$P=\frac{(1-r)P(A_z)}{r(1-P(A_z)-P(A_m))+(1-r)(P(A_z)+P(A_m))}$$
و باز اگر همهٔ جعبه‌ها را هم‌احتمال بگیریم، یعنی
$$P(A_z)=P(A_m)=P(A_i)=\frac{1}{n+2}$$ خواهیم داشت $$P=\frac{1-r}{nr+2(1-r)}.$$
برای مقایسهٔ این نتیجه با نتیجه‌ٔ بخش قبل فرض می‌کنیم تعداد همهٔ جعبه‌های در اختیار ما ده تاست (یعنی $n=9$) ولی تعداد کل جعبه‌ها درواقع یازده تاست و احتمال وجود توپ در این یازده جعبه یکسان است ($\frac{1}{11}$).
احتمال خطای آزمایش را هم مانند قبل ۰/۱ می‌گیریم. در این‌صورت احتمال یافتن توپ در جعبهٔ $z$ برابر خواهد بود با $P=\frac{1}{3}$. به‌عبارت دیگر آن حالتی را که با روش حذف ناممکن‌ها حقیقت محض می‌دانیم فقط کمی بیش از سی درصد احتمال دارد که حقیقت باشد!

سخن پایانی

دنیای واقعی بر خلاف دنیای قصه‌ها پر از عدم قطعیت، خطا و بی‌دقتی است. در چنین دنیایی دست یافتن به حقیقت به سادگی قصه‌ها نیست. بنابراین برای پرهیز از نتیجه‌گیری نادرست یا پیش‌بینی نادرست بهتر است تا حد امکان نگاه همه‌جانبه به پدیده‌ها داشته باشیم و امکان بروز خطا در مشاهده‌ها و آزمایش‌ها را نیز نادیده نگیریم.

آیا برای ریاضی ورزیدن باید نابغه بود؟

«این مقاله را در ابتدا در ماه می ۲۰۰۷ به‌عنوان بخشی از توصیه‌هایم به دانشجویان تحصیلات تکمیلی در وبلاگم نوشتم و اساس آن تجربه‌ٔ تعامل با تعدادی از این دانشجویان، پژوهشگران فرادکتری و همکارانم بود که در حال یادگرفتن چم‌وخم پژوهش در ریاضیات بودند. این یکی از پربازدیدترین و پرکامنت‌ترین مقاله‌های وبلاگم بود و دلیلش شاید تا حدی نتیجه‌گیری‌های غیرشهودی‌ آن بود.» تائو

نوشته تِرِنس تائو — استاد ریاضی دانشگاه  و  برندهٔ مدال فیلدز در سال ۲۰۰۶ و ترجمه کیوان سامانی.
Terence Tao, Notices of the AMS, 71, 30-32 (Jan 2024)


بهتر است مراقب مفاهیمی چون نبوغ و الهام باشید؛ این‌ها مانند عصای جادویی هستند و باید با احتیاط و به میزان اندک توسط افرادی که می‌خواهند به درکی روشن از امور دست یابند، به کار گرفته شوند.

خوزه اورتگا یی گاست، «یادداشت‌هایی دربارهٔ رمان»

آیا برای ریاضی ورزیدن باید نابغه بود؟

پاسخ یک نهٔ قاطع است. برای مشارکت خوب و مفید در ریاضیات آدم باید سخت کار کند، مطالب رشتهٔ خودش را خوب فرا بگیرد، با رشته‌ها و ابزارهای دیگر آشنا شود، سؤال بپرسد، با ریاضی‌دان‌های دیگر صحبت کند و دربارهٔ «چشم‌انداز کلی» فکر کند. و بله، مقدار مناسبی هوش، شکیبایی و پختگی هم لازم است. ولی هیچ‌کس به نوعی «ژن نبوغ» جادویی نیاز ندارد، که خودبه‌خود و از هیچ، بینش عمیق، راه‌حل‌های غیرمنتظره یا توانایی‌های فوق‌طبیعی دیگر بیافریند.

تصویر معمول نابغهٔ تنها (و احتمالاً کمی خُل) –که نوشتارگان (منابع) و خرد متعارف را نادیده می‌گیرد و موفق می‌شود با استفاده از نوعی الهام غیرقابل‌توضیح (که احتمالاً با ریاضت‌های فراوان تقویت شده) به یک راه‌حل بدیع نفس‌گیر برای مسئله‌ای دست یابد که همهٔ متخصصان مغلوبش شده بودند — تصویری فریبنده و رمانتیک اما درعین‌حال به‌شدت نادرست است، دست‌کم در دنیای ریاضیات مدرن. البته نتایج و بینش‌های چشم‌گیر، عمیق و قابل‌توجهی در این رشته وجود دارد، ولی این‌ها دستاوردهای به‌سختی به دست آمده و انباشته‌ شده سال‌ها، دهه‌ها و حتی قرن‌ها کار و پیشرفت بی‌وقفهٔ تعداد زیادی ریاضی‌دان خوب و بزرگ است. عبور از یک مرحله از درک به مرحلهٔ بعدی می‌تواند بسیار غیربدیهی و گاهی غیرمنتظره باشد اما همچنان بر کارهای قبلی استوار است، نه‌این‌که از یک جای کاملاً جدید شروع شود. (مثلاً کارهای وایلز روی قضیه آخر فرما یا کارهای پرلمان روی حدس پوانکاره از این نوع است).

درواقع من امروز واقعیت تحقیقات ریاضی را — که در آن پیشرفت به‌شکل طبیعی و انباشتی از کار سخت، به‌کمک شهود، نوشتارگان و کمی شانس حاصل می‌شود — بسیار پذیرفتنی‌تر می‌دانم تا تصویر رمانتیکی که در زمان دانشجویی از ریاضیات داشتم که پیشرفتش در درجهٔ اول ناشی از الهام‌های رازآلودِ گونهٔ نادری از «نوابغ» بود. این «فرقه نوابغ» درواقع مشکلاتی ایجاد می‌کند، زیرا هیچ‌کس قادر نیست این الهامات (بسیار نادر) را به‌شکل منظم و با صحتی که به‌طور قابل‌اعتمادی سازگار باشد ایجاد کند. (اگر کسی وانمود می‌کند که می‌تواند چنین کاری انجام دهد، توصیه می‌کنم نسبت به ادعاهایش بسیار بدبین باشید).

فشارِ تلاش برای رفتار به چنین شیوهٔ ناممکنی به وسواس «مسائل بزرگ» یا «نظریه‌های بزرگ» در برخی افراد می‌انجامد، برخی دیگر هرگونه شک‌گرایی طبیعی نسبت به کار خود یا ابزارهایشان را از دست می‌دهند و دیگرانی هم هستند که نسبت به ادامهٔ کار در ریاضیات دلسرد می‌شوند.

همچنین، نسبت دادن موفقیت به استعداد ذاتی (که خارج از کنترل شخص است) به‌جای کوشش، برنامه‌ریزی و آموزش (که تحت کنترل شخص است) می‌تواند به مشکلات دیگری نیز بینجامد.

برخلاف مسابقات ریاضی، ریاضیاتِ حرفه‌ای ورزش نیست!

– تری تائو

البته، حتی اگر مفهوم نبوغ را کنار بگذاریم، باز هم همیشه ریاضی‌دان‌هایی پیدا می‌شوند که سریع‌تر، باتجربه‌تر، مطلع‌تر، کارآمدتر، دقیق‌تر یا خلاق‌تر از دیگران باشند. با این‌ همه، معنایش این نیست که فقط «بهترین» ریاضی‌دان‌ها باید ریاضی بورزند؛ این خطای رایجِ اشتباه گرفتن مزیت مطلق با مزیت نسبی است. تعداد حوزه‌های پژوهش و مسئله‌های جالب برای کار کردن در ریاضیات فراوان است — بسیار بیشتر از آن که فقط بهترین ریاضی‌دان‌ها بتوانند همهٔ آن‌ها را انجام دهند — و گاهی مجموعهٔ ابزارها و ایده‌هایی که شما دارید به چیزی می‌انجامد که از دید ریاضی‌دان‌های خوب دیگر پنهان مانده است، به‌خصوص که حتی بزرگ‌ترین ریاضی‌دان‌ها هم در برخی جنبه‌های پژوهش ریاضی ضعف‌هایی دارند.

تا زمانی که تحصیلات، علاقه و مقدار مناسبی استعداد داشته باشید، بخش‌هایی از ریاضیات هست که شما می‌توانید مشارکت قوی و مفیدی در آن‌ها داشته باشید. شاید جذاب‌ترین بخش ریاضیات نباشد، ولی واقعاً یک چیز درست‌ و درمان است؛ خیلی وقت‌ها جزئیات معمولی یک موضوع مهم‌تر از هر کاربرد شیکی از آب در می‌آیند. همچنین، پیش از آن که اصولاً فرصتی برای درگیر شدن با مسائل معروف یک حوزه به‌دست آورید، لازم است که در بخش‌های غیرجذاب آن حوزه هم تجربه‌هایی کسب کنید؛ نگاهی به آثار اولیهٔ هر کدام از ریاضی‌دان‌های بزرگ امروز بیندازید تا متوجه منظورم بشوید.

گاهی اوقات، استعداد خام زیادی ممکن است (از بد روزگار) در عمل برای پیشرفت ریاضی درازمدت فرد مضر باشد؛ برای مثال، اگر مسئله‌ها خیلی ساده حل شوند، ممکن است شخص به‌اندازهٔ کافی انرژی صرف سخت‌کوشی، پرسیدن سؤال‌های ابلهانه یا افزایش وسعتِ‌ دید خود نکند و این ممکن است نهایتاً به رکود مهارت‌هایش بینجامد. همچنین، اگر فرد به موفقیت‌های ساده عادت کرده باشد، ممکن است شکیبایی لازم برای سروکله زدن با مسائل واقعاً دشوار را به‌دست نیاورد (برای پدیدهٔ مشابهی در مهندسی نرم‌افزار سخنرانی پیتر نورویگ را ببینید، البته این شفاف‌سازی را هم ببینید). استعداد مطمئناً مهم است، اما چگونگی توسعه دادن و پرورش آن مهم‌تر است.

همچنین خوب است به یاد داشته باشید که ریاضیاتِ حرفه‌ای ورزش نیست (کاملاً برخلاف مسابقات ریاضی). هدف اصلی در ریاضیات دست‌یابی به بالاترین رتبه، بالاترین «امتیاز» یا بیشترین تعداد جوایز نیست؛ بلکه افزایش درک ریاضی (هم برای خودتان و هم برای همکاران و دانشجویانتان)، و مشارکت در توسعه و کاربردهای آن است. برای این کارها، ریاضیات به همهٔ آدم‌های خوبی که بتواند پیدا کند نیاز دارد.

برای بیشتر خواندن

How to be a genius,” David Dobbs, New Scientist, 15 September 2006. [Thanks to Samir Chomsky for this link.]

The mundanity of excellence,” Daniel Chambliss, Sociological Theory, Vol. 7, No. 1, (Spring, 1989), 70-86. [Thanks to John Baez for this link.]

چطور می‌توانید ثابت کنید که چیزی را نمی‌دانید؟

 نمی‌دانم؛ باور کن!

این پرسشی بود که در یک پست لینکدین جلب توجه می‌کرد. در همین پست ارجاعی به پاسخ یک فیزیکدان به این پرسش هم بود. در این پاسخ سعی شده با استفاده از مفاهیم مکانیک کوانتمی ایده‌ای برای اثبات این که چیزی را نمی‌دانید ارائه شود. اگرچه پاسخ ارائه‌شده مربوط به یک حالت بسیار خاص است و چندان هم روشن نیست ولی اصل ایده، یعنی استفاده از مکانیک کوانتمی برای پاسخ به چنین پرسشی، به‌اندازه‌ کافی جذاب است.

واقعاً چطور می‌توانید ثابت کنید که چیزی را نمی‌دانید؟ این که بگویید نمی‌دانم کافی نیست. از کجا معلوم که راست بگویید یا قصد پنهان‌کاری نداشته باشید؟ البته این «نمی‌دانم» همیشه یک معنا ندارد یا دست‌کم اثر یکسانی روی شنونده نمی‌گذارد. مثلاً به گزاره‌‌های زیر توجه کنید:

  • من نمی‌دانم دو ضرب‌در دو می‌شود چهار یا نه
  • من نمی‌دانم که آیا هر عدد زوج بزرگ‌تر از ۲ را می‌توان به‌صورت حاصل‌جمع دو عدد اول نوشت یا نه.¹
  • من نمی‌دانم رئیس‌جمهور بعدی ایران چه کسی خواهد بود.

در گزارهٔ اول به احتمال زیاد گوینده راست نمی‌گوید و در گزارهٔ سوم به احتمال زیاد راست می‌گوید. گزارهٔ دوم شاید نیاز به بررسی بیشتری داشته باشد. کمی که بیشتر فکر کنید می‌بینید که نه‌تنها اثبات ندانستن، که اثبات دانستن هم چندان ساده نیست. مثلا اگر کسی به شما بگوید من می‌دانم که دو ضرب‌‌در دو می‌شود چهار از کجا می‌توانید مطمئن شوید که راست می‌گوید؟به‌عبارت‌دیگر از کجا می‌توانید مطمئن شوید که واقعاً «می‌داند» که دو ضرب‌در دو می‌شود چهار؟ شاید این گزاره را همان لحظه از کسی شنیده و به شما تحویل داده باشد.

یک مثال دیگر

فرض کنید امروز ریاضی‌دان الف به ریاضی‌دان ب بگوید: من می‌دانم که اگر$n$ یک عدد طبیعی بزرگ‌تر از ۲ باشد، هیچ سه‌تایی $(x, y, z)$ ‌از عددهایی طبیعی وجود ندارد به‌طوری‌ که: $x^n+y^n=z^n$ (قضیهٔ آخر فرما). احتمالاً پاسخ ریاضی‌دان ب چیزی شبیه این خواهد بود: خب که چی؟! من هم این را می‌دانم. اما اگر زمان مکالمه پیش از سال ۱۹۹۴ بود، احتمالا ریاضی‌دان ب پاسخ می‌داد: واقعاً؟! ثابت کن!²

سؤال این است که وقتی ریاضی‌دان الف می‌گوید من می‌دانم که قضیهٔ آخر فرما درست است منظورش چیست؟ آیا واقعاً «می‌داند» یا صرفا به‌اتکای منابعی که آن‌ها را معتبر می‌داند درستی قضیه را می‌پذیرد؟ انگار کم‌کم داریم می‌رسیم به یک سؤال بنیادی‌تر!

اصلاً معنی دانستن چیست؟

کسی که تجربهٔ تصحیح برگه‌های امتحانی را داشته باشد می‌داند که گاهی درست بودن پاسخ یک سؤال در برگه‌ امتحان ربطی به بلد بودن (دانستن) پاسخ ندارد. گاهی کسی که فکر می‌کند چیزی را می‌داند فقط خیال می‌کند که می‌داند و درواقع نمی‌داند که نمی‌داند ولی شاید بتواند گزاره‌هایی سرهم کند که شما قانع شوید که می‌داند.

به یک نکتهٔ دیگر هم باید توجه کرد. این که شما مخاطبتان را قانع کنید که چیزی را می‌دانید یا نمی‌دانید با اثبات یک قضیه‌ ریاضی تفاوت دارد. یک قضیهٔ ریاضی که اثبات می‌شود، هر ریاضی‌دانی می‌تواند مراحل اثبات را بررسی کند و در نهایت درستی آن را بپذیرد. اما این که مخاطب شما بپذیرد که شما چیزی را می‌دانید یا نمی‌دانید، بیش از آن که نیاز به اثبات داشته باشد نیاز به نوعی توافق میان شما و مخاطب دارد. برای همین ممکن است یک مخاطب مجموعه‌ دلایل و شواهد شما را در تأیید دانستن یا ندانستن یک چیز قانع‌کننده بیابد ولی یک مخاطب دیگر استدلال شما را نپذیرد.

به نظر می‌رسد این که کسی بپذیرد که شما چیزی را می‌دانید نیازمند این است که دست‌کم در یک مرحله از فرایند پذیرش به یک چیزی (مثلا حرف شما یا مراجع شما یا صداقت شما) بدون دلیل اعتماد کند. خب، اگر اثبات دانستن نهایتاً به اعتماد وابسته است، چرا اثبات ندانستن به اعتماد متکی نباشد؟ آیا کافی نیست که وقتی کسی می‌گوید نمی‌دانم، به‌سادگی حرفش را باور کنیم؟ واقعیت این است که قضیه پیچیده‌تر از این حرف‌هاست.

پی‌نوشت‌ها:

۱) این که هر عدد زوج بزرگ‌تر از ۲ را می‌توان به‌شکل حاصل‌جمع دو عدد اول نوشت به اسم حدس گلدباخ شناخته می‌شود. هنوز اثبات نشده است.

۲) اندرو وایلز ریاضی‌دان و استاد دانشگاه آکسفورد در سال ۱۹۹۴ قضیهٔ آخر فرما را اثبات کرد.