این روزها در سراسر ایران، برنامه‌های ترویجی زیادی به مناسبت روز جهانی نجوم برپا شده. برنامه‌های مختلفی که با یک جستجوی ساده در گوگل می‌شود از جزئیاتشان باخبر شد. مثل برنامه‌ فردای مرکز علوم و ستاره‌شناسی تهران یا برنامه‌هایی که جمعه در برج میلاد تهران و رصدخانه زعفرانیه برگزار می‌شوند. در مورد مهم بودن نجوم، اهل فن به قدر کافی نوشته‌اند ([۱]، [۲] و [۳]) و به نظرم نیازی نیست با وجود این همه کتاب خوب به زبان فارسی، نگران این باشیم که اینجا در مورد نجوم به‌طور مفصل بنویسیم. از طرف دیگر، ۱۷ سالی است که در ایران مردم به شیوه‌های مختلف مشغول کارهای ترویجی پیرامون نجوم هستند؛ از برنامه‌های مناسبتی نهادهای مختلف مردمی و غیرمردمی گرفته تا برنامه‌های تلوزیونی مثل آسمان شب. وقت آن است که به همه‌ این عزیزان دست‌مریزاد بگویم! دم برادران صفاریان‌پور گرم که بسیاری علاقه‌شان به نجوم را وام‌دار کارهای حرفه‌ای این دو عزیز هستند. تشکر ویژه از دکتر خواجه‌پور به‌خاطر ترجمه کتاب نجوم به زبان ساده. ممنونیم از دکتر میرترابی به‌خاطر سخنرانی‌های فوق‌العاده‌شان. از همه کسانی که این مدت هر قدمی در راه ترویج و روایتگری در علم برداشته‌اند تشکر می‌کنیم. اصلا مگر می‌شود از بابک امین‌ تفرشی به‌خاطر عکس‌های فوق‌العاده‌اش یا از پوریا ناظمی به خاطر نوشته‌هایش تشکر نکرد؟! یا مگر میشود این حجم از فعالیت‌های مجله نجوم طی این مدت را نادیده گرفت؟! قدردان زحمات همه کسانی که راه را هموار ساخته‌اند هستیم. 

اما در کجای راه هستیم؟

علی‌رغم همه تلاش‌های صورت گرفته، به‌عنوان یک دانشجوی فیزیک، از وضع کنونی نجوم چندان دل خوشی ندارم! ۱۷ سال است که مشغول کارهای ترویجی پیرامون نجوم هستیم! ۱۷ سال! وقت آن است که به‌طور جدی بپرسیم، از این همه وقت و سرمایه چه چیزی عایدمان شده؟! چقدر به چشم‌اندازی که تصور می‌کردیم برای نجوم رسیدا‌یم؟ راستی اصلا چشم‌اندازی در کار بوده؟!

جاستین بیبر ( Justin Drew Bieber) (زادهٔ ۱ مارس ۱۹۹۴)؛ خواننده، ترانه‌سرا، آهنگساز، نوازنده، بازیگر و سرگرمیساز کانادایی است. نگاره از ویکی‌پدیا.

بدون تعارف، از نظر من «امروز نجوم در ایران، جاستین بیبر علوم شده است!». مشهور است، دخترها برایش هورا می‌کشند، کیف پسرها پر است از پیکسل‌های نجومی، اردوهای رصدی کماکان از پرطرفدارترین برنامه‌های دانشگاهی است، در بین پربازدیدترین مستند‌ها، مستندات نجومی در صدر هستند، در بین صفحات مختلف اجتماعی، صفحاتی که به نجوم می‌پردازند پر از دنبال‌کننده هستند، برای برخی کارل سیگن از بزرگترین فیزیک‌دانان قرن اخیر است و چه بسیار کسانی که نیل دگراس تایسون را یک منجم بزرگ می‌دانند بی‌آنکه فرق بین نجوم، اخترفیزیک و کیهان‌شناسی را بدانند! این وسط عده‌ای هم خود را صاحب فن می‌نامند بی‌آنکه دو خط مکانیک سماوی بدانند!  خب شاید بگویید این که اشکالی ندارد! عده‌ای هستند که می‌خواهند از آسمان زیبای شب لذت ببرند و با دیدن مستندات علمی به وجد آیند! اصلا به شما چه؟! فرمایش شما متین، ولی این برای ۱۷ سال تلاش برای ترویج علم دستاورد خوبی نیست! برنامه‌های ترویجی برای آشنا کردن مردم کوچه و بازار با علم است. به بیان دیگر، می‌خواهیم به بهانه‌های مختلف، کاری کنیم که مردم در زندگی روز‌مره‌شان روش علمی را به کار برند و قاعدتا بازخوردی از این کار را در سطوح بالاتر جامعه ببینیم! مثلا به‌طور جدی باید بپرسیم که پس از گذشت ۱۷سال ترویج نجوم، چقدر مردم به طالع‌بینی اعتقاد دارند؟! راستی به این دقت کرده‌اید که وقتی مهران مدیری در برنامه دورهمی، هر شب از مهمان خود می‌پرسد متولدین فلان ماه چه ویژگی‌هایی دارند، هیچ واکنشی مبنی بر یاوه‌ای که می‌گوید از مردم دریافت نمی‌کند؟! ۱۷سال تلاش‌کرده‌ایم ولی هنوز در تلگرام دنبال این هستیم که ببینیم اگر دوستمان متولد مردادماه است به چه چیزهایی علاقه دارد! اولین هدف در برنامه‌های ترویجی و روایتگری در علم، بالابردن فرهنگ علمی مردم است که انگار چندان هم در آن موفق نبوده‌ایم! فراموش نکنیم که هنوز کسانی هستند که فکر می‌کنند زمین تخت است و هیچ‌گونه دست‌بردار این ایده نیستند! برایش تبلیغ می‌کنند، سمینار برگزار می‌کنند و هوررررا می‌کشند!

در دانشگاه‌های ما چه خبر است؟

دل‌نگرانی بعدی من به این خاطر است که پس از گذشت تقریبا دو دهه، ما فعالیت‌های حرفه‌ای را به نجوم آماتوری کاهش داده‌ایم! هیچ خبری از فعالیت‌های حرفه‌ای در مقیاس بزرگ نیست! انگیزه‌ی قسمتی از کارهای ترویجی در نجوم این است که افراد علاقمند را به سمت تحصیل و پژوهش در رشته نجوم سوق دهیم. چقدر در این کار موفق بوده‌ایم؟! برای تحصیل نجوم، در مقطع کارشناسی باید وارد رشته فیزیک شوید و اگر در یکی از دانشگاه‌های خوب کشور باشید و خیلی خوش‌شانس، شاید یک درس ۳ واحدی برای نجوم بگذرانید! خب تا اینجای کار زیاد بد نیست. به‌هرحال، همین که در رشته فیزیک هستید اصول اولیه نجوم را یاد می‌گیرید. نکته اینجاست که در چندتا از دانشگاه‌های کشور، گرایش نجوم در مقطع تحصیلات تکمیلی وجود دارد؟! چند استاد در کل دانشگاه‌های ایران هستند که حرفه‌شان نجوم باشد؟! دقت کنید، نجوم، و نه اخترفیزیک یا کیهان‌شناسی! آیا می‌دانستید برخی از اساتید که به‌طور حرفه‌ای کارشان نجوم بوده، در حال کوچ کردن به سمت کیهان‌شناسی یا سایر گرایش‌ها هستند؟! مردم، باور کنید که حال نجوم حرفه‌ای این روزها خوب نیست! راستی، از رصدخانه ملی‌مان چه خبر؟! فراموش نکنید که یکی از هدف‌های برنامه‌های ترویجی این است که پیشرفت علم را به یک دغدغه برای مردم کند! اصلا پس از ۱۷ سال جشن و بزک، آیا مطالبه مردمی برای زودتر به سرانجام رسیدن پروژه رصدخانه ملی وجود دارد؟! ۱۷ سال گذشت، دولت و مجلس برای نجوم چه کرده‌اند؟! فیزیک، علمی تجربی است و آزمایشگاه می‌خواهد، آزمایشگاه نجوم، رصدخانه است! بدون رصدخانه حرفه‌ای خبری از تربیت نسل جوانی از منجمین نیست. مگر یک سری کار با داده‌های وارداتی!

خلاصه این که…

کویر مرنجاب – برنامه رصد اردیبهشت ۹۳

تقریبا دو دهه است که تمرکز عجیبی روی برنامه‌های ترویجی برای نجوم داشته‌‌ایم. علی‌رغم همه تلاش‌ها و خون‌دل‌ها هنوز کارهای زیادی برای انجام دادن وجود دارد. مردم و مسئولین ما هنوز متقاعد نشده‌اند که علم، قدرت‌آفرین است! هنوز با مفهوم توسعه شوخی می‌کنیم! علم را نشناخته‌ایم، هدف دانشگاه‌ را فراموش کرده‌ایم و نیروی انسانی ارزشمند خود را دو دستی صادر می‌کنیم و به جای آن خروار خروار مواد آرایشی وارد کشور می‌کنیم! منجمین حرفه‌ایمان را مجبور به مهاجرت می‌کنیم و نجوم را به عنوان یک تفریح بزک می‌کنیم و به مردم به عنوان یک فعالیت حرفه‌ای در علم نشانش می‌دهیم. بسیاری از علاقمندان به نجوم و حتی خیل زیادی از کسانی که خود را منجم آماتور می‌دانند، پس از ورود به رشته فیزیک شدیدا از رشته فیزیک و نجوم حرفه‌ای متنفر می‌شوند! علتش این است که آن نجوم بزک‌شده، در دانشگاه صورت خود را شسته و اکنون چهره‌ واقعی نجوم برای دانشجوی بیچاره یک چهره خشن و زشت است! نجوم حرفه‌ای را دریابیم!

«النّاسُ ثَلاثَةٌ: فَعالِمٌ رَبّانِىٌّ، وَ مُتَعَلِّمٌ عَلى سَبيلِ نَجاة، وَ هَمَجٌ رَعاعٌ، اَتْباعُ كُلِّ ناعِق، يَميلُونَ مَعَ كُلِّ ريح، لَمْ يَسْتَضيئُوا بِنُورِ الْعِلْمِ، وَ لَمْ يَلْجَاُوا اِلى رُكْن وَثيق. مردم سه گروهند: دانشمند ربّانى، دانشجوى بر راه نجات، و مگسانى ناتوان که به دنبال هر صدایى مى روند، و با هر بادى حرکت مى کنند، به نور دانش روشنى نیافته، و به رکنى محکم پناه نبرده‌اند.» چقدر از هر دسته در جامعه ما وجود دارد؟!

دست همه عزیزانی که طی ۱۷ سال گذشته در توسعه نجوم نقش داشته‌اند را به گرمی می‌فشاریم. اما اکنون باید تلاش کنیم برنامه‌های ترویجی هدف‌مندتری برگزار کنیم!

در این مقاله سعی شده است تا با مروری کوتاه بر سیر تاریخی کیهان‌شناسی نوین، گوشه‌ای از تلاش‌های کیهان شناسان و فیزیکدانان، برای ارایه‌ی توصیفی از تحول کیهان، نمایش داده شود.

به یاد آنان که راه را هموار ساختند…

آلبرت آینشتین – نگاره از ویکی‌پدیا

در سال ۱۹۱۵ میلادی، آلبرت انیشتین با ارایه نظریه‌ی نسبیت عام، فصلی تازه در علم کیهان‌شناسی رقم زد و در واقع کیهان‌شناسی مدرن را پایه‌ریزی نمود. در آن زمان انیشتین بر این باور بود که عمر کیهان بی‌نهایت است و جهان در طول زمان تغییری نمی‌کند. این درحالی است که جواب‌های معادلات نسبیت عام، جهانی را توصیف می‌کردند که در حال تحول بود. بدین ترتیب انیشتین در مقاله‌‌اش در سال ۱۹۱۷ میلادی، برای توصیف جهان ایستای خود، با فرض برقراری اصل کیهان‌شناسی، عددی ثابت به نام «ثابت کیهان‌شناسی» را در معادلات خود وارد کرد تا این اثر را خنثی کند. طبق اصل کیهان‌شناسی، جهان در مقیاس‌های به‌اندازه کافی بزرگ، همگن و همسانگرد (در همه جهات یکسان) است. البته بعدها با کشف انبساط کیهان، انیشتین اضافه کردن این ثابت در معادلاتش را بزرگترین اشتباهش خواند.

در همان سال، ویلیام دو سیتر جواب دیگری از معادلات را برای جهانی با فضای غیر تخت و خالی از ماده اما شامل ثابت کیهان‌شناسی، ارایه داد. اگرچه ممکن است این مدل غیر واقعی و بی‌اهمیت به‌نظر بیاید، اما جالب است بدانید که امروزه این مدل در نظریه تورم که مربوط به کیهان آغازین است، نقشی اساسی ایفا می‌کند. در مدل دوسیتر جهان به‌صورت نمایی منبسط می شود.

چگونگی انتقال به سرخ و آبی بسته به (به‌ترتیب) دور یا نزدیک شدن منبع. نگاره از ویکی‌پدیا

الکساندر فریدمان (۱۸۸۸-۱۹۲۵)، ریاضیدان و فیزیکدان روسی، در سال ۱۹۲۲ میلادی، مدل دیگری ارایه داد که در واقع می‌توان آن را حد وسطی از مدل انیشتین و مدل دوسیتر دانست. اگرچه این مدل در آن زمان چندان مورد اقبال واقع نشد، اما پنج سال بعد در حالی‌ که فریدمان از دنیا رفته بود، این جواب ها توسط ژرژ لومتر، کشیش و فیزیکدان بلژیکی، بطور مستقل به‌دست آمدند. وی تلاش کرد تا پیش‌بینی‌های این مدل مبنی بر انبساط کیهان را با نتایج رصدی که به تازگی انجام گرفته بود، مرتبط سازد. این مشاهدات حاکی از آن بود که در طیف کهکشان‌های دوردست، اثری موسوم به «انتقال به سرخ» دیده می‌شود که می‌توان آن‌ را در نتیجه‌ی دور شدن کهکشان‌ها و در واقع انبساط کیهان دانست. البته فردی به نام فریتس تسوئیکی نظر دیگری داشت. وی مدلی موسوم به «نور خسته» را پیشنهاد داد که در آن ادعا می‌شد که نور به دلیل برهم‌کنش با موادی که بر سر راهش هستند، مقداری از انرژی خود را از دست می‌دهد و طول موجش افزایش می‌یابد. بنابراین طیف کهکشان‌های دور دست به سمت طول موج‌های بلندتر منتقل می‌شود. امروزه می‌دانیم که این مدل با داده های رصدی مغایرت داشته و فاقد اعتبار است.

در سال ۱۹۳۱ لومتر مقاله‌ای منتشر کرد که در آن ادعا شده بود که در مدل فریدمان، کیهان باید از یک حالت اولیه تکامل پیدا کرده باشد که شامل مقدار بسیار زیادی از پروتون‌ها، الکترون‌ها و ذرات آلفا بوده است که همگی با چگالی از مرتبه‌ی هسته‌ی اتم در کنار یکدیگر قرار داشته‌اند. وی این حالت را «اتم قدیم: Primaeval Atom» نامید. لومتر را می‌توان در واقع پدر نظریه مه‌بانگ دانست. عبارت «مه‌بانگ» را اولین بار فرد هویل در سال ۱۹۴۹ میلادی، هنگامی‌که در یک برنامه‌ی رادیویی بی‌بی‌سی در مورد این مدل صحبت می‌کرد، به حالت طعنه آمیزی بکار برد. اما این تعبیر خیلی زود رایج شده و مورد استفاده قرار گرفت.

گیرنده‌ای که پنزیاس و ویلسون با آن تابش زمینه کیهانی را کشف کردند. نگاره از ویکی‌پدیا

یکی از مباحث داغی که در سال های ۱۹۴۰ میلادی وجود داشت، موضوع منشأ عناصر شیمیایی بود. در سال ۱۹۴۶ جرج گاموف، فیزیکدان هسته‌ای، با الگوگیری از نظرات لومتر مقاله‌ای منتشر کرد مبنی بر این‌که فازهای اولیه‌ی مدل فریدمان می‌توانند محتمل‌ترین مکان برای هسته‌سازی عناصر شیمیایی باشند. گاموف ادعا کرد که اگر در مدل فریدمان به عقب برگردیم می‌توانیم به نقطه‌ای به اندازه‌ی کافی چگال و پر انرژی برسیم که در آن فرآیندهایی غیر تعادلی مربوط به هسته سازی امکان‌پذیر باشند. در همان سال رالف آلفر،‌ دانشجوی گاموف، نیز به او پیوست تا روی محصولات ناشی از این هسته‌سازی کار کند. دو سال بعد گاموف و آلفر به همراه هانس بیته، مقاله‌ای منتشر کردند و در آن به جزییات موضوع پرداختند. اهمیت این مقاله بر این بود که نشان داد اگر عناصر طبیعی منشأیی کیهانی داشته باشند، نیاز به فازی بسیار داغ و چگال در کیهان اولیه ضروری خواهد بود. در همان سال آلفر و رابرت هرمان محاسبات را دقیق‌تر کرده و این بار تحولات کیهان اولیه‌‌ای که در حال انبساط بود هم در نظر گرفتند و به نتیجه‌ای جالب و مهم رسیدند؛ بقایای سرد شده‌ی فازهای داغ اولیه‌، هنوز هم باید در کیهان امروزی وجود داشته باشند. آنها دمای این بقایا را در حدود پنج کلوین پیش‌بینی کردند. امروزه این بقایا با عنوان «تابش پس زمینه کیهانی» شناخته می‌شوند.

طبق محاسباتی که توسط آلفر و هرمان انجام شد، در دوران هسته‌سازی حدود ۲۵٪ از اتم‌های هیدروژن اولیه به اتم هلیوم تبدیل شده و تنها مقدار بسیار ناچیزی (حدود ۰/۰۰۰۰۱٪ )، تبدیل به اتم‌های عناصر سنگین‌تر شدند. این درحالی بود که مشاهدات نشان می‌دادند که مقدار عناصر سنگین در جهان، خیلی بیشتر از مقدار پیش بینی شده است. بدین ترتیب نظریه مهبانگ با مشکل بزرگی برای توجیه میزان اتم‌های سنگین روبرو بود. (البته چند سال بعد معلوم شد که عناصر سنگینی مانند کربن، اکسیژن و آهن، در دل ستارگان پرجرم و انفجارهای ابرنواختری تولید می‌شوند.) این موضوع موجب شد تا در سال ۱۹۴۸ میلادی، فرد هویل، توماس گلد و هرمان بوندی، «نظریه حالت پایدار» را به‌عنوان جایگزینی برای مدل مهبانگ ارائه دهند. در این نظریه ادعا شده است که جهان، هم در فضا و هم در زمان، همگن و همسانگرد است.(اصل کیهان‌شناسی کامل) در واقع جهان، همواره به همین شکل و شمایل امروزی وجود داشته است.

«به یک معنا، شاید به‌توان گفت که نظریه حالت پایدار در شبی شروع شد که بوندی، گلد و من، مشتری یکی از سینماها در کمبریج شدیم. اگر درست خاطرم باشد، اسم فیلم «مرگ تاریکی» بود؛ فیلم دنباله‌ای از چهار داستان از ارواح بود که همان‌طور که چند تن از شخصیت‌ها در فیلم می‌گفتند، به نظر می‌رسید که ربطی میانشان نباشد اما با یک ویژگی جالب که انتهای داستان چهارم به طرز غیرمنتظره‌ای به ابتدای داستان اول مربوط بود. در نتیجه به‌موجب آن، پتانسیل برای یک چرخه‌ی بی پایان وجود داشت. وقتی آن شب سه نفرمان به اتاق‌های بوندی در دانشگاه ترینیتی برگشتیم، ناگهان گلد گفت: چه می‌شود اگر عالم نیز شبیه این باشد!؟ شاید این‌طور تصور شود که حالت‌های بدون تغییر، لزوما ساکن و راکد هستند. کاری که فیلم داستان ارواح برای ما انجام داد این بود که خیلی سریع این تصور اشتباه را از هر سه نفرمان برطرف کرد. می‌توان حالت‌های بدون تغییری داشت که پویا باشند. مانند یک رودخانه‌ی آرام در حال جریان. عالم باید پویا باشد؛ چرا که قانون انتقال به سرخ هابل این را اثبات می‌کند… از این‌جا می‌توان به سادگی دریافت که نیاز است که خلق پیوسته‌ی ماده وجود داشته باشد.»

هویل نرخ خلق ماده را یک ذره در سانتی متر مکعب در هر ۳۰۰۰۰۰ سال، به‌دست آورد. برخلاف بوندی و گلد که رهیافتی فلسفی به نظریه حالت پایدار داشتند، هویل فرضیه خود را از دیدگاه نظریه‌ی میدان بنا نهاد و میدانی به نام «میدان سی: C-Field» را برای خلق ماده در نظر گرفت. این نظریه در همان سال نخست توانست نظر بسیاری از ستاره‌شناسان و حتی مردم عامه را به خود جلب کند. نظریه حالت پایدار از آنجایی برای ستاره شناسان دارای اهمیت بود که می‌توانست توضیح جایگزینی از منشأ عناصر ارایه دهد.

این نگاره، نمایشی هنری از انبساط متریک فضاست که در آن فضا (که شامل قسمت‌های فرضی غیرقابل مشاهده جهان هم هست) را در هر لحظه از زمان را می‌توان با برشی قرصی از نمودار نمایش داد. توجه کنید که در سمت چپ شکل می‌توانید انبساط دراماتیک فضا در دوره تورمی را ببینید. نگاره از ویکی‌پدیا

تا مدتی، کیهان‌شناسان به دو گروه که هریک طرف‌دار یکی از نظریه‌های حالت پایدار یا مه‌بانگ بودند، تقسیم شده بودند. تا آنکه شواهد رصدی‌ای مانند «شمارش منابع رادیویی: the Counts of Radio Sources»، بر اعتبار نظریه مهبانگ افزود و سرانجام در سال ۱۹۶۵ میلادی هنگامی‌که آرنو پنزیاس و رابرت ویلسون بر روی امواج رادیویی کار می‌کردند، توانستند به طور کاملا اتفاقی، تابش زمینه کیهانی که از پیش بینی‌های مهم نظریه مه‌بانگ بود را کشف کنند. در واقع این کشف، مهر تأییدی بود بر نظریه مه‌بانگ که موجب شد تا این نظریه به عنوان نظریه‌ای مورد توافق همگان در بیاد.

البته نظریه مهبانگ قادر نبود تا به بعضی از سوالات اساسی مانند مسئله‌ی افق یا مسئله‌ی تخت بودن جهان و یا مسئله تک‌قطبی‌های مغناطیسی پاسخ بدهد. به همین خاطر در سال ۱۹۸۱ میلادی، آلن گوت، با معرفی مدلی موسوم به «مدل تورم» توانست پاسخگوی این سوالات باشد. مدل تورم ادعا میکند که کیهان در بازه‌ی زمانی بین۱۰−۳۶ تا حدود ۱۰−۳۲ثانیه بعد از نقطه‌ی تکینگی اولیه، دستخوش انبساطی با نرخ نمایی شده است! امروزه با استفاده از ابزارهای دقیق رصدی می‌توانیم شواهدی دال بر وجود دوران تورم را به ویژه در تابش زمینه‌ی کیهانی مشاهده کنیم.

پیشرفت های رصدی و همچنین پیشرفت‌هایی که از لحاظ نظری در زمینه رشد ساختارهای بزرگ مقیاس در اواخر قرن بیستم میلادی صورت گرفت، منجر به نتایج زیر شد:

  • اولا احتمالا به‌مقدار نسبتا قابل توجهی ماده‌ی تاریک غیر نسبیتی (ماده‌ی تاریک سرد) وجود دارد.
  • ثانیا باید یک ثابت کیهان‌شناسی غیر صفر (لامبدا) وجود داشته باشد.

سرانجام این نتایج موجب شد تا مدل لامبدا سی‌دی‌ام: ΛCDM Model، در سال ۱۹۹۵، توسط جرمی اوستریکر و پائول استینهاردت پیشنهاد شود. چهار سال بعد، با کشف این‌که جهان به صورت شتاب‌دار در حال انبساط است، این مدل به عنوان مدل پیشرو مورد توجه قرار گرفته و خیلی زود توسط مشاهدات دیگر نیز تأیید شد.

اگر از دنبال‌کنندگان سیتپور هستین لابد با فاینمن تا حالا آشنا شدین. ریچارد فاینمن بدون اغراق یکی از بزرگترین فیزیک‌دانان قرن ۲۰ام و یکی از تاثیرگذارترین فیزیک‌دانان کل تاریخه. پیش‌تر از این، در مورد فاینمن نوشته بودم (۱) (۲) (۳) (۴) (۵). طی این چند روز، دوستان ویدیویی از یکی از مصاحبه‌های فاینمن رو برام فرستادن که ازش می‌پرسن آیا هرکسی می‌تونه فاینمن بشه؟ و فاینمن با خونسردی خاصی می‌گه آره! متن مصاحبه از این قراره:

شما از من می‌پرسی که آیا یه آدم معمولی با سخت درس خوندن می‌تونه چیزهایی که من تصور می‌کنم رو تصور کنه؟ البته! من یه آدم معمولی بودم که سخت درس خوندم. هیچ آدم افسانه‌ای وجود نداره! داستان از این قراره که این جور آدما به این جور چیزا علاقمند میشن و همه چیزای مربوط به اون رو یاد می‌گیرن. اونا هم آدم هستن! توانایی خارق‌العاده‌ای برای درک مکانیک کوانتومی یا تصور  امواج الکترومغناطیس به دست نمیاد مگه از راه تمرین و مطالعه و یادگیری و ریاضیات! پس، اگه شما یه آدم معمولی رو در نظر بگیرین که وقت بسیار زیادی رو وقف مطالعه و فکر کردن و ریاضیات و این جور چیزا می‌کنه. اون موقع اون شخص خب یه دانشمند میشه!

فاینمن، ابرچهره مردمی!

احتمالا هر کسی که قدری فیزیک یا ریاضی خونده باشه، با دیدن این ویدیو کمی جا می‌خوره. واقعا مگه میشه مثل فاینمن شد؟ من نمی‌دونم، ولی خود فاینمن میگه میشه! نابغه‌ها دو دسته هستن. دسته اول، اونایی که اگه مدتی وقت بذاری متوجه کارشون می‌شی و با اینکه کارشون  قابل تقدیره، ولی این حس رو پیدا می‌کنی که اگر کس دیگه‌ای هم وقت کافی صرف اون موضوع کرده بود، می‌تونسته اون نتایج رو به دست بیاره. اما دسته دوم، نابغه‌هایی هستن که وقتی آدم کارشون رو دنبال می‌کنه و ایده‌های بکری که به کار بردن رو متوجه میشه، همه‌ش از خودش می‌پرسه، مگه میشه!؟ آخه چه‌طور به ذهنش رسیده این چیزا! چه‌طور یه نفر تونسته توی این سن و سال این مسیر عجیب و غریب رو دیده باشه! آقای کاتس (Mark Kac) توی مقدمه کتاب Enigmas of Chance گفته که فاینمن از اون دسته‌ای هست که حتی دانشمندان تراز اول هم بهش غبطه می‌خورن! آدم‌هایی که نبوغشون جادوییه! با این وجود، این چیزی نیست که فاینمن در مصاحبه گفته! فاینمن معتقده که هر کسی که تلاش کنه می‌تونه فاینمن بشه! راستش گروه باراباشی سال گذشته نشون دادن که موفقیت در مسیر علمی به شانس هم بستگی داره و صدالبته اینکه وقتی شما شانس بیشتری پیدا می‌کنی که همیشه در حال تلاش باشی و پرکار و پویا! به‌هرحال ما نمی‌تونیم انکار کنیم که کار زیاد و خون جگر خوردن بی‌ثمر می‌مونه، همین‌طور که نمی‌تونیم عظمت جناب فاینمن رو انکار کنیم!

چه کسی محبوبه؟ نابغه‌ترین؟!

چیزی که برای من جالبه اینه که چرا بین همه فیزیکدانان رده بالای قرن ۲۰ام، چهره‌هایی مثل آینشتین، فاینمن و هاوکینگ تبدیل به ابرچهره شدند؟! چهر‌ه‌هایی که نه تنها جامعه فیزیک‌دان‌ها اونا رو ستایش می‌کنه بلکه مردم هم اونا رو می‌شناسن، بهشون احترام می‌ذارن و بهشون به عنوان قهرمان/الگو/اسطوره نگاه می‌کنند! راستی، برای اینکه دانشمندی تبدیل به چهره‌ای مردمی بشه فقط به نبوغ سرشار نیاز داره؟

جواب این سوال منفیه! یقینا در قرن گذشته بزرگانی وجود داشتن که از فاینمن یا هاوکینگ بزرگتر بوده باشن. بزرگانی که حتی دانشجوهای لیسانس فیزیک هم ممکنه با شنیدن اسمشون احساس آشنایی پیدا نکنن! مثلا همین جناب شویینگر که به همراه فاینمن در سال ۱۹۶۵ نوبل QED رو گرفته یا عالی‌مقام دیراک! سوال اینجاست که چرا این فاینمنه که ورد زبان‌هاست و نه جان ویلر (استاد فاینمن)؟! بدون تردید جان ویلر قله‌ای استوار در فیزیک به حساب میاد. (شاید از کم‌ترین دستاورهای جان ویلر این باشه که دو تا از دانشجوهاش نوبلیست شدن: فاینمن در سال ۱۹۶۵ و کیپ ثرون در ۲۰۱۷.) یا مثلا اکثر مردم آینشتین رو به عنوان نمادی از نبوغ میشناسن ولی با ماکس پلانک یا هنری پوانکاره عزیز هیچ آشنایی ندارن چه برسه به کسانی مثل چاندراسخار یا لینوس پاولینگ! یا مثلا آقای بیل‌ گیتس، فاینمن را به خوبی می‌شناسه ولی لابد اسمی از دیوید بهم هیچ موقع نشنیده! پس ماجرا چیه؟!

فاینمن، روایتگر بزرگ علم!

چیزی که فاینمن رو تبدیل به یک نماد و ابرچهره کرده فقط نبوغ سرشار و بی‌نظیرش نیست. به قول فریمن دایسون،

فاینمن در حال گفتگو با TA خود پس از کلاس درس. April 29, 1963. حق نشر متعلق به کلتک: feynmanlectures.caltech.edu

برای اینکه یک دانشمند بتونه تبدیل به یک ابرچهره یا نماد برای مردم بشه، علاوه بر نبوغ زیاد، باید توانایی ارتباط با مردم رو داشته باشه. باید بتونه با مردم حرف بزنه و به زبون خودشون بهشون اتفاقات دنیای علم رو توضیح بده. مردم به امثال آینشتین یا فاینمن با روی خوش نگاه می‌کنند چون مثل خودشون هستن! فاینمن یک بذله‌گو تمام عیار بود، یک دلقک حتی! مردم کسایی که خشک و عصا قورت داده هستن رو دوست ندارن! فاینمن همون‌قدر که دانشمند تراز اولی بود، موقع تدریس یک شومن فوق‌العاده هم بود! همون قدر که دقت علمی در گفتگوهاش داشت، همون‌قدر هم در روایتگری ید بیضایی داشت! مردم قصه‌گوها رو دوست دارن و به قصه‌ها گوش می‌دن. به نظر من، فاینمن بزرگترین روایتگر علم در دو قرن گذشته است!

فاینمن، انسان بود، درد رو می‌فهمید!

فاینمن فرد عاقل و خرمندی بود! فاینمن در مورد مسائل زندگی حرف برای گفتن داشت. حرف‌های درست و حسابی! فاینمن زندگی رو می‌شناخت و سختی‌های زیادی رو طی زندگی تحمل کرده بود. اگر کتاب «حتما شوخی می‌کنید آقای فاینمن!» رو خونده باشین، در جریان بیماری Arline همسر فاینمن هستین. فاینمن، علی‌رغم مشغله‌های کاریش به خاطر پروژه منهتن (پروژه ساخت بمب هسته‌ای)، با تمام وجود از همسرش پرستاری کرد و اجازه نداد که آب توی دلش تکون بخوره! فاینمن همسر جوانش رو خیلی زود از دست داد و این داغ هیچ موقع از دل و ذهن فاینمن بیرون نرفت. ما فاینمن رو به عنوان یک معلم بزرگ فیزیک می‌شناسیم. لکچرنوت‌های فاینمن پرآوازه‌ترین کتاب‌هایی هستن که برای یادگیری فیزیک توی بازار میشه پیدا کرد و از صدقه سر این مجموعه فوق‌العاده ما بعد اجتماعی فاینمن رو به خوبی می‌شناسیم. در مورد بعدی فردی فاینمن، چندسال پیش، مجوعه‌ای از نامه‌های فاینمن منشتر شد به اسم «Perfectly Reasonable Deviations: The Letters of Richard P. Feynman» که جلوه‌های جدیدی از زندگی فاینمن رو به ما نشون میده.

فاینمن باتمام وجود از همسرش پرستاری می‌کرد. درست زمانی که مشغول پروژه بمب اتم بود!

پیشنهاد می‌کنم نامه‌ای که فاینمن پس از مرگ همسرش نوشته رو حتما بخونید! فریمن دایسون میگه پشت تمام شادمانی‌های فاینمن، یک تراژدی نشسته بوده و با تمام شور و نشاطی که مردم از فاینمن سراغ دارن، اون خیلی خوب می‌دونسته که زندگی کوتاهه! فاینمن در سال‌های آخر عمرش از دو سرطان نادر رنج می‌برد: لیپوسارکما و بیماری والندشتروم. بعد از یک عمل جراحی کوتاه برای درمان بیماری والندشتروم، فاینمن در ۱۵ فوریه ۱۹۸۸ تو سن ۶۹ سالگی در مرکز پزشکی یو سی ال ای در گذشت. آخرین کلماتش این بود: «از این که دو بار بمیرم متنفرم، خیلی کسل‌کننده است.» 🙁

فاینمن «انسان» بود، درد رو حس کرده بود و برای فرزندان، دانشجوها و حتی همکارانش یک «راهنمای دلسوز» بود. مجموعه نامه‌های منتشر شده فاینمن، گواه دغدغه‌های فاینمن و احساسش نسبت به مردم اطرافشه. فاینمن به عنوان یک نوبلیست، با تمام مشغله‌های آکادمیک به نامه‌های مردم از سراسر جهان با حوصله جواب می‌داده، برای مردم وقت می‌ذاشته و سعی می‌کرده راهنماییشون کنه! راستش، فاینمن عجیب منو یاد این عبارت از اسرارالتوحید ابوسعید ابوالخیر می‌ندازه: «مرد آن بود که در میان خلق بنشیند و برخیزد و بخسبد و بخورد و در میان بازار در میان خلق ستد و داد کند و با خلق بیامیزد و یک لحظه، به دل، از خدای غافل نباشد.»

حواسمون باشه:

  • در انتها به نظرم باید به این نکته اشاره کنم که فراموش نکنیم که ما در علم به دنبال چهره‌ها نیستیم! علم مستقل از عالمه! افراد مهم نیستن، بلکه حرف مردمه که مهمه. درگیر اشخاص نشیم و از دانشمندا بت نسازیم! نظر ساسکیند در مورد فاینمن رو بشنویم، نگاه کنیم که پس از مرگ فاینمن، شووینگر در رثای اون چی گفت! همین‌طور به ماری‌ گل-مان هم گوش کنیم که میگه: «فاینمن بخشی از وقتش رو صرف پرداختن به قصه‌های می‌کرد که خودش قهرمان اون‌ها بود!»
  • یه نکته جالب دیگه اینه که مشهور بودن لزوما معنای مثبتی نداره! ارنست آیزینگ معروف‌ترین دانشمند در فیزیک آماری به حساب میاد ولی این به این معنا نیست که بزرگترین فرد در این زمینه هم باشه! راستی زیاد دل‌خوش به اسم قضیه‌ها و قانون‌ها هم نباشیم! بخش زیادی از اکتشافات، قضیه‌ها، روابط و قوانین به اسم کسانی معروف شدن که هیچ ربطی به اون قضیه یا قانون ندارن. به‌هرحال روزگار زیاد مطابق میل و اراده ما هم پیش نمیره!
  •  فاینمن عزیز، روحت در آرامش باد.

‌فایل صوتی: ریچارد فاینمن، چهره‌ترین چهره!

—————————————————–

این نوشته رو تقدیم می‌کنم به علی فرنود به خاطر نوشته‌های فوق‌العاده‌ش.

در گوشه‌ای از جهان هستی

در قلب توده‌ بزرگی از ماده‌ی تاریک، در نقطه‌ای از کهکشان مارپیچی بزرگمان، بر روی سیاره‌ی خارق‌العاده‌ای که به دور خورشید با شکوهمان می‌چرخد، در ادامه‌ی زنجیره‌ای که هنوز تنها اثری از حیات زنده در کیهانمان است، ما نیز شروع به زندگی کردیم. به عنوان گونه‌ای با قدرت تفکر، همیشه به دنبال زبانی برای برقراری ارتباط با محیط اطرافمان بوده و هستیم. گاه با هدف رفع نیاز، گاه برای رفع حس کنجکاوی سیری ناپذیرمان و حتی گاهی در اثر ترس! اما هدف هرچه بود و هرچه هست، امروز درجای عجیبی از تاریخ علم ایستاده‌ایم و با غرور به جهانی نگاه می‌کنیم که نه آن‌طور که ما دلمان می‌خواهد، بلکه آن گونه که واقعا هست، در برابر ما ایستاده است.

شما اینجا هستید!

ما همیشه می‌خواستیم با طبیعتمان سخن بگوییم، و در طول تاریخ، فیزیک راهی بود که برای این هدف انتخاب کردیم. فیزیک زبان مشترک ما و طبیعت شد. ما مشاهده می‌کردیم، بعدها یاد گرفتیم ثبت کنیم، بر پایه‌ی مشاهداتمان فرضیه سازی کردیم و جلو رفتیم. زمینمان را تخت تصور میکردیم، هر کدام از سیارات و ستاره ها را خدایی می‌پنداشتیم که باید نیایش کنیم، وگرنه بر ما عذاب می‌فرستند. در ذهنمان خدایان ناشناخته‌ای ساختیم که شب و روز را پدید می‌آوردند. خدایانی که غروب خورشید را می‌خوردند و صبح باز او را به دنیا می‌آوردند. خدایانی که صبح از شرق برمی‌خاستند، در طول روز در آسمان سیر می‌کردند و غروب مانند پیرمردان در بستر می‌مردند. رعد و برق، خشم خدایان بود و زلزله خشم مادرمان زمین.

فرضیه ساختیم، خیالبافی کردیم و جلو آمدیم. سفر کردیم، اختراع کردیم، تا آنجا که زمین و آسمان را هر روز بهتر و بهتر شناختیم. فرضیاتمان به مرور حقیقیتر میشدند، از محیطمان به زیباترین وجه استفاده می‌کردیم، ویژگیهایش را میدانستیم، دارو می‌ساختیم، ظروف زیبا، وسایل نقلیه، ساختمان‌های باشکوه ، اما هنوز پیوند عمیقی برقرار نبود. با طبیعتمان به زیبایی زندگی میکردیم اما زبانش را نمیدانستیم. همیشه نگاهمان به آسمان هم معطوف بود. آسمان پر رمز و راز را می‌دیدیم. ستارگانی را که هر شبمان را زیبا می‌ساختند، در صورت‌های فلکی دسته بندی کردیم. علم اخترشناسی را به جود آوردیم و هر شب آسمان را رصد میکردیم. همه چیز را میدیدیم، اما هنوز علت‌ها ناشناخته بود.

نظریه  زمین‌مرکزی بطلمیوس

بطلمیوس که بین سالهای ۹۰ تا ۱۶۸ میلادی زندگی میکرد، معتقد بود زمین در مرکز جهان قرار دارد، و ماه و خورشید و سایر سیارات، به دور آن میچرخند. در این نظریه، سیارات مداری نداشتند و انگار بر روی صفحه‌ای شیشه‌ای به نام فلک چسبیده بودند و فلک به دور زمین در گردش بود. او معتقد بود که ۸ یا ۹ فلک وجود دارد و بر روی فلک آخر، ستاره‌ها چسبیده‌اند.

یک نقاشی قدیمی برآمده از طرز تفکر بطلمیوسی (زمین‌مرکزی) – نگاره از ویکی‌پدیا

پس از این فلک، که به آن فلک الافلاک می‌گفتند، خداوند و فرشتگان زندگی میکردند. این نظریه که به آن زمین مرکزی میگویند شاید یکی از نخستین نظریات جامع و منسجم ما درباره ی کیهانمان بود. این باور نزد ما پذیرفته شده بود. ما در مرکز جهان هستی، بر روی سیاره‌ی زیبایمان نشسته بودیم و همه به دور ما می‌گشتند. کلیسا نیز این فرضیه را بشدت تبلیغ می‌کرد. خیالی خوش و پرغرور اما ناپایدار. تا بالاخره در تاریخمان گالیله پیدا شد. او بود که گفت نه تنها ما مرکز جهان نیستیم، بلکه ما و چند سیاره‌ی دیگر همه و همه به دور خورشید زیبایمان میگردیم. او نگاه ما را به طبیعت و به ویژه علم مکانیک دگرگون کرد، و در یک کلام، او نخستین پیوند میان طبیعت و ریاضیات را در قلب علم حرکت شناسی نشان داد. وقتی به او فکر می‌کنم، و به جهانی که پیش از او می‌شناختیم، تصمیم و کار بزرگش بسیار ترسناک به نظرم میرسد. تصور کنید در خانه‌ای نشسته‌ایم، دیوارهایش را با رنگ‌های بسیار زیبا نقاشی کرده‌ایم و تصور می‌کنیم تمام حقیقت، هرآن چیزی است که در نقاشی‌هایمان کشیده‌ایم. ناگهان مردی از راه می‌رسد، دیوارها را خراب می‌کند،نقاشی‌ها را می‌سوزاند، ما را وسط تاریکی بی‌انتهایی رهایمان می‌کند و تنها مشعلی به دستمان می‌دهد. او نم‌یداند نتیجه‌ی جستجویمان چه خواهد بود، اما باور دارد حقیقت بسیار زیباتر و موثرتر از تمام نقاشیهایمان بر در و دیوار خانهمان است. او به درستی و زیبایی حقیقت باور دارد. ما این مشعل را گرفتیم و جلو آمدیم.

نیوتون و ادامه‌ی راه

مفهوم گرانش را فهمیدیم. حرکت سیارات را توجیه کردیم. مهندسی نوینی بر پایه‌ی معادلاتش بنا کردیم. علم مهندسی هر روز زندگی را ساده‌تر میکرد. اما سوالات ما پایانی نداشت. مطالعه بر روی نور از زمان نیوتون جدی‌تر دنبال می‌شد. تلسکوپ گالیله که یکی از دستاوردهایش کشف چند قمر از اقمار مشتری بود، به وسیله‌ی نیوتون اصلاح شد و کار رصد آسمان را اندکی بهبود بخشید. همچنین مطالعه‌ی ما بر روی الکتریسته و مغناطیس روز به روز بیشتر می‌شد و کسانی ماند لنز، فارادی، آمپر و دیگران ماهیت بار الکتریکی را معرفی کردند. سرانجام دوران طلایی فیزیک فرا رسید. در اواخر قرن نوزدهم، تامسون مدل اتمی‌اش را ارائه کرد. رادرفورد اولین بار مفهوم هسته را معرفی کرد. پروتون‌ها و نوترون‌ها شناخته شدند و سرانجام مدل سیاره‌ای توسط نیلز بور ارائه شد. مدلی که اگر درست بود بنابر نظریه‌ی الکترومغناطیس، به ناپایداری اتمها و نابودی اتم منجر میشد. در این زمان بشر به آزمایش‌هایی دست می‌زد که یکی پس از دیگری ناتوانی فیزیک نیوتونی را در توضیح مسائلی روشن‌تر می‌ساخت. اینطور به نظر میرسید که باز راهمان را گم کردهایم.

اما نه!

ما میدانستیم ماشینهایمان، هواپیماها و تمام علم ساختمان، بر پایه‌ی فیزیک نیوتونی دقیق و زیبا کار می‌کنند و جلو می‌روند. اینجا بود که به اصل بسیار زیبای همخوانی رسیدیم. اصلی که سنگ بنا و شرط اساسی تمام نظریاتمان شد:

اگر نظریه ی جامعی ارائه می‌شود، این نظریه باید در شرایط خاصی که مکانیک نیوتونی برقرار است، معادلات نیوتون را بدست دهد.

برای مثال، اگر به دنبال نظریه‌ی جامعی هستیم که قلب اتم را نیز برایمان توضیح دهد، چنانچه در معادلاتمان باز از اتم به اجسام عادی و سرعت‌های معمولی رسیدیم، باز معادلات باید همان معادلات نیوتون شوند. و این اصل چراغ راهمان شد. تابش جسم سیاه، اثر فوتوالکتریک، اثر کامپتون و … هر یک بیش از پیش ما را به سمت نظریه‌ی شگفت‌انگیز کوانتوم سوق داد.

دوگانگی موج و ذره یکی از مفاهیم عجیب مکانیک کوانتومی- نگاره از ویکی‌پدیا

با مکانیک نیوتونی و درک ماهیت موجی-ذره‌ای در ابعاد کوانتومی، هایزنبرگ ، شرودینگر و دیراک زبانی ساختند بسیار مدرن که ما را به اعماق ماده راه داد. در اوایل قرن بیستم بود که اینیشتین با تئوری زیبای نسبیت خاصش از راه رسید. نظریه‌ای که در پاسخ به مسئله‌ی یکسان بودن سرعت نور نسبت به هر ناظر لخت با هر سرعتی نوشته شده بود. این نظریه نشان داد که در سرعت‌های بالا،  زمان هم از نگاه ناظرهای مختلف متفاوت است و به این صورت، مفاهیم قدیمی فضا و زمان به هم گره خوردند و مفهومی بنیادیتر به نام فضا-زمان شکل گرفت. اما زیبایی بی‌نظیر معادلات نسبیت خاص درآن بود که اگر سرعت متحرک نسبت به سرعت نور کم میبود -مثلا در حد سرعت حرکت ما و وسایل نقلیه‌مان- معادلات باز به همان معادلات آشنای نیوتون میرسید. پس ظاهرا ما همه چیز را می‌دانستیم. در قلب ماده مکانیک کوانتوم جواب سوالاتمان را می‌داد. برایمان هسته و اتم را توضیح داد. اتم شکافتیم. انرژی گرفتیم و با توحشی که هنوز در وجودمان تمامی ندارد بمب ساختیم. در سرعتهای بالا، معادلات نسبیت حلال مشکلاتمان شد و هنگامی که سرعت کم میشد و ابعاد ماده به ابعاد معمولی میرسید، معادلات نیوتون زندگی روزمره‌مان را پاسخگو بود.

نیروی گرانشی چه؟

آیا گرانش همانگونه که نیوتون تصور کرده بود، شکلی از نیرو بود؟ و این باز آلبرت اینیشتین بزرگ پس از حدودا یک دهه از ارائه‌ی نسبیت خاص، نسبیت عام را مطرح کرد و از گرانش نه به عنوان یک نیرو که به عنوان اثری هندسی نام برد. در واقه آنچه به عنوان نیروی گرانشی می‌شناسیم چیزی نیست جز خمیدگی فضا-زمان در اثر وجود ماده. از دل این تئوری ، سیاهچاله‌ها، کرمچاله‌ها و امواج گرانشی سربرآوردند. ترکیب این نظریه با شواهد رصدی مبنی بر انبساط کیهان، معادلات فریدمان در توصیف کیهان را بدست داد. این معادلات ما را به بیگ بنگ رساندند. جایی که احتمالا آغاز فضا-زمان و در نتیجه کیهان زیبای ماست. سرانجام با اضافه کردن نظریه‌ی تورم و همچنین کشف اثرات ماده‌ی تاریک و انرژِی تاریک، به مدل استاندارد کیهانشناسی رسیدیم. مدلی که کیهانی را شرح می‌دهد که از مه‌بانگ آغاز کرده، ناگهان تورم یافته و سپس ذرات در آن شکل گرفته‌اند. ذرات ماده و ضد ماده و همچنین چیزی به نام ماده‌ی تاریک که البته هنوز هویتش را نمی‌دانیم. ماده بر ضد ماده غلبه کرده و همین موجب شکل‌گیری کهکشان‌های زیبا، سیارات و ستاره‌ها شده است. ماده‌ معمولی که میشناسیم که تنها ۵ درصد از کل جهان را تشکیل داده است. این ماده شامل کوارک‌ها که تشکیل دهنده‌ی نوترون و پروتون‌اند، نوترینوها، آنتی نوترینوها و ذرات دیگر است که همه و همه در مدل استاندارد ذرات بنیادی به زیبایی کنار هم نشسته‌اند.

تاریخچه انبساط جهان

پس از موفقیت‌های مکانیک کوانتومی، مثل هر نظریه‌ی دیگری، معایبش هم آشکار شد و یکی از آن عیب‌ها، ناتوانی مکانیک کوانتومی در حل مسائلی بود که طی آنها ذره خلق میشد. این موارد ما را به سمت نظریه‌ی میدان‌های کوانتومی سوق داد، که ریچارد فاینمن آن را پایه ریزی کرد و رسما دید ما به جهان زیر اتمی تکامل زیبایی یافت. در سالهای اخیر با پیشرفت‌های چشم‌گیر تکنولوژی و علوم مهندسی، بالاخره وجود ذره‌ی هیگز تایید شد. تابش زمینه‌ی کیهانی هر روز مطالعه می‌شود. سال گذشته پیشبینی صد ساله‌ی آلبرت اینیشتین تحقق یافت و امواج گرانشی آشکار شدند. پس این طور به نظر میرسد که هر روز بیشتر از روز قبل با طبیعتمان به زبان مشترکی میرسیم. هر روز بیش از قبل زیبایی ریاضیاتمان، و نظریاتی که می‌نویسیم آشکار می‌شود.

 

پرسش‌های پیش‌رو

اما هنوز علامت سوال‌های بزرگی در پیش است. ماده‌ی تاریک واقعا چیست؟ انرژی تاریک چیست؟ این دو روی هم رفته ۹۵ درصد از جهان ما را تشکیل می‌دهند و هنوز برایمان ناشناخته‌اند. نظریات جدیدمان تا چه اندازه کارآمدند؟ تئوری ریسمان، نظریه‌ی ابرتقارن، گرانش تعمیم یافته، کیهان شناسی مدرن و … . هر روز بیش از قبل پیشرفت می‌کنیم و به کشف حقیقت نزدیک می‌شویم.‌ اما واضح است که در پی اینچنین تلاشی به قدمت عمر ما بر روی این کره‌ی خاکی، سوالات زیادی حل نشده باقی مانده‌اند و این چالش بزرگی پیش روی زیباترین وجه ریاضیات، یعنی فیزیک نظریست.

مدتی پیش کتابی میخواندم به نام «درباره‌ی معنی زندگی» از ویل دورانت.

اوبث اشاره می کرد که تلاش ما برای یافتن حقیقت، در واقع تمام اعتماد به نفسمان را از بین برد . چرا که زمانی ما مرکز جهان بودیم و همه چیز معطوف به ما بود. اما دانشمندان نشان دادند که ما گونه‌ای ناتوان در گوشه‌ای از این جهانیم و روزی تنها خورشیدی که میشناسیم نابودمان خواهد کرد و مولکول‌های ما تجزیه خواهد شد و آن روز پایان ماست. این جمله و نگاهش اگرچه از دید یک فیلسوف جالب و قابل تامل است، اما من قویا معتقدم حقیقت، بسیار زیباتر از امنیت ساختگی به وسیله‌ی توهم است. حقیقت هرچه هست، به ذات خود زیباست و این زیبایی دوچندان میشود وقتی به زبان ریاضی بیان میگردد. این جادوی فیزیک است.

همانگونه که زمانی فاینمن گفت:

ریچارد فاینمن، فیزیک‌دان تاثیرگذار قرن گذشته

«شاعران گفته‌اند که علم زیبایی ستاره ها را ضایع میکند، چون که آنها را صرفا کره‌هایی از اتم‌ها و مولکول‌های گاز می‌دانند. اما من هم میتوانم ستاره‌ها را در آسمان شب کویر ببینم و شکوه و زیبایی‌شان را حس کنم. می‌توانم این چرخ فلک را با چشم بزرگ تلسکوپ پالومار تماشا کنم و ببینم که ستاره ها دارند از هم‌دیگر، از نقطه ی آغازی که شاید  زمانی سرچشمه‌ی همگی‌شان بوده است دور می‌شوند. جست‌وجو برای فهمیدن این چیزها گمان نمی‌کنم لطمه‌ای به رمز و راز زیبایی این چرخ فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمی‌زنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد چه شعر ها که برایش نمی‌سرایند اما اگر در قالب کره‌ی عظیم چرخانی از متان و آمونیاک باشد سکوت اختیار میکنند؟»

اگر شما هم به دنبال زیبایی‌های جهان بی‌نظیرمان هستید، به دنیای ریاضیات خوش آمدید.

پیچیدگی چیست؟!

حدود۳۳۰ سال پیش، نیوتون با انتشار شاهکار خود، اصول ریاضی فلسفه طبیعی، نگاهی جدید نسبت به بررسی طبیعت  را معرفی کرد. نگاه نیوتون به علم به کمک نظریه الکترومغناطیس که توسط مکسول جمع بندی و در نهایت توسط آلبرت اینشتین کامل شد، شالوده فیزیک‌کلاسیک را بنا نهاد. انقلاب بعدی علم، توسط مکانیک کوانتومی رخ‌داد. ‌آن‌چه که مکانیک کوانتومی در قرن ۲۰ میلادی نشانه گرفت، مسئله موضعیت در فیزیک کلاسیک و نگاه احتمالاتی به طبیعت بود. نگاهی که سرانجام منجر به پارادایمی جدید در علم، به عنوان فیزیک مدرن شد. با این وجود، علی‌رغم پیشرفت‌های خارق‌العاده در فیزیک و سایر علوم، کماکان در توجیه بسیاری از پدیده‌ها ناتوان مانده‌ایم. پدیده‌هایی که همیشه اطرافمان حاضر بوده‌اند ولی هیچ‌موقع قادر به توجیه رفتار آن‌ها نبوده‌ایم. بنابراین، می‌توان به این فکر کرد که شاید در نگاه ما به طبیعت و مسائل علمی، نقصی وجود داشته باشد. به‌ دیگر سخن، بعید نیست که مجددا نیاز به بازنگری در نگاهمان به طبیعت (تغییر پارادایم) داشته باشیم؛ عده‌ی زیادی معتقدند آن‌چه که در قرن ۲۱ام نیاز است، نگاهی جدید به مبانی علم است؛ نگاه پیچیدگی!

سردمداران فیزیک مدرن – پنجمین کنفرانس سُلوی (۱۹۲۷).

گاهی گفته می‌شود که ایده پیچیدگی، بخشی از چهارچوب اتحاد بخشی برای علم و انقلابی در فهم ما از سیستم‌هایی مانند مغز انسان یا اقتصاد جهانی است که رفتار آن‌ها به‌سختی قابل پیش‌بینی و کنترل است. به همین خاطر، سوالی مطرح می‌شود؛ آیا چیزی به عنوان «علم پیچیدگی» وجود دارد یا اینکه پیچیدگی متناظر با هر شاخه‌ای از علم، دارای شیوه خاص خود است و مردم در رشته‌های مختلف مشغول سر و کله زدن با سیستم‌های پیچیده زمینه کاری خود هستند؟! به عبارت دیگر، آیا یک پدیده طبیعی مجرد به اسم پیچیدگی، به عنوان بخشی از یک نظریه خاص علمی در سیستم‌های متنوع فیزیکی (شامل موجودات زنده)  وجود دارد یا اینکه ممکن است سیستم‌های پیچده گوناگونی بدون هیچ وجه مشترک وجود داشته باشند؟! بنابراین، مهم‌ترین سوالی که در زمینه پیچیدگی می‌توانیم بپرسیم این است که، به‌ راستی پیچیدگی چیست؟ و در صورت وجود پاسخ مناسب به این پرسش، به دنبال این باشیم که آیا برای تمام علوم یک نوع پیچیدگی وجود دارد یا اینکه پیچیدگی وابسته به حوزه مورد مطالعه است!

در مورد تعریف پیچیدگی، هنوز اتفاق نظری بین متخصصان یک رشته خاص، مانند فیزیک، وجود ندارد، چه برسد به تعاریفی که در رشته‌های متنوع مطرح می‌شود. این تعاریف در ادامه نقد و بررسی می‌شوند. با این وجود، مشترکات زیادی در بین تعاریف موجود وجود دارد که برای شروع بحث، مرور آن‌ها خالی از لطف نیست:

  • برای ما، پیچیدگی به معنای وجود ساختار به همراه تغییرات است. (۱)
  • از یک جهت، سیستم‌پیچیده، سیستمی است که تحول آن شدیدا به شرایط اولیه و یا اختلال‌های کوچک حساس است. سیستمی شامل تعداد زیادی قسمتِ مستقلِ درحالِ برهمکنش با یکدیگر که می‌تواند مسیرهای مختلفی برای تحولش را بپیماید. توصیف تحلیلی چنین سیستمی قاعتدا نیاز به معادلات دیفرانسیل غیرخطی دارد. از جهت دیگر، می‌توانیم نگاهی غیررسمی داشته باشیم، به این معنا که اگر بخواهیم قضاوتی داشته باشیم، سیستم «بغرنج (complicated) » است و قابلیت اینکه دقیقا به طور تحلیلی یا نوع دیگری توصیف شود  وجود نداشته باشد.(۲)
  • به طور کلی، صفت «پیچیده»، سیستم و یا مولفه‌ای را توصیف می‌کند که فهم یا تغییر طراحی و/یا عملکرد آن دشوار باشد. پیچدگی توسط عواملی چون تعداد مولفه‌های سازنده و روابط غیربدیهی بین‌ آن‌ها، تعداد و روابط غیربدیهی شاخه‌های شرطی، میزان تودرتو بودن و نوع ساختمان داده است. (۳)
  • نظریه پیچیدگی بیان می‌کند که جمعیت زیادی از اجزا، می‌توانند به سمت توده‌ها خودسازماندهی کنند و منجر به ایجاد الگو، ذخیره اطلاعات و مشارکت در تصمیم‌گیری جمعی شوند. (۴)
  • پیچیدگی در الگوهای طبیعی نمایانگر دو مشخصه کلیدی است؛ الگوهای طبیعی حاصل از پردازش‌های غیرخطی، آن‌هایی که ویژگی‌های محیطی که در آن عمل می‌کنند یا شدیدا جفت‌شده‌اند  را اصلاح می‌کنند و الگوهای طبیعی که در سیستم‌هایی شکل می‌گیرند که یا باز هستند یا توسط تبادل انرژی، تکانه، ماده یا اطلاعات توسط مرزها از تعادل خارج شده‌اند. (۵)
  • یک سیستم پیچیده، دقیقا سیستمی است که برهم‌کنش‌های چندگانه‌ای بین عناصر متفاوت آن وجود دارد. (۶)
  • سیستم‌های پیچیده، سیستم‌هایی با تعداد اعضای بالایی هستند که نسبت به الگوهایی که اعضای آن می‌سازند، سازگار می‌شوند یا واکنش نشان می‌دهند. (۷)
  • در سال‌های اخیر، جامعه علمی، عبارت کلیدی «سیستم‌ پیچیده‌»  را برای توصیف پدیده‌ها، ساختار، تجمع‌ها، موجودات زنده و مسائلی که چنین موضوع مشترکی دارند را مطرح کرده است: ۱) آن‌ها ذاتا بغرنج و تودرتو هستند. ۲) آن‌ها به ندرت کاملا تعینی هستند. ۳) مدل‌های ریاضی این گونه سیستم‌ها معمولا پیچیده و شامل رفتار غیرخطی، بدوضع (ill-posed) یا آشوبناک هستند. ۴) این سیستم‌ها متمایل به بروز رفتارهای غیرمنتظره (رفتارهاری ظهوریافته) هستند. (۸)
  • پیچیدگی زمانی آغاز می‌شود که علیت نقض می‌شود! (۹)

شمایی از موضوعات مطرح در سیستم‌های پیچیده – نگاره از ویکی‌پدیا

در مورد تعاریف فوق ابهاماتی وجود دارد؛ در (۱) باید ساختار و تغییرات را به درستی و دقت معنا کنیم. در (۲) باید به دنبال تلفیق سیستم‌های پیچده و مفاهیمی چون غیرخطی، آشوب‌ناک و بس‌ذره‌ای بودن باشیم و به درستی مشخص کنیم که آیا این‌ ویژگی‌ها شرط لازم / کافی برای یک سیستم پیچیده هستند یا نه. (۳) و (۴) مفاهیم محاسباتی و موضوعاتی از علم کامپیوتر را مطرح می‌کند که به خودی‌خود مسائل چالش‌برانگیزی هستند! (۵) ایده مرکزی غیرخطی بودن را مطرح می‌کند؛ در ادامه می‌بینیم با این که تعداد زیادی از سیستم‌های پیچیده از ویژگی غیرخطی بودن تبعیت می‌کنند، با این وجود غیرخطی بودن نه شرط لازم و نه شرط کافی برای پیچیدگی است. در مورد (۶) و (۷) نیز باید تاکید کنیم که بس‌ذره‌ای بودن و شامل اعضا/عناصر/مولفه/افراد زیادی بودن نیز شرط کافی برای پیچیدگی نیست.  در ادامه خواهیم دید، تعریف (۸) که ایده‌ی برآمدگی (ظهوریافتگی یا Emergence) را مطرح می‌کند می‌تواند مفهومی بسیار گیج‌کننده باشد برای اینکه به کمک آن بتوانیم سیستم‌های پیچیده را تمیز و تشخیص دهیم. در مورد تعریف (۹) باید بحث زیادی کنیم چرا که افراد زیادی در برابر نقص علیت ناراحت خواهند شد! به همین دلیل است که گاهی درک سیستم‌های پیچیده برای مردم دشوار است.

بنابراین با توجه به ابهامات تعاریف افراد مختلف در حوزه‌های گوناگون علم، بهتر از است که مفاهیم وابسته به پیچدگی را بررسی کنیم.

Continue reading

ferrimagnetism_-_magnetic_moment_as_a_function_of_temperature

بالاتر از دمای بحرانی (نقطه کوری)، ماده دیگر مغناطیسی نیست.

یه گذار روزمره مثل تغییر فاز آب رو در نظر بگیرید. گاز و مایع به واقع شبیه هم هستن! هر دو از نظر ما بی نظم هستن! حالا یکی یه کم بیشتر یکی یه کم کمتر. اما هیچ کدوم جامد منظم نیستن که همه سرجاشون نشسته باشن. 
مثال دیگه مواد مغناطیسی است. اینا توشون کلی ذره دارن که هر کدوم یک جهتی داره برای خودش- به زبان فنی اسپین. حالا دما خیلی زیاد باشه ماده‌مون که مغناطیسی نیست! یعنی مثلن آهن مذاب در دمای بالا براش سخته منظم باشه، به هم ریخته است. پس اون جهت‌ها همه تصادفی اند و بالطبع متوسط‌شون صفر و ماده مغناطیسی نیست! اما اگر دما پائین بیاد اوضاع عوض میشه، اینا می‌تونن یه جهت خاص رو بگیرن. به این میگن شکست خود به خودی تقارن

مردم با همین میخ و چکش سراغ هر تغییر فازی می‌رفتن و سربلند بیرون می‌اومدن. اما یهو آقای فون‌کیلیتزینگ یه چیز جالب دید: اگر یه مشت الکترون رو به دوبُعد محدود کنید، و بَعد میدان مغناطیسی روشن کنی (این همون روشی است که باهاش فهمیدن حامل بار، بارش منفی است) رسانندگی (همون جریان به ولتاژ با یک مشت ضریب) بهت یک سری عدد میده:۱ و۲ و۳ و … بعدتر عددهای کسری عجیب اما خاصی هم پیدا شدن. اما این طور نیست که شما بگی ۱۷.۳۰۸ بعد ما بهت بگیم آهان، میدان فلان رسانندگی اینه که تو می خوای! اعداد طبیعی یا کسری خاص! هرکی به هرکی نیست!

چند خم بسته با Winding Numberهای متفاوت.

چند خم بسته با Winding Numberهای متفاوت.

خب مردم هی دست به دهان بودن که چه طور میشه وسط این همه خطای آزمایش و کثیفی نمونه و غیره این اعداد این قدر خاص باشن؟! چرا این همه چیز پیوسته عوض میشه اما اینا نه؟!!

خب بالطبع اول سعی کردن که همون میخ و چکش رو استفاده کنن. اما این درب بسته بود. اما جناب تاولز و همکاراش نشون دادن که میشه اون اعداد رو محاسبه کرد. اینکه اون اعداد واقعن در اون مساله که بالا گفتم (اثر کوانتومی هال ) از کجا و چطور به دست میاد، رو کاریش نداریم، اما میشه یه مثال ساده زد؛ یک خم بسته‌ی دلخواه روی صفحه بکشید. بعد ببینید این خم چند بار مبدا رو دور زده؟! فرض کنید حالا یه میله ی بزرگ دارید و این خم شما در واقع یک ریسمان است. شما اون عدد (winding number) ریسمان رو مگر با بُریدن ریسمان نمی تونید تغییر بدید.

از سوی دیگه اون عدد همیشه یک عدد طبیعی است: ۰ و ۱ و غیره. حالا در اون دنیا این ریسمان چیز عجیب غریب تری است!

فازهای مختلف ماده - نگاره از nobelprize.org/

فازهای مختلف ماده – نگاره از nobelprize.org

ولی خب کلیت داستان همین است. یعنی یک عددی هست که اتفاقن در برخی موارد همین تعداد دور زدن‌های یک خم بسته حول مبدا است و جز با بُریدن نمیشه تغییرش داد. این بُریدن‌ها در واقع در دنیای جدید به معنای همون گذار فاز هستن، انگار که مایع می‌شد جامد! اینجا هم وقتی ریسمان مربوطه بُریده شد و دوباره بسته شد عدد می‌تونه تغییر کنه! به زبان فنی‌تر در واقع این عدد تا زمانی که سیستم گاف انرژی داشته باشه نمی‌تونه تغییر کنه، و اگر گاف بسته و دوباره باز بشه(مثلن با تغییر یک کمیت مثل میدان مغناطیسی) عدد مورد نظر ما می‌تونه عوض بشه. به خاطر این خواص خیلی سفت و سختش هست که بهش میگن توپولوژیک!پس مساله ی اول حل شد 🙂 تاولز تونست با همکاراش نشون بده که اون اعداد از کجا میان. البته بگم اعداد کسری هنوز حل نشده هستن! خب این حالتهای ماده و این تغییر اعداد، این تغییر نظم(!!!) با یک سری عدد توصیف میشه و توپولوژی!

حالا یک چییز دیگه: همون اسپین‌ها رو در نظر بگیرید. حالا فرض کنید دو بُعد داریم. میشه حالتی رو تصور کرد که همه‌ی اسپین‌هایی که دورمبدا هستن به سمت خارج هستن! عین خطوط میدان یک بار الکتریکی! اصلن همین مثال خوبه! شما می گید ئه!! همه به سمت بیرون هستن پس باید یه چیزی اونجا باشه! حالا اینجا نمی گیم بار، میگیم گردابه! و به جای مقدار بار همون winding number  . آقای تاولز و کاسترلیتز نشون دادن که در دو بُعد جز اون حالت بی نظم که همه می دونستن باید اونجا باشه میشه حالاتی داشت که مثلن دو تا گردابه داشته باشه! پس دوباره سرو کله ی این اعداد طبیعی و توپولوژی و فازها پیدا شدن! این بار شما می‌تونید چند تا گردابه‌ داشته باشید، مضاف بر اون هرگردابه یک عددبرای خودش داره که شبیه به همون بار است! این گردابه‌ها و این نوع تغییر فاز در ابرشاره‌ی هلیوم دیده شد!

گذار فاز تپولوژیک

گذار فاز تپولوژیک – نگاره از nobelprize.org

اما جناب هالدین! اون گاز الکترونی و میدان مغناطیسی رو که بالا گفتم در نظر بگیرید! اونا مثلن یه ویژگی خیلی جالب که دارن این است که جریان الکتریکی از روی لبه‌ها حرکت میکنه! و خب رسانندگی ش هم اون اعداد خاص رو میده! 
تا مدت ها مردم فکر می کردن که خب میدان مغناطیسی قوی خیلی مهمه!اما هالدین در یکی از کارهاش یک مدل تئوری ساخت که بدون شار مغناطیسی خالص همون خواص رو داشت! این مدل دو سال پیش در آزمایشگاه realize شد! پس همه فهمیدن چیزای مهمتری تا میدان مغناطیسی هست!  در واقع این بنیان کاری است که در سال ۲۰۰۶،  Kane  و Mele روی گرافین کردن و عایق‌های توپولوژیک رو باز کردن. این‌ها موادی هستند که علی‌رغم اینکه نارسانا هستند، یعین در حجم‌شون گاف هست و رسانش نمی‌تونیم داشته باشیم، روی مرز‌هاشون می‌تونن رسانش داشته باشن! برای همین است که میگن عایق توپولوژیک! عایق trivial میشه همون عایق معمولی، نه تو حجم و نه تو سطح رسانش نداره! اما توپولوژیک‌ها روی سطح رسانش دارن!

اما هالدین کارهایی رو هم روی مدل‌های اسپینی کرده که تاثیر گذاشت روی چیزی که الآن بهش میگن symmetry protected topological phase. هالدین مدل‌هایی رو نگاه کرد که مردم پیش از او هم بررسی کرده بودن! همه فکر می‌کردن این مدل‌های اسپینی Gapless هستن، یعنی با کمی انرژی می‌تونید توش برانگیختگی درست کنید! این در واقع برای اسپین ۱/۲ نشون داده بودن و فکر می کردن برای اسپین‌های بالاتر هم درسته! اما هالدین نشون داد که برای اسپین‌های صحیح مثل ۱ باید دقت کرد و چیزهای دیگه‌ای هم هست که باعث میشن سیستم گاف انرژی داشته باشه! این سیستم‌ها و این خواص هم توپولوژیک هستن و به این راحتی از بین نمی‌رن اما همون‌طور که از اسم‌شون برمیاد یک تقارنی رو لازم دارن، مثلن دوران! یعنی اون خواص توپولوژیک هستند مادامی که شما اون تقارن رو حفظ کنی!

گذار کاسترلیتز تاولز رو تو کتاب کاردر خوب توضیح داده. اینا هم یه سری مقاله در مورد کارهای توپولوژیک و اثر هال:

اینجا هم خوب توضیح داده شده.

این ویدیو رو ببینید:

 

  لطفا قبل از شروع این پست، پست «ترجمه بهترین‌ آثار کوتاه‌ فاینمن!» را  بخوانید. ترجمه این مقاله کاری از گروه ترجمه دانشجویان فیزیک امیرکبیر است. شما می‌تواند این مقاله به صورت فایل pdf دانلود کنید.

ویدیوی لذت درک امور:

 

  • زیبایی یک گل

    زیبایی یک گل

    زیبایی یک گل (برای بزرگ‌نمایی کلیک کنید)

من دوست هنرمندی دارم، او بعضی اوقات دیدگاه هایی دارد که من زیاد با آن ها موافق نیستم. مثلا گلی را به دستش می گیرد و می گوید: « ببین چقدر زیباست » و من هم با او موافقم، در ادامه می گوید « می بینی، من به عنوان یک هنرمند زیبایی گل را می بینم. اما تو به عنوان یک دانشمند، آن را تکه تکه می کنی و از بین می بری». به نظر من او یک جور دیوانه است. اولا من معتقدم آن زیبایی را که او می گوید همه می توانند ببینند، از جمله من، شاید زیبایی شناسی من به اندازه او قوی نباشد ولی برای من هم زیبایی گل تحسین برانگیز است. و این در حالی است که من در مورد گل چیزهای بیشتری می‌بینم. من سلول ها و واکنش ها پیچیده‌ای که درون آنها اتفاق می افتد را می توانم تصور کنم و آنها هم به نوبه خود دارای زیبایی هستند. منظورم اینست که زیبایی فقط در ابعاد سانتی متری نیست و در ابعاد کوچکتر و در ساختارهای داخلی نیز زیبایی وجود دارد. همچنین در فرآیندهای داخلی این گل رنگ ها طوری آمیخته شده اند که حشرات را برای گرده افشانی جذب کنند. و این فرآیند جالبست چون این را نشان می دهد که حشره ها هم رنگ را می بینند. یک سوال پیش می آید: آیا این حس زیبایی شناسی در ساختارهای ریزتر هم وجود دارد؟ چرا زیباست؟ تمامی این سوالات گوناگون و جالب نشان می دهد که دانسته های علمی به هیجان، رموز و هیبت یک گل اضافه می کند؛ نمی توانم بفهمم که چگونه کاهش می دهد.

اجتناب از دروس علوم انسانی

من همواره آدمی تک بعدی بوده ام و فقط در جهت علمی تلاش می نمودم و در زمان جوانی تمام تمرکزم بر روی این یک بعد بود. وقت و حوصله زیادی برای یاد گرفتن چیزی که علوم انسانی نامیده می شود نداشتم، اگرچه در دانشگاه، دانشجو ناچار است تعدادی دروس علوم انسانی اخذ کند. من تمام تلاشم را می کردم که از یاد گرفتن هر چیز در این مورد و کار کردن روی آن دوری نمایم. بعد از آن، وقتی سنم بیشتر شد قدری سخت گیری من در این زمینه کاهش یافت و یاد گرفتم که در این مورد مطالعه کنم. اما راستش هنوز آدمی بیشتر یک بعدی هستم و در موارد دیگری غیر از این یک بعد (بعد علمی) چیز زیادی نمی دانم. هوش من محدود است و از آن در یک جهت خاص استفاده می کنم.

  • تیراناسوروس در پنجره

وقتی پسر بچه بودم در خانه مان یک دایره المعارف بریتانیکا داشتیم و پدرم عادت داشت مرا روی پایش بنشاند و برایم از دایره المعارف بخواند. ما با هم درباره دایناسورها حرف می زدیم . شاید هم در مورد برونتوزوروس یا تیراناسوروس رِکس صحبت می کردیم، به عنوان مثال چنین می خواند: « این موجود 25 فوت قد دارد و عرض سر آن 6 فوت است » و همین جا صحبتش را قطع می کرد و می گفت «ببینم مفهوم آن چیست. یعنی اگر آن در همین حیاط روبروی ما می ایستاد، قدش آن قدر بلند بود که می توانست سرش را از پنجره داخل کند. اما نه کاملا، چون سر او کمی عریض تر از پنجره بود و پنجره را می شکست».

هر چیزی را که با هم می خواندیم، به بهترین نحوی که بتواند به ذهنیت ما نزدیک تر باشد تصور می کردیم. این کار باعث شد یاد بگیرم که عمل کنم و هر چیزی را که می خوانم سعی کنم مفهوم و معنای آن را بفهمم. (با خنده) من عادت داشتم دایره المعارف را وقتی یک پسر بچه بودم بخوانم و آن را تعبیر کنم، خیلی هیجان انگیز و جالب بود که تصور گردد حیواناتی با این ابعاد وجود دارند. من از این که یکی از آنها از پنجره داخل شود نمی ترسیدم اما فکر کردم خیلی خیلی جالب بود که همه آنها منقرض شدند و در آن زمان هیچ کس نمی دانست چرا.

ما در نیویورک زندگی می کردیم، و معمولا تابستان ها به کوه های کَتسکیل می رفتیم. کوه های کتسکیل جایی بود که مردم در تابستان به آن جا می رفتند. آنجا مردم زیادی بودند لیکن پدرها در طول هفته برای کار کردن به نیویورك باز می گشتند و فقط آخر هفته ها دوباره به کوه می رفتند. وقتی پدرم از نیویورك می آمد مرا به میان جنگل می برد و برای من از چیزهای مختلف و جالبی که لابه‌لای جنگل اتفاق می افتاد صحبت می کرد – که بعد برایتان تعریف می کنم – اما مادرهای دیگر که این رفتار پدرم را می دیدند قطعا فکر می کردند که این کار خیلی خوبست و پدرهای دیگر هم باید پسرهایشان را برای قدم زندن به جنگل ببرند. آنها روی این موضوع کار کردند ولی در ابتدا به نتیجه‌ای نرسیدند. برای همین از پدر من خواستند که همه‌ی بچه ها را با خودش به جنگل ببرد، اما او قبول نکرد زیرا او با من یک ارتباط بخصوصی داشت و ما با هم یک امر شخصی در بین داشتیم. بالاخره بقیه پدرها مجبور شدند بچه هایشان را از هفته آینده برای قدم زدن به جنگل ببرند. دوشنبه‌ی بعد وقتی همه‌ی [پدرها] به سر کار برگشتند، بچه ها داشتند در مزرعه بازی می کردند که یکی از بچه ها به من گفت این پرنده را ببین، آیا می دانی از چه نوعی است و من گفتم: « کوچکترین نظری راجع به نوع این پرنده ندارم ». او ادامه داد «یک پرنده آوازه خوان گلو قهوه‌ای است. پدرت چیزی راجع به اون بهت نگفته؟ ». ولی اینطور نبود: پدرم به من مطالبی یاد داده بود. او در حالی که به پرنده نگاه می کرد گفت: « می دونی که این چه پرنده‌ای است؟ یک پرنده‌ی آواز خوان گلو قهوه‌ایست؛ اما به پرتقالی به آن … می گویند، به ایتالیایی …، به چینی …، به ژاپنی …، و غیره. و حالا تو در هر زبانی که بخواهی اسم آن پرنده را می دانی اما مطلقا هیچ چیز در مورد این پرنده نمی دانی. تو فقط فهمیدی که آدم ها در مکان‌های مختلف آن را چه نامیده اند». و سپس از من خواست که با هم به تماشای پرنده ها بنشینیم.

او به من یاد داده بود که به هر چیزی توجه کنم. یک روز وقتی که داشتم با قطار اسباب بازیم بازی می کردم، (از همان قطارهایی که بچه ها آن را روی ریل می کشند.) یادم می آید که داخل واگن یک توپ بود، وقتی که واگن را می کشیدم چیزی در مورد حرکت توپ فهمیدم، به پیش پدرم رفتم و به او گفتم: « نگاه کن بابا من یه چیزی رو فهمیدم. وقتی که واگنرا می کشم توپ به عقب واگن حرکت می کند و وقتی ناگهان آن را متوقف می کنم توپ به سمت جلو حرکت می کند.» از او پرسیدم که چرا این اتفاق می افتد او پاسخ داد که دلیلش را هیچکس نمی داند. و ادامه داد: « قانون کلی اینه که چیزهایی که در حال حرکت اند سعی می کنند به حرکت خودشان ادامه بدهند و چیزهایی که ساکن اند تمایل دارند که ساکن باقی بمانند مگر اینکه شما آنها را هل بدهید که این تمایل اینرسی نام دارد و هیچکس نمی داند که چرا وجود دارد ». حالا من به درك عمیقی رسیده بودم چون پدرم فقط یک اسم به من یاد نداد، او تفاوت بین دانستن اسم یک چیز و خود آن را می دانست. چیزی که من هم خیلی زود یاد گرفتم. پدرم ادامه داد: « اگر دقیق نگاه کنی می فهمی که این توپ نیست که به عقب واگن می رود بلکه این عقب واگن است که تو داری بر خلاف حرکت توپ می کشی. یعنی توپ می ایستد یا حتی به خاطر اصطکاك به جلو حرکت می کند و به عقب نمی رود ». من به طرف واگن کوچکم دویدم و دوباره توپ را روی واگن گذاشتم و آن را از زیرش کشیدم در حالی که از کنار به آن نگاه می کردم دیدم که پدرم درست گفته است. وقتی که واگن را به جلو می کشیدم توپ اصلا به عقب نمی رفت. توپ نسبت به واگن به عقب می رفت ولی نسبت به بیننده کمی به جلو می رفت و در واقع عقب واگن بود که به آن می رسید. با این روش بود که من توسط پدرم تعلیم دیدم، با این نوع مثال‌ها و فقط با بحث های جالب و دوست داشتنی، بدون هرگونه فشار و اجباری من مورد آموزش پدرم قرار گرفتم.

Continue reading