رفتن به نوشته‌ها

برچسب: تلسکوپ

جایگاه علم داده در نجوم امروزی

بخش ششم از سری گفت‌وگوهای «پشت‌پرده نجوم»

«پشت‌پرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفت‌و‌گو شده و هم‌چنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبه‌علم داشته است.

امروزه با پیشرفت تکنولوژی، نقش داده‌ها در حوزه‌های مختلف علم، از‌جمله علم نجوم، بیش‌از‌پیش نمایان شده است. به‌نظر می‌رسد ابزار برنامه‌نویسی و شبیه‌سازی در آینده‌ای نزدیک، به یکی از مهارت‌های مهم و ضروری برای پژوهش در علم (نجوم) تبدیل شود؛ کما اینکه هم‌اکنون نیز تا حدی همین‌گونه است. در ششمین بخش از «پشت پرده علم» با علیرضا وفایی صدر، پژوهشگر فیزیک در مقطع پسا‌دکتری در IPM، در‌مورد جایگاه علم داده در نجوم امروزی گفت‌و‌گو کرده‌ایم. ویدیو و صوت این گفت‌وگو ضبط شده و در ادامه این متن می‌توانید آن را ببینید و بشنوید.

در علم نجوم امروزی، به‌دلیل ساخت تلسکوپ‌ها و آشکارساز‌های بزرگ متعدد ـ و ترکیب تلسکوپ‌های بزرگ با یکدیگر با استفاده از روش تداخل‌سنجی، برای ساخت تلسکوپ‌های مجازیِ حتی بزرگ‌تر ـ و هم‌چنین افزایش کیفیت و رزولوشن تصاویر دریافتی از آسمان، حجم داده‌ها بسیار افزایش پیدا کرده و کار با داده‌های کلان، به مسئله‌ای مهم تبدیل شده است. به‌عنوان مثال، برای ثبت اولین تصویر از یک سیاه‌چاله که سال پیش توسط تیم تلسکوپ افق رویداد منتشر شد، هشت آرایه‌ از تلسکوپ‌های رادیویی، حدود یک هفته رصد انجام دادند که منجر به دریافت داده‌ای با حجم حدود ۲۷ پتا‌بایت شد و کار انتقال، پاکسازی و تحلیل آن حدود ۲ سال طول کشید (برای اطلاعات بیشتر درمورد جزئیات ثبت این تصویر، این نوشته را بخوانید)! 

در گفت‌وگویمان با علیرضا وفایی‌صدر، به مسائل مختلفی در ‌زمینه نقش داده در نجوم پرداخته‌ایم؛ از جمله اینکه: چطور می‌توان داده‌های کلان را سرو‌سامان داد؟ ماشین‌‌ها (کامپیوترها) چه جنس کارهایی را در زمینه نجوم می‌توانند برای ما انجام دهند؟ همکاری‌های بین‌المللی چه نقشی در این زمینه دارند؟

بخش ششم «پشت‌ پرده نجوم»
ویدیوی گفت‌و‌گوی محمد‌مهدی موسوی (فیزیک‌پیشه) و علیرضا وفایی‌صدر (پژوهشگر فیزیک در مقطع پسادکتری در IPM) درمورد جایگاه علم داده در نجوم امروزی

به این گفت‌وگو گوش دهید:

مسیر چهارصد‌ساله تلسکوپ‌ها

از هزاران سال پیش، بشر با مشاهده آسمان بالای سر، سعی کرد با رصدهای مداوم، الگوهای نهفته در آن را پیدا کرده تا بتواند پدیده‌های آسمانی را پیش‌بینی کند و مدلی برای کیهان ارايه دهد. در طول تمام این اعصار، تنها ابزار برای دریافت اطلاعات از آسمان یا همان نورِ‌ اجرام آسمانی، چشم انسان بود. حتی بیش از صد ابزار نجومی هم که در سده‌های میانه توسط دانشمندان اسلامی ساخته شد، تنها دقت اندازه‌گیری موقعیت اجرام و محاسبات را افزایش می‌داد (برای آشنایی با تاریخ نجوم پیش از دوره نوزایی به اینجا مراجعه کنید). اما با اختراع تلسکوپ در قرن هفدهم میلادی، نقطه عطفی در تاریخ علم اخترشناسی رقم خورد؛ چرا که افق تاز‌ه‌ای را  در مقابل بشر، برای دستیابی به داده‌های بیشتر و آزمودن مدل‌های اخترشناسی گشود. 

آن‌طور که در تاریخ مشهور است، اختراع تلسکوپ، اولین بار در ۱۶۰۸ میلادی توسط یک عینک‌ساز هلندی به نام هانس لیپرشی ثبت شده است. در همان سال خبر این اختراع به گالیلئو گالیله رسید و وی توانست با بهبود دادن طراحی آن، از تلسکوپی که ساخته بود، نخستین بار برای دیدن آسمان استفاده کند. وی نتیجه اکتشافات خود، از رصدها‌یی که با تلسکوپ انجام داده بود را در ۱۶۱۰ میلادی در کتابی با عنوان «فرستاده ستاره‌ای» (Starry Messenger) منتشر کرد. این اکتشافات می‌توانستند شواهدی باشند بر درستی مدل خورشید-محوری و رد فلسفه ارسطویی: گالیله برای نخستین بار توانست لکه‌های خورشیدی و هم‌چنین کوه‌ها و دره‌های سطح ماه را مشاهده کند. این به معنی این بود که اجرام سماوی برخلاف نظر رایج، اجرامی ایده‌آل و بی‌هیچ عیب و نقص نیستند. هم‌چنین گالیله چهار قمر مشتری را که امروزه به «قمرهای گالیله‌ای» معروفند، رصد کرد که در واقع نشان می‌داد، مرکزهای حرکت دیگری نیز وجود دارند. بنابراین ماه می‌تواند در عین حال که به دور زمین می‌چرخد، به دور خورشید نیز حرکت کند. پدیده دیگری که اولین‌بار با استفاده از تلسکوپ دیده شد، رویت همه فازهای هلال سیاره زهره بود. این مشاهده به‌خوبی با مدل خورشید-مرکزی سازگاری داشت؛ در سال‌های بعدی، کارهای نظری نیوتن در رابطه با مفهوم اینرسی و قانون جهانی جاذبه موجب ابطال مدل زمین-مرکزی و مقبولیت مدل کپرنیکی شد. بنابراین، اختراع تلسکوپ در همان سال‌های ابتدایی، نقشی مهم در درک بهتر بشر از جهان ایفا کرد. 

از چهارصد سال پیش تاکنون، طراحی‌های مختلفی برای تلسکوپ‌ها پیشنهاد شده است. پیشرفت‌های صورت گرفته در زمینه طراحی و ساخت تلسکوپ‌ها، موجب شده‌اند تا بسیاری از ابیراهی‌های اپتیکی مربوطه، اصلاح شوند. در ادامه، سعی می‌کنیم با رویکردی تاریخی، این مسیر را نشان دهیم و در این بستر، با طراحی‌های مختلف تلسکوپ‌ها تا حدودی آشنا شویم.

 عدسی‌هایی که رو به آسمان نشانه رفتند!

تلسکوپ‌هایی که در ساختار اصلی‌شان از عدسی‌ها استفاده می‌شود، به «تلسکوپ‌های شکستی» موسومند. تلسکوپ‌های شکستی، از یک عدسی شیئی و یک عدسی چشمی تشکیل شده‌اند که کمک می‌کنند نور بیشتری در چشم انسان کانونی شود، تا تصویر روشن‌تر و شفاف‌تری از جرم آسمانی به‌دست آید. تلسکوپی که لیپرشی و گالیله ساختند، از یک عدسی محدب به عنوان شیئی و یک عدسی مقعر به عنوان چشمی تشکیل شده بود. در این نوع تلسکوپ که امروزه با عنوان «تلسکوپ گالیله‌ای» شناخته می‌شود،‌ عدسی محدب، پرتوها را کانونی می‌کند؛ اما عدسی مقعر، پیش از نقطه کانونی عدسی شیئی، مسیر پرتو‌ها را تغییر می‌دهد و آن‌ها را به‌صورت موازی درمی‌آورد تا وارد چشم شوند. تصویر به‌دست آمده، بزرگ‌نمایی‌شده و به‌صورت مستقیم است. گالیله توانست در نهایت، تلسکوپی با قطر عدسی شیئی ۳۷ سانتی‌متر و طول حدود ۱ متر بسازد. این تلسکوپ قابلیت بزرگ‌نمایی ۲۳ برابر را داشت.

طرحی شماتیک از یک تلسکوپ گالیله‌ای

در ۱۶۱۱ میلادی، یوهانس کپلر، طراحی جدیدی برای ساخت تلسکوپ ارائه داد که در آن، از دو عدسی محدب استفاده می‌شد. عدسی محدب چشمی، به اندازه فاصله کانونی‌اش، بعد از نقطه کانونی عدسی اولیه قرار می‌گیرد و نور را موازی می‌کند. مزیت این نوع طراحی نسبت به تلسکوپ گالیله‌ای،‌ میدان دید بسیار بزرگتر آن است. هرچند، تصویری که بدست می‌آيد، به‌صورت وارون می‌باشد. در سال‌های بعد، تلسکوپ‌هایی با این طراحی که به «تلسکوپ‌های کپلری» معروف‌اند، توسط افرادی مانند کریستف شاینر و ویلیام گَسکویگن ساخته شدند. اما نخستین تلسکوپ کپلری قدرتمند را کریستین هویگنس، در ۱۶۵۵ میلادی ساخت. این تلسکوپ، دارای عدسی شیئی‌ به قطر ۵۷ میلی‌متر و فاصله کانونی ۳.۷ متر بود. هویگنس، با استفاده از این تلسکوپ، توانست درخشان‌ترین قمر زحل، یعنی تیتان را کشف کند و برای نخستین‌بار، در ۱۶۵۹ میلادی، توصیف درستی از حلقه‌های زحل ارائه دهد.

طرحی شماتیک از یک تلسکوپ کپلری

اجسام از آنچه در آینه می‌بینید، از شما دورتر هستند!

 نوع دیگری از تلسکوپ‌ها، «تلسکوپ‌های بازتابی‌» هستند که در آن به‌ جای عدسی، از آینه‌ها استفاده ‌می‌شود. اگرچه خودِِ گالیله نیز از این موضوع آگاه بود که می‌توان به جای عدسی از آینه‌های انحنادار نیز استفاده کرد، اما شاید بتوان جِیمز گریگوری را نخستین کسی دانست که به طور مفصل به این موضوع پرداخت و تلسکوپی متشکل از دو آینه طراحی کرد؛ هرچند هیچ‌گاه نتوانست ایده خود را عملی کند و کسی را متقاعد سازد تا تلسکوپی با این طراحی بسازد. امروزه این نوع تلسکوپ، با عنوان «تلسکوپ‌های گریگوری» شناخته می‌شوند؛ گریگوری مدعی شد که این نوع طراحی می‌تواند مشکل ابیراهی رنگی و کروی تلسکوپ‌ها را رفع کند.

تلسکوپ‌های گریگوری، از دو آینه مقعر تشکیل شده‌اند. آینه اولیه، از نوع سهمی‌‌گون و آینه ثانویه، از نوع بیضی‌‌گون هستند؛ به‌طوری که پرتوها از آینه اولیه بازتاب داده شده و همگرا می‌شوند؛ و آینه ثانویه که کمی بعد از نقطه کانونی واقع شده است، پرتوها را از میان حفره‌ای که در وسط آینه اولیه قرار دارد، در بیرون از تلسکوپ، کانونی می‌کند. 

طرحی شماتیک از یک تلسکوپ گریگوری

  در ۱۶۶۶ میلادی، آيزاک نیوتن بر پایه نظریه خود در مورد شکست نور و رنگ‌ها، به این نتیجه رسید که مشکل ابیراهی رنگی تلسکوپ‌های شکستی، به‌دلیل کاستی‌ها در ساخت عدسی نیست. بلکه همه مواد شکستی، باعث شکست نور می‌شوند و دارای این ابیراهی هستند. بنابراین پرداختن به ساخت تلسکوپ‌های شکستی، بی‌فایده هست. البته بعدها، با الگوگیری از ساختمان چشم انسان، افرادی مانند چِستر مور هال و جان دولاند، توانستند با استفاده از ترکیب لنزهایی متشکل از مواد شکستی مختلف، لنزهایی بدون ابیراهی رنگی، موسوم به لنزهای بی‌رنگ بسازند.

نیوتن در ۱۶۶۸ میلادی، نخستین تلسکوپ خود را ساخت. تلسکوپ او شبیه به تلسکوپ گریگوری بود، با این تفاوت که بجای آینه ثانویه مقعر، از یک آینه تخت استفاده کرد. نیوتن برای سادگی، از یک آینه کروی برای آینه شیئی استفاده کرد. این آینه از جنس فلز اسپکیولوم (آلیاژی از قلع و مس) ساخته شده، قطر آن حدود ۳.۳ سانتی‌متر و فاصله کانونی آن ۱۶.۵ سانتی‌متر بود. او توانست با این تلسکوپ، قمرهای گالیله‌ای مشتری و فازهای هلال ماه را مشاهده کند. تلسکوپ نیوتنی، نسبت به تلسکوپ‌های شکستی، دارای مزیت‌های زیر بود:

۱) ابیراهی رنگی نداشت.

۲) ساخت آن بسیار آسان‌تر بود.

۳) فاصله کانونی کوتاه‌تری نسبت به مشابه نمونه شکستی خود داشت که باعث می‌شد، جمع و جور‌تر و قابلیت حمل راحت‌تری داشته باشد.

۴) ساخت آن ارزان‌تر بود.

۵) میدان دید بزرگ‌تری داشت. 

نوع دیگری از تلسکوپ‌های بازتابی، «تلسکوپ‌های کاسگرینی» هستند که توسط لاورنت کاسگرین در ۱۶۷۲ میلادی پیشنهاد داده شدند. این تلسکوپ، از یک آینه اولیه بیضی‌گون مقعر و یک آینه ثانویه هذلولی‌گون محدب، تشکیل شده است. آینه ثانویه، در جایی قبل از فاصله کانونی آینه اولیه قرار گرفته و پرتوهای نور را از حفره‌ای که در وسط آن قرار دارد، به بیرون هدایت و کانونی می‌کند. این امر، موجب آن می‌شود تا بتوان تلسکوپ‌هایی ساخت که با طول کوتاه‌تر، فاصله‌‌های کانونی موثرِ بلندتری برای آینه اولیه داشته باشند. هم‌چنین، میدان دید نیز افزایش می‌‌یابد.

طرحی شماتیک از یک تلسکوپ کاسگرینی

در سال‌های بعد، پیشرفت‌هایی در زمینه طراحی و ساخت آینه‌های بیضی‌گون و هذلولی‌گون، از جنس فلز اسپکیولوم صورت گرفت. هم‌چنین در بین سال‌های ۱۷۷۸ تا ۱۷۸۹ میلادی، ویلیام هرشل تلسکوپ‌های بازتابی بزرگی ساخت که بزرگترین آن‌ها تلسکوپی بود که ۱۲۰ سانتی‌متر قطر و ۱۲ متر طول داشت. این تلسکوپ تا ۵۰ سال بعدی، بزرگترین تلسکوپ دنیا بود. او برای این‌که بازتاب ضعیفِ نور، توسط آینه‌های اسپکیولومی را بهبود بخشد، آینه ثانویه را حذف کرد و به‌جای آن سعی کرد با چرخاندن آینه اصلی، نور را در جایی کانونی کند که بتواند به‌طور مستقیم، تصویر را مشاهده کند. این نوع تلسکوپ، ‌بعدها به «تلسکوپ هرشلی» معروف شد.

هرشل توانست با تلسکوپ‌هایی که ساخته بود، برای نخستین‌ بار سیاره اورانوس و چند قمر، از جمله انسلادوس و میماس از اقمار زحل را کشف کند. هم‌چنین وی توانست چند کاتالوگ‌ از چند هزار جرم عمق آسمان تهیه کند که شامل خوشه‌های ستاره‌ای و سحابی‌ها بودند؛ بسیاری از اجرامی که هرشل آن‌ها را سحابی نامیده بود، بعد‌ها در قرن بیستم، با محاسبه فاصله‌شان توسط جان اسلیفر و ادوین هابل، نشان داده شد، در واقع خود، کهکشان‌هایی هستند که در خارج از راه شیری قرار دارند.

نقاشی از تلسکوپ ۱۲ متری ویلیام هرشل، با قطر عدسی شیئی ۱۲۰ سانتی‌متر

همان طور که اشاره شد، میزان بازتاب نور از آینه‌هایی که از جنس فلز آلیاژی اسپکیولوم بودند، مطلوب نبود. به‌علاوه، این نوع آینه‌ها پس از مدتی تیره می‌شدند و کیفیت خود را از دست می‌دادند؛ بنابراین نیاز بود تا با آینه‌ای جدید تعویض شوند. در پی حل این مشکل،‌ در ۱۸۵۷ میلادی، کارل آگوست فون استینهیل و لئون فوکو، توانستند با ابداع روشی، این مشکل را تا حدی حل کنند؛ آن‌ها طی فرآیندی، یک لایه از نقره را بر روی یک آینه شیشه‌ای لایه‌نشانی کردند. این کار نه تنها میزان بازتاب و ماندگاری را افزایش می‌داد، بلکه هم‌چنین این مزیت را داشت که در صورت نیاز، این لایه برداشته شده و دوباره لایه‌نشانی شود؛ بدون این‌که لازم باشد شکل آینه شیشه‌ای زیرین، تغییر یابد. در سال‌های بعد، تلسکوپ‌های بسیار بزرگی با استفاده از این نوع آینه‌ها ساخته شدند. پیشرفت دیگر در زمینه آینه‌های تلسکوپ، در ۱۹۳۲ میلادی حاصل شد؛ جان دوناوان استرانگ، با استفاده از تکنیک تبخیر خلا گرمایی، توانست آلومینیوم را روی آینه لایه‌نشانی کند. مزیت لایه آلومینیومی این است که ماندگاری بیشتری نسبت به نقره دارد.

از جمله مهم‌ترین طراحی‌های دیگری که در طول این سالیان، برای تلسکوپ‌های بازتابی پیشنهاد شدند، «تلسکوپ‌های ریچی-کرتین» هستند. این نوع تلسکوپ، در دهه اول قرن بیستم میلادی، توسط جورج ویلیام ریچی و هِنری کرتین معرفی شد. ساختار کلی تلسکوپ ریچی-کرتین، مانند تلسکوپ‌های کاسگرینی است، با این تفاوت که در این مدل، هر دو آینه از نوع هذلولی‌گون هستند. این امر موجب می‌شود، علاوه بر ابیراهی کروی، ابیراهی کما یا اشک نیز تصحیح شود. بسیاری از تلسکوپ‌های بزرگ امروزی، مانند تلسکوپ فضایی هابل، تلسکوپ‌های کِک و تلسکوپ وی‌ال‌تی، از نوع تلسکوپ‌های ریچی-کرتین هستند.

همیشه راه سومی نیز وجود دارد!

علاوه بر تلسکوپ‌های شکستی و بازتابی، نوع دیگری از تلسکوپ‌ها نیز وجود دارند که در طراحی‌شان، ترکیبی از عدسی‌ها و آينه‌ها به‌کار رفته‌ است. این نوع تلسکوپ‌ها را کاتادیوپتریک یا «تلسکوپ‌های لنز-آیینه‌ای» می‌نامند. از جمله معروف‌ترین آن‌ها می‌توان به تلسکوپ‌های «اشمیت-کاسگرین» و «ماکستوف-کاسگرین» اشاره کرد.

تلسکوپ‌های اشمیت-کاسگرین، از دو آینه کروی مقعر و محدب تشکیل شده‌اند، که در موقعیت آینه‌های یک تلسکوپ کاسگرین قرار دارند. به‌علاوه، یک «صفحه اصلاح‌گرِ اشمیت»، در مسیر پرتوهای ورودی و در محل آينه ثانویه قرار می‌گیرد. این صفحه، در واقع یک نوع عدسی نا‌کروی است که دارای ابیراهی کرویِ برابر، اما مخالفِ ابیراهی کروی آینه اولیه می‌باشد؛ بنابراین، از این طریق ابیراهی کروی اصلاح می‌شود. به علت راحتی ساخت آینه‌های کروی، این تلسکوپ بیشتر در بین منجمان آماتور طرفدار دارد.

طرحی شماتیک از یک تلسکوپ اشمیت-کاسگرین

   تلسکوپ‌های ماکستوف، نخستین بار توسط دیمیتری دیمیتریویچ ماکستوف، در ۱۹۴۱ اختراع شد. او با الگوگیری از تلسکوپ اشمیت، از یک عدسی هلالی کاو برای اصلاح آینه کروی استفاده کرد. این صفحه اصلاح‌گر یا «پوسته اصلاح‌گر هلالی»، معمولا به‌طور کامل در گشودگی ورودی تلسکوپ قرار می‌گیرد. مزیت این طراحی این است که در آن، همه سطوح تقریبا «متقارنِ کروی» هستند. این طراحی، ابیراهی‌های نا‌هم‌محور، هم‌چون ابیراهی اشک را اصلاح می‌کند. ضمن آنکه ابیراهی رنگی نیز از بین می‌رود. تلسکوپ‌های ماکستوف را معمولا با چیدمان کاسگرینی طراحی می‌کنند. با این تفاوت که مشابه تلسکوپ‌های اشمیت-کاسگرینی، از دو آینه کروی استفاده می‌شود.

طرحی شماتیک از یک تلسکوپ ماکستوف-کاسگرین

تلسکوپ‌های امروزی

امروزه تقریبا همه تلسکوپ‌های پیشرفته از نوع بازتابی هستند؛ چرا که ساخت آینه‌های بزرگ، آسان‌تر و ارزان‌تر از عدسی‌های بزرگ می‌باشند. ضمن آن‌که تلسکوپ‌های شکستی را نمی‌توان در عمل، از یک حدی بزرگ‌تر ساخت؛ بزرگترین تلسکوپ شکستی جهان، در رصد‌خانه یِرکیز قرار دارد. قطر دهانه این تلسکوپ، ۱۰۰ سانتی‌متر می‌باشد. هر تلسکوپ شکستی بزرگ‌تر از این اندازه، ناپایدار است و تحت وزن خود، فرو‌می‌ریزد. 

تصویری از بزگترین تلسکوپ شکستی ساخت بشر در رصدخانه یِرکیز

بزرگ‌ترین تلسکوپ فعال در حال حاضر، تلسکوپ بزرگ جزایر قناری است که دارای آینه‌ای به قطر ۱۰ متر و ۴۰ سانتی‌متر می‌باشد. آینه اصلی این تلسکوپ، مانند بسیاری از تلسکوپ‌های بزرگ دیگر، شبیه به طرح لانه زنبور، از کنار هم قرار گرفتنِ آینه‌های شش ضلعی کوچک‌تر تشکیل شده است. این تکنیک باعث می‌شود تا بتوان آینه‌های بزرگتری برای تلسکوپ‌ها ساخته شوند. از دیگر تلسکوپ‌های بزرگی که در آینده نزدیک ساخته خواهند شد، می‌توان به «تلسکوپ بزرگ ماژلان» ۲۴.۵ متری، «تلسکوپ سی متری»، و «تلسکوپ بسیار بزرگ اروپایی» که آینه‌ای با قطر ۳۹.۳ متر خواهد داشت، اشاره کرد. هم‌چنین در قرن بیستم، تلسکوپ‌هایی نیز ساخته شدند که در مدارهایی به دور زمین قرار داده شوند. به این نوع تلسکوپ‌ها، «تلسکوپ‌های فضایی» گفته می‌شود که شاید معروف‌‌ترین آن‌ها، «تلسکوپ فضایی هابل» است.

مقایسه اندازه قطر دهانه تلسکوپ‌های مختلف در طول زمان

از جمله فناوری‌های مهمی که باعث شدند تا بتوان تلسکوپ‌های بزرگ‌تر و با کیفیت تصویربرداری بهترِ امروزی را ساخت، سیستم‌های «اپتیک فعال» و «اپتیک تطبیقی» بودند. یک‌ سری از عوامل هستند که باعث ایجاد خطا در داده‌های دریافتی از تلسکوپ می‌شوند؛ از جمله می‌توان به موارد زیر اشاره کرد: خطاهای ناشی از ساخت و غیر‌هم‌خط بودن المان‌های اپتیکی در تلسکوپ؛ تغییر شکل آینه، در اثر وزن خودِش؛ تغییرات دمایی و وزش باد در محیط گنبد رصدخانه و اطراف آن؛ و توربولانس یا آشفتگی جو. این عوامل روی شکل جبهه‌موج نور فرودی تاثیر می‌گذارند و شکل آن را از حالت تختْ خارج می‌کنند. با استفاده از سیستم‌های اپتیک فعال و اپتیک تطبیقی می‌توان شکل تغییر‌یافته جبهه موج را مشخص کرد و تغییراتی در جهت عکس، در شکل آینه اصلی ـ با استفاده از آرایه‌ای از بازوهای مکانیکی در پشت آن ـ یا با جابه‌جایی آینه ثانویه، به‌وجود آورد. بنابراین، از این طریق شکل جبهه موج اصلاح می‌شود و تصویر نهایی، شفاف و با‌کیفیت خواهد بود.

تصویر گرفته شده توسط تلسکوپ VLT، قبل و بعد از به‌کارگیری سیستم اپتیک تطبیقی

تفاوت بین سیستم اپتیک فعال و اپتیک تطبیقی، در فرکانس یا نرخ اِعمال تصحیحات است؛ سیستم‌های اپتیک فعال، برای اِعمال تصحیحات با فرکانس‌های پایین، و سیستم‌های اپتیک تطبیقی، برای تصحیحات با فرکانس بالا کاربرد دارند. برای نمونه، از عواملی که در بالا به آن‌ها اشاره شد، اثرات آشفتگی جو بر روی جبهه‌موج فرودی را می‌توان به‌وسیله سیستم‌ اپتیک تطبیقی اصلاح کرد؛ چرا که تغییرات جوی بسیار سریع هستند و به همین دلیل باید تصحیحات مربوطه، با فرکانس‌های بالا ـ بیشتر از ۲۰ بار در ثانیه ـ صورت گیرند. اثرات بقیه عواملی را که به آن‌ها اشاره شد، عمدتا می‌توان با استفاده از سیستم‌ اپتیک فعال اصلاح کرد.

یکی دیگر از روش‌هایی که در ساخت بعضی از تلسکوپ‌های پیشرفته به‌کار گرفته شده، روش تداخل‌سنجی است؛ برای مثال، رصد‌خانه کک، از دو تلسکوپ بازتابی که هر کدام آینه‌ای به قطر ۱۰ متر دارند، تشکیل شده است. این دو تلسکوپ می‌توانند با روش تداخل‌سنجی با یک‌دیگر ترکیب شده و در واقع یک تلسکوپ با قطر دهانه مؤثر ۸۵ متر را تشکیل دهند. این امر باعث می‌شود قدرت تفکیک، بسیار افزایش یابد و بتوان جزئیات بیشتری از آسمان را مشاهده کرد. 

دیدن نادیدنی‌ها

تلسکوپ‌هایی که تا این‌جا در موردشان صحبت شد، تلسکوپ‌هایی هستند که در محدوده نور مر‌ئی کار می‌کنند. اما همان‌طور که می‌دانیم، چشم ما تنها قادر به آشکارسازی و دیدنِ بخش بسیار کوچکی از طیف موج الکترومغناطیسی یا نوری است که از اجرام آسمانی به ما می‌رسند. اما برای مثال، همان‌گونه که به‌وسیله تصویربرداری فروسرخ، اجسام و موجودات را در تاریکی شب می‌توان مشاهده کرد، داده‌های بسیار زیادی در آسمان وجود دارند که چشم ما قادر به آشکارسازی آن‌ها نیست.

   در ۱۹۳۱ میلادی، کارل جانسکی کشف کرد که راه شیری در واقع یک منبع تولید امواج رادیویی است. بنابراین، زمینه تازه‌ای در زمینه مطالعات نجومی، به نام نجوم رادیویی به‌وجود آمد. بعد از جنگ جهانی دوم، زمینه برای ساخت تلسکوپ‌های رادیویی بزرگ فراهم شد. امروزه آرایه‌های بزرگی از تلسکوپ‌های رادیویی وجود دارند که با استفاده از روش تداخل‌سنجی، به‌مانند یک تلسکوپ رادیویی بزرگ عمل می‌کنند. اخیرا، اولین تصویر مستقیم از یک ابرسیاه‌چاله نیز توسط ترکیبی از هشت آرایه از تلسکوپ‌های رادیویی، ثبت شد (جزئیات مربوط به این مطلب را می‌توانید در اینجا بخوانید). 

   در قرن بیستم، تلسکوپ‌هایی در طول‌موج‌های دیگر نیز ساخته شدند. امروزه تلسکوپ‌هایی در محدوده طول‌موج‌های فروسرخ، فرابنفش، پرتو ایکس و گاما فعال هستند. به‌دلیل اینکه جو زمین مانع از رسیدن نور در این طول‌موج‌ها به سطح زمین می‌شود، در واقع همه آن‌ها تلسکوپ‌های فضایی هستند.

 وطنم! ای شکوه پابرجا!

 طرح رصدخانه ملی ایران، به‌عنوان اولین طرح کلان در زمینه علوم پایه در کشور، در سال ۱۳۷۹ آغاز شد و امروزه در مراحل پایانی ساخت قرار دارد. رصدخانه ملی می‌تواند نقش به‌سزایی در گسترش و پیشرفت علم نجوم در کشور داشته باشد. زمینه‌های پژوهشی این طرح می‌تواند شامل موارد زیر باشد: مطالعه چگونگی تشکیل ساختارها در کیهان، تحول کهکشان‌ها، مطالعه منشا ماده تاریک و انرژی تاریک، مطالعه فضای میان‌ستاره‌ای با استفاده از ابزار طیف‌سنجی، جستجوی سیارات فراخورشیدی و غیره.

موقعیت این رصدخانه در ارتفاعات کوه گرگش، با موقعیت بسیار مناسب برای رصد آسمان است. این رصدخانه، در حال حاضر، شامل یک ایستگاه مکان‌پایی و یک سامانه میدان دید باز INOLA (سرواژه Iranian National Observatory Lens Array) است که مشغول به فعالیت هستند. بخش اصلی رصدخانه، مربوط به یک تلسکوپ بازتابی بزرگ از نوع ریچی-کرتین، با عنوان INO340 خواهد بود. این تلسکوپ در محدوده طول موج ۳۲۵ تا ۲۷۰۰ نانومتر، کار می‌کند که البته تمرکز آن، روی محدوده مرئی خواهد بود. قطر آینه اصلی آن، ۳.۴ متر است. ضخامت این آینه، حدود ۱۸ سانتی‌متر بوده و با دقت ۱ نانومتر تراش خورده و جلا داده شده است و در ساختمانی که در محل رصدخانه ساخته می‌شود، با آلومینیوم لایه‌نشانی خواهد شد. (برای اطلاعات بیشتر به سایت رصدخانه ملی ایران مراجعه کنید)

   هرچند این تلسکوپ، از حیث اندازه، یک تلسکوپ میان‌رده به‌ شمار می‌آید، ولی علاوه بر اهداف علمی و پژوهشی که در بالا به آن‌ها اشاره شد، می‌تواند به‌دلیل موقعیت منحصر‌به‌فرد و هم‌چنین شرایط خوب رصدی، سهم مهمی در پروژه‌های بین‌المللی داشته باشد. ضمن آن‌که، طرح‌های کلانی از این دست، می‌تواند باعث پیشرفت فناوری‌های پیشرفته در کشور شود. 

هرچند در شرایط کنونی جامعه شاید بیشتر به رویا شبیه باشد، اما امیدوارم در سال‌های آینده، شاهد تعداد بیشتری از این طرح‌های علمی باشیم تا کشورمان آباد شود! :))