رفتن به نوشته‌ها

برچسب: قدرت تفکیک

قیام علیه سیاهی

به بهانه‌ ثبت اولین تصویر سیاه‌چاله به تاریخ ۲۱ فروردین‌ ۱۳۹۸


چند روز پیش، خبری منتشر شد که هیاهوی زیادی به پا کرد: انتشار اولین تصویر از یک سیاه‌چاله. هرچند که قبلا هم تصاویری غیر مستقیم از سیاه‌چاله‌ها منتشر شده بود که در واقع تاثیرات سیاه‌چاله بر محیط اطرافش رو نشون می‌داد، اما این اولین قابی بود که سیاه‌چاله‌ای رو تا این حد با جزییات به تصویر کشید و نمایی نزدیک از یک سیاه‌چاله نشون داد. اما این همه ماجرا نیست؛ در واقع این قاب، نشون‌دهنده تلاش بشر در طول تاریخ، برای یافتنِ اسرار عالم هست که این‌بار، تلاش ۲۰۰ نفر از پژوهش‌گران در اقصی نقاط جهان، از نظریه صدساله پرده برداشت و یکی از پرآشوب‌ترین و مهلک‌ترین محیط‌های عالم – یعنی یک ابرسیاه‌چاله – رو به نمایش گذاشت: قیامی علیه سیاهی!

سیاه‌چاله چیه؟

سیاه‌چاله به جرمی با چگالی خیلی خیلی زیاد گفته میشه که بخاطر میدان گرانشی قوی در اطرافش، اگر حتی نور هم که بیش‌ترین سرعت رو داره از یه حدی بیش‌تر بهش نزدیک بشه، دیگه راه فراری نداره و داخلش سقوط می‌کنه. بنابراین، شبیه چاله سیاهی هست که نوری ازش ساطع نمیشه. در واقع، هیچ اطلاعاتی از توی سیاه‌چاله نداریم. به‌همین خاطر، سیاهچاله‌ها یه جورایی، موجودات مرموزی هستن! هرچند که ما هنوز خیلی چیزها رو در مورد سیاه‌چاله‌ها نمی‌دونیم – علی الخصوص این‌که داخل یک سیاه‌چاله چه خبره – ولی از طرفی هم میشه خیلی ساده بهشون نگاه کرد؛ توی چارچوب نسبیت عام، قضیه‌ای داریم به اسم «قضیه بدون مو» که میگه سیاه‌چاله‌ها رو میشه فقط با دونستن چندتا ویژگی ازشون، به‌طور کامل توی فضا-زمان توصیف کرد و جدای از این چندتا ویژگی،‌ با هم فرقی ندارن. مث آدمای کچل که فارغ از چندتا ویژگی ظاهری، همشون شبیه هم هستن! :)) اون ویژگی‌ها، این سه‌تا مورد هستن: جرم، بار الکتریکی، و تکانه زاویه‌ای (این‌که سیاه‌چاله با چه سرعتی و در چه جهتی به دور خودش می‌چرخه).

نکته جالب دیگه این‌که هر جسمی، بالقوه می‌تونه تبدیل به یک سیاه‌چاله بشه. حتی من یا شما! کافیه اون جسم رو به اندازه کافی فشرده‌ش کنیم. به همین سادگی! فقط نکته‌ش توی همین «به اندازه کافی» هست. اگر من یا شما بخوایم به سیاه‌چاله تبدیل بشیم، باید ابعادی حدود ۱۰ میلیون بار کوچک‌تر از هسته اتم داشته باشیم! در مورد کره زمین این‌طوریه که باید همه‌ش توی کره‌ای به شعاع ۱ سانتی‌متر جا بگیره! یا مثلا برای این‌که خورشید – که حدود ۹۸.۸ کل جرم منظومه شمسی رو شامل میشه‌ – تبدیل به سیاه‌چاله بشه، باید تا اندازه کره‌ای به شعاع ۶ کیلومتر فشرده بشه! در واقع برای هر جرم، شعاعی تعریف میشه که اگر کل اون جرم، توی کره‌ای کوچک‌تر از اون شعاع قرار بگیره، یک سیاه‌چاله تشکیل میشه. به این شعاع، «شعاع شوارتزشیلد» و به سطح اون کره، «افق رویداد» میگن.

شوارتزشیلد کسی بود که این شعاع رو با حل معادلات میدان گرانشی انیشتین برای یک سیاه‌چاله، به‌دست آورد. البته این شعاع رو با استفاده از گرانش نیوتنی هم میشه حساب کرد؛ در واقع مفهوم سیاه‌چاله به خیلی قبل‌تر برمی‌گرده. ظاهرا اولین بار در ۱۷۸۳ میلادی، دانشمندی به اسم جان میشل، به این نکته رسید که اگه یه جسم به اندازه کافی سنگین رو توی حجم کوچیکی از فضا جا بدیم، به‌خاطر گرانش قوی، می‌تونه همه‌چیز، حتی نور رو هم ببلعه! و دقیقا به همین جوابی رسیده بود که بعدا از نسبیت عام به‌دست اومد. ولی علی‌ ای‌ حال! شعاع مورد نظر سیاه‌چاله، به اسم شعاع شوارتزشیلد شناخته میشه.

خب! اگه این‌طوریه، پس چرا سیاه‌چاله‌ای دور و برمون نمی‌بینیم؟! داستان از این قراره که هیچ سازوکار طبیعی وجود نداره که جسمی رو تا اندازه شعاع شوارتزشیلدش فشرده بکنه، الّا یکی! و اون هم عبارتست از: آزاد شدن انرژی گرانشی عظیم در پایان عمر ستاره‌های پرجرم!

هر چیزی که جرم زیادی داره، نیروی گرانشی بهش وارد میشه که دوست داره باعث رمبش یا فروریختنِ اون جسم بشه. بنابراین نیروی گرانشی، به تنهایی نمی‌تونه باعث پایداری جسم بشه. ولی معمولا نیروی دیگه‌ای خلاف جهت اون وجود داره که اون جسم رو در حالت تعادل نگه می‌داره. مثلا با وجود اینکه زمین جرم زیادی داره و نیروی گرانش زیادی به سمت مرکزش وارد میشه، اما نیروی الکترومغناطیسی که بین اتم‌ها وجود داره در مقابلش مقاومت می‌کنه و در نتیجه زمین، پایدار باقی می‌مونه. ستاره‌ها در طول حیاتشون، در تعادل هیدروستاتیک هستن؛ ستاره‌ها توی مرکزشون، با سوزوندن هیدروژن و آزاد کردن انرژی، فشار تابشی ایجاد می‌کنن که نیروی گرانشی رو خنثی می‌کنه. بنابراین در حالت تعادل باقی می‌مونن. وقتی سوخت ستاره به پایان می‌رسه، بسته به این‌که جرم باقی‌مونده ستاره در مراحل پایانی چقدر باشه، ممکنه اتفاقات مختلفی براش بیفته: ستاره‌های نسبتا کم‌جرم مثل خورشید، در پایان عمرشون، تحت نیروی گرانشی خودشون، تا حدود ابعاد زمین فشرده میشن و فشار تبهگنی الکترون‌ها، جایگزین فشار تابشی میشه و تبدیل به «کوتوله سفید» میشن. ستاره‌های پرجرم‌تر، تا اندازه یه شهرِ کوچیک (از مرتبه چند ده کیلومتر)، فشرده میشن و به‌خاطر فشار تبهگنی نوترون‌ها، پایدار باقی می‌مونن و تبدیل به «ستاره نوترونی» میشن. اما برای ستاره‌های پرجرم‌تر، نیرویی جلودار گرانش نیست و در نهایت، ستاره تبدیل به یک سیاه‌چاله میشه.

به این نوع از سیاه‌چاله‌ها، سیاه‌چاله‌های ستاره‌ای هم میگن که جِرمشون می‌تونه چند برابر جرم خورشید باشه. اما گونه دیگه‌ای از سیاه‌چاله‌ها هم وجود دارن که جِرمشون، از چند صد برابر تا چندین میلیارد برابر جرم خورشید هست! به اینا میگن، «سیاه‌چاله‌های کلان‌جرم» یا «اَبَر سیاه‌چاله‌ها». حدس می‌زنیم بیش‌ترِ کهکشان‌ها توی مرکزشون، یه دونه از این ابرسیاه‌چاله‌ها داشته باشن. هرچند سناریوی تقریبا کاملی از طرز تشکیل سیاه‌چاله‌های ستاره‌ای داریم، ولی دقیقا نمی‌دونیم ابرسیاه‌چاله‌ها با چه سازوکاری تشکیل شدن. چند روز پیش، یعنی ۲۱ فروردین ۱۳۹۸، یکی از لحظه‌های هیجان‌انگیزِ تاریخ علم اتفاق افتاد و ما شاهد رونمایی از اولین تصویر از یک ابر‌سیاه‌چاله، به‌وسیله بشر بودیم. چیزی که بیش‌تر از صد سال قبل،‌ از دل معادلات نسبیت عام، بیرون کشیده شده بود، حالا با پیشرفت تکنولوژی دیده شد. جذاب نیست؟!

ابعاد فنی ثبت اولین تصویر از یک سیاه‌چاله

برای این‌که بشه از یه ابرسیاه‌چاله، داخل یه کهکشان تصویربرداری کرد، باید این شرایط فراهم باشه:

  • سیگنال رادیویی که از کهکشان به ما می‌رسه، به اندازه کافی قوی باشه.
  • کهکشان، توی طول موج رادیویی شفاف باشه؛ یعنی سیگنال رادیویی که قراره به ما برسه، وسط راه جذب نشه تا این‌که هیچی تهش باقی نمونه!

تا اینجا، گزینه‌های زیادی از ابرسیاه‌چاله‌ها وجود دارن که این دو شرط رو ارضا کنن و حتی با تلسکوپ‌های رادیوییِ نه چندانْ بزرگ هم بشه اونا رو رصد کرد. اما چیزی که باعث شد برای گرفتنِ تصویری از یک سیاه‌چاله، این همه سال وقفه بیفته، شرط سوم هست:

  • تلسکوپ رادیویی، باید قدرت تفکیک یا رزولوشن لازم رو داشته باشه؛ برای این‌که چیزی رو بتونیم واضح ببینیم، هم فاصله‌ش از ما مهم هست، و هم بزرگیش. درنتیجه، درسته که سیاه‌چاله‌های ستاره‌ای در نزدیکی ما هستن، ولی ابرسیاه‌چاله مرکز کهکشان‌مون، به‌خاطر بزرگیش، گزینه مناسب‌تری هست. این ابرسیاه‌چاله که توی صورت فلکی قوس قرار داره، فاصله‌ش با ما حدود ٢۵ هزار سال نوریه (با اسم اختصاری *Sag A). گزینه مناسب بعدی، ابرسیاه‌چاله مرکز کهکشان M87 هست که توی صورت فلکی سنبله قرار داره و حدود ٢٢٠٠ برابر دورتر از ابرسیاه‌چاله کهکشان خودمونه. اما چون خیلی سنگین‌تره (شما بخونید بزرگ‌تر) – حدود ۶/۵ میلیارد برابر جرم خورشید – دومین گزینه مناسب برای رصد هست. اندازه‌ این ابر‌سیاه‌چاله توی آسمون، حدود ۴۶ میکرو‌ثانیه قوسی هست؛ هر درجه، ۶۰ دقیقه قوسی و هر دقیقه قوسی، ۶۰ ثانیه قوسی هست. مثلا قطر ماه توی آسمون حدود نیم درجه قوسیه. برای تصویربرداری از این ابرسیاه‌چاله، باید جزییاتی حدود ۹ میلیارد برابر بیشتر از ماه رو بشه نشون داد!

قدرت تفکیک تلسکوپ، به طول موج نورِ دریافتی و قطر دهانه‌ش بستگی داره؛ هرچقدر طول موج‌ دریافتی کوتاه‌تر، یا قطر دهانه تلسکوپ بزرگ‌تر باشه، قدرت تفکیک بهتری داریم. برای این‌که به قدرت تفکیکی برسیم که بشه از ابرسیاه‌چاله M87، توی طول موج رادیویی تصویربرداری کنیم، باید قطر دهانه تلسکوپ، ۱۲۰۰۰ کیلومتر، یعنی اندازه قطر کره زمین باشه! برای حل این مشکل، ۸تا آرایه تلسکوپ رادیویی که در اقصا نقاط زمین بودن، با سازوکاری به اسم «تداخل‌سنجی خط پایه بسیار طولانی»‌ (به انگلیسی: Very-Long-Baseline Interferometry) یا به اختصار وی‌ال‌بی‌آی، به هم مرتبط کردن و با این روش، تلسکوپ بزرگی با قطر مصنوعی به اندازه زمین ساختن، به اسم «تلسکوپ افق رویداد» یا EHT. برای این‌که شهودی از قدرت تفکیکِ این تلسکوپ داشته باشید، حبه قندی توی شیراز رو در نظر بگیرید که یه مورچه داره روش راه میره. با رزولوشن EHT، اون مورچه رو با جزئیات کامل می‌تونید از لس آنجلس ببینید (البته اگر زمین تخت می‌بود)! نکته جالب این‌که، اون زمانی‌که تیم EHT، سال ۲۰۰۹ اعلام کرد که تا آخر دهه بعد میلادی، اولین تصویر از یک سیاه‌چاله رو منتشر می‌کنه، این کار با توجه به پیچیدگی فنی کار،‌ به‌نظر ممکن نمی‌رسید. اما الان این اتفاق افتاده (داخل پرانتز: هنوز تلسکوپ ملی ما بعد از چند دهه راه نیفتاده! به‌دنبال علت‌ها بگردید تا حداقل توی نسل ما و بعدتر این مشکلات حل شده باشه)!

تلسکوپ افق رویداد. نگاره از NRAO

یکی از چالش‌های بزرگ بر سر راه پروژه، کار کردن با حجم بالای داده بود. نتیجه یک هفته رصد کردنِ این هشت ایستگاهِ تلسکوپ رادیویی توی طول موج ۱.۳ میلی‌متری، حدود ۲۷ پتابایت داده(معادل یک میلیون گیگا بایت) شد که کار انتقال، پاکسازی و تحلیلش حدود ۲ سال طول کشید. البته فقط حدود ۱۵٪ از این داده‌ها مرتبط و قابل استفاده برای بدست‌ اومدنِ تصویر بود! سیگنال‌های رادیویی از دو ابرسیاه‌چاله مرکز کهکشان راه شیری و M87 دریافت شد. ولی چون توی اون بازه زمانی، ابرسیاه‌چاله مرکز کهکشان‌مون فعالیت زیادی داشت، تصویر مناسبی ازش ثبت نشد و در‌نتیجه، فقط تصویر ابرسیاه‌چاله M87 رونمایی شد.

حجم داده‌های تلسکوپ افق رویداد. نگاره از موسسه پریمیتر

تصویر منتشر شده دقیقا چیه؟!  

راستی! مگه سیاه‌چاله یه چیز سیاه نیست که نور هم نمی‌تونه از دستش فرار کنه. پس دقیقا از چی عکس گرفتن!؟ این حلقه نورانی توی تصویر چیه؟!

توی بخش اول، در مورد افق رویداد و شعاع شوارتزشیلد توضیح داده شد. برای توضیح تصویر، چند مفهوم دیگه رو هم باید معرفی کنیم. اولا اطراف ابرسیاه‌چاله، یک «دیسک برافزایشی» از مواد وجود داره که در حالت پلاسما قرار دارن – بنابراین باردار هستن – و با سرعتی قابل مقایسه با سرعت نور، دور سیاه‌چاله می‌چرخن. در‌ واقع بلعیدنِ مواد توسط ابرسیاه‌چاله، از طریق این دیسکه. یه چیزی به اسم «داخلی‌ترین مدار دایرویِ پایدار» تعریف می‌کنن که نزدیک‌تر از اون، مواد نمی‌تونن توی مدار پایدار باشن و توی یه مسیر مارپیچی‌، خیلی سریع داخل سیاه‌چاله سقوط می‌کنن. ما در اینجا از این مدار، به اختصار، به اسم «ایسکو» ذکر می‌کنیم. در واقع، ایسکو همون شعاع داخلیِ دیسک برافزایشی هست که ۳ برابر شعاع شوارتزشیلده. از اون‌جایی‌که نور جرم نداره، می‌تونه حتی توی مدار نزدیک‌تر از این هم قرار بگیره که بهش «کره فوتونی» میگن و جاییه که گرانش اون‌قدر قوی هست که نور رو مجبور به حرکت توی مدار می‌کنه. البته این مدار پایدار نیست و فوتون‌ها خیلی زود، یا به سمت ابرسیاه‌چاله سقوط می‌کنن و یا به بیرون فرستاده میشن. این کره فوتونی توی فاصله ۱.۵ برابری شعاع شوارتزشیلد قرار داره. یه شعاع دیگه‌ای هم تعریف میشه، به اسم «شعاع گیرشِ فوتون» (به انگلیسی: Photon Capture Radius). این شعاع، یه مقدار بزرگ‌تر از کره فوتونی و کوچک‌تر از شعاع ایسکو هست و حدود ۲.۶ برابر شعاع شوارتزشیلده (برای این‌که بتونید تصوری از این موضوعات داشته باشید به شکل زیر نگاهی بندازید). قرص تاریکی که مرکز تصویرِ منتشر شده دیده میشه، مربوط به همین شعاع و موسوم به «سایه سیاه‌چاله» هست. برای تقریب به ذهن، تصور کنید توی تاریکی شب، یه نفر جلوی نور چراغ ماشین وایستاده باشه و شما تصویری که از اون شخص می‌بینید، حجم سیاهی از اون شخص هست. سیاه‌چاله، فضا-زمان اطرافش رو خمیده می‌کنه و این باعث میشه پرتو‌های موازی که به سمت سیاه‌چاله میان، از دید ما، روی مسیر خمیده حرکت بکنن. در‌واقع سیاه‌چاله به‌ عنوان یه عدسی گرانشی، پرتو‌های نور موازی رو خم و متمرکز می‌کنه. بیش‌تر از نیمی از روشنایی که توی تصویرِ منتشر شده از ابرسیاه‌چاله M87 دیده میشه، ناشی از همین نورِ اصطلاحا لنز شده هست و نه دیسک برافزایشی از موادی که اطراف ابرسیاه‌چاله قرار داره.

نمودار شماتیک از یک سیاه‌چاله شوارتزشیلد.

اعدادی که برای پارامتر‌های مختلفِ سیاه‌چاله گفته شد، برای «سیاه‌چاله غیر‌چرخان» با متریک شوارتزشیلد صادقه. برای «سیاه‌چاله‌ چرخان» (مثل ابرسیاه‌چاله M87) که فضا-زمانِ اطرافش با متریک کر توصیف میشه، داستان یه مقداری پیچیده‌تر هست. وقتی که ابرسیاه‌چاله به دور خودش می‌چرخه، فضا-زمان رو هم به دنبال خودش می‌کشه. شعاع گیرش فوتون برای سیاه‌چاله چرخان، بزرگ‌تر از سیاه‌چاله شوارتزشیلد هست و بسته به جهت‌‌گیری پرتوها نسبت به بردار تکانه زاویه‌ای، تغییر می‌کنه. هم‌چنین، سطح مقطع سیاه‌چاله دیگه لزوما به شکل دایره نیست و ممکنه حدودا کم‌تر از ۴٪ تغییر داشته باشه.

قطر حلقه تابشی که توی تصویر دیده میشه به شعاع گیرشِ سیاه‌چاله بستگی داره که خودش به شعاع شوارتزشیلد و در‌نتیجه جرم سیاه‌چاله وابسته هست. ولی به‌طور غیر بدیهی، به پارامتر‌های دیگه‌ای هم بستگی داره: رزولوشن رصد، بردار چرخش سیاه‌چاله به دور خودش و مقدار کج بودنش، و اندازه و ساختار منطقه تابش.

اگه دقت کرده باشید، توی تصویر یه طرفِ حلقه، روشنایی بیش‌تر و طرف دیگه کم‌نورتر هست. علتش پدیده‌ای موسوم به «پرتو‌افکنیِ نسبیتی» هست؛ همون‌طور که گفته شد، مواد توی قرص برافزایشی، با سرعت خیلی بالا (نسبیتی)، در حال گردش به دور سیاه‌چاله هستن. وقتی از پهلو به قرص برافزایشیِ سیاه‌چاله نگاه می‌کنیم، مواد در یک طرف دیسک، به سمت ما حرکت می‌کنن و در طرف دیگه از ما دور میشن. موادی که حرکتشون به سمت ما هست درخشان‌تر و موادی که نسبت به ما در‌حال دور شدن هستن، کم‌نورتر به نظر می‌رسن.

ابعاد علمی ثبت اولین تصویر از سیاه‌چاله M87

ثبت تصویر از یک ابرسیاه‌چاله با این رزولوشن، موقعیتی بود تا یه بار دیگه، نظریه نسبیت عام انیشتین رو آزمایش کنیم که البته در این مورد کاملا سازگار بود. این رصد، پیش‌بینیِ یک‌ سری از مدل‌ها رو رد کرد. مثلا تعداد زیادی از مدل‌هایی که موسوم به مدل‌های تکینگی برهنه هستن، کنار زده شد. یا این‌که مثلا ما الآن می‌دونیم افق رویداد، سطحِ سختی از مواد نیست وگرنه موادی که به سمت سیاه‌چاله سقوط می‌کنن، باید اثراتی در محدوده فروسرخ می‌گذاشتن. البته ما با این رصد، در‌مورد ماده تاریک، نظریه‌های گرانش تعمیم‌یافته، گرانش کوانتومی یا مثلا این‌که داخلِ افق رویداد چی هست، نمی‌تونیم حرفی بزنیم.

بررسی دینامیک گرانشی اجرام اطراف ابرسیاه‌چاله مرکزیِ کهکشان راه شیری. نگاره از S. SAKAI / A. GHEZ / W.M. KECK OBSERVATORY / UCLA GALACTIC CENTER GROUP

قبل از این، ما جرم سیاه‌چاله رو از دو روش حساب کرده بودیم. روش اول نگاه کردن به مدار ستاره‌هاییه که اطرافش حرکت می‌کنن؛ همون‌طور که ما با نگاه کردن به مدار و سرعت حرکت سیارات توی منظومه شمسی، می‌تونیم نیروی گرانشی که خورشید توی مرکز داره بهشون وارد می‌کنه رو محاسبه کنیم و تخمینی از جرمش بزنیم، توی این مورد هم می‌تونیم جرم رو محاسبه بکنیم. روش دیگه، تخمین زدنِ جرم از روی رصد‌هایی هست که از تابش گازهای اطراف سیاه‌چاله داشتیم. برای ابرسیاه‌چاله کهکشان خودمون و M87، مقدار جرمی که از این دو روش به‌دست میومد خیلی با هم تفاوت داشتن؛ تخمین جرم از روش اول، حدود ۵۰ تا ۹۰ درصد بیش‌تر از روش دومی بود. مقداری که از رصد تلسکوپ افق رویداد به‌دست اومد، با مقداری که از روش اول بدست اومده بود سازگار بود. این نشون داد که روش بررسی دینامیک گرانشی، روش بهتریه برای محاسبه جرم سیاه‌چاله‌ها، و این‌که باید روی فرضیات اخترفیزیکی که توی روش دوم در نظر گرفته بودیم تجدید نظر بکنیم.

سیاه‌چاله‌ها موجوداتی هستن که دینامیک دارن. از اونجایی که برای نور حدود یک روز طول می‌کشه تا افق رویداد ابرسیاه‌چاله M87 رو طی کنه، توقع میره تابشی که رصد میشه، توی همین مقیاس زمانی تغییر بکنه. توی چهار تصویری که از این سیاه‌چاله منتشر شده هم این تغییرات دیده میشه.

تابشی که توی تصویر ابرسیاه‌چاله M87، روزهای ۵ و ۶ آپریل مشاهده میشه، با اونی که توی روز‌های ۱۰ و ۱۱ آپریل هست، کمی تغییر کرده. نگاره از تیم تلسکوپ افق رویداد

تلسکوپ افق رویداد چه چیزهای دیگه‌ای رو قراره در آینده نشون بده؟

اول. طی رصد‌های قبلی که از ابرسیاه‌چاله مرکز کهکشان‌مون، توی طول‌موج‌های ایکس و رادیویی انجام گرفته، یه سری تابش از فورانات، شبیه به شراره‌های خورشیدی، مشاهده شده. از اون‌جایی‌که جرم این ابرسیاه‌چاله ۰.۰۶ درصدِ جرم ابرسیاه‌چاله M87 هست (حدود ۴ میلیون برابر جرم خورشید)، مقیاس زمانیِ تغییراتِ سیاه‌چاله از مرتبه دقیقه هست. بنابراین، رصد این تغییرات سریع برای ابرسیاه‌چاله M87، می‌تونه احتمالا درمورد ماهیت این شراره‌ها اطلاعاتی بهمون بده. سوال‌هایی که مطرحه از این قراره: این شراره‌ها چطور به دما و درخشندگیِ مشخصه‌های رادیویی که می‌بینیم مربوط میشه؟ آیا شبیه تاج‌های خورشیدی، این شراره‌ها ناشی از دینامیک مغناطیسی هستن؟ آیا جریانی از دیسک برافزایشی جدا میشه؟ اگه رصدها و شبیه‌سازی‌هامون مثل مورد سیاه‌چاله M87 خوب کار کنن، می‌تونیم بفهمیم چه پدیده‌هایی باعث تشکیل این شراره‌ها میشن و شاید حتی متوجه بشیم که چه چیزی روی سیاه‌چاله سقوط می‌کنه که شراره‌ها رو تشکیل میده.

رصد شراره‌های درخشان در اطراف ابرسیاه‌چاله مرکزیِ کهکشان راه شیری. نگاره از NASA/CXC/STANFORD/I. ZHURAVLEVA ET AL.

دوم. داده‌های مربوط به قطبش نور سیاه‌چاله، قراره منتشر بشه. اهمیت این موضوع اینه که چون میدان مغناطیسی با نور می‌تونه اندرکنش کنه و اثری روی قطبشش بذاره، با این داده‌ها می‌تونیم درمورد شکل میدان مغناطیسی خودِ سیاه‌چاله و چگونگی تغییراتش اطلاعات بدست بیاریم. البته ما می‌دونیم که دیسک برافزایشی اطراف سیاه‌چاله هم، خودش میدان مغناطیسی قوی رو به‌وجود میاره؛ چون ذرات باردار، داخل دیسک برافزایشی در حال حرکت هستن، میدان مغناطیسی تولید می‌کنن. مدل‌ها نشون میدن که این خطوطِ میدان مغناطیسی می‌تونه، یا توی جریانات قرص برافزایشی باقی بمونه و یا به افق رویداد ختم بشه. یه رابطه‌ای بین میدان‌های مغناطیسی، برافزایش و رشد کردن سیاه‌چاله، و جت‌های گسیلی از اون هست. بدون میدان مغناطیسی راهی وجود نداره که مواد داخل قرص برافزایشی، تکانه زاویه‌ای از دست بدن و به داخل سیاه‌چاله سقوط کنن. داده‌های مربوط به قطبش که در حال تحلیل شدن هستن، می‌تونن این موضوعات رو روشن بکنن.

تصویر خیالی از دیسک برافزایشی و جت‌های اطراف یک سیاه‌چاله. ما هنوز نمی‌دونیم که خودِ سیاه‌چاله‌ها هم میدان مغناطیسی خودشون رو دارن یا نه. نگاره از NICOLLE R. FULLER/NSF

سوم. وقتی دو جسم به هم نیروی گرانشی وارد می‌کنن، به این معنیه که هر کدوم، اون یکی رو سمت خودش می‌کشه. توی منظومه شمسی هم درسته که خورشید نیروی گرانش زیادی رو به مابقی اجرام و سیارات وارد می‌کنه و اونا رو توی مدار نگه می‌داره، ولی بقیه هم نیروی گرانشی به خورشید وارد می‌کنن و این باعث میشه خورشید هم سر جای خودش به‌خاطر این نیرو کمی جابجا بشه و اصطلاحا حرکتی براونی داشته باشه (حرکت براونی به حرکتی مثل حرکت ذرات گرد و غبار توی هوا میگن که به‌صورت تصادفی جابجا می‌شن). اطراف ابر‌سیاه‌چاله هم اجرام زیادی وجود دارن که علی‌القاعده سیاه‌چاله‌های دیگه‌ای هم بینشون هستن. در‌نتیجه شبیهِ داستان منظومه شمسی، ابرسیاه‌چاله هم حرکت براونی داره. منتها برای این‌که مقدارِ این جابجایی رو بشه محاسبه کرد، نیاز به یه مرجعی داریم که جابجایی رو نسبت به اون بسنجیم. بنابراین باید به سیاه‌چاله نگاه کنیم و بعد به مرجع و بعد به سیاه‌چاله و بعد به مرجع و …. اما از اون‌جایی که جو زمین تلاطم داره و توی بازه زمانی حدود ۱ تا ۱۰ ثانیه تغییر می‌کنه، نمی‌تونیم این رفت و آمد رو بین سیاه‌چاله و مرجع راهنما‌مون انجام بدیم؛ چون تا بخوایم بریم و بیایم داستان تغییر کرده! بنابراین درحال حاضر، نمی‌تونیم از روی زمین این کار رو انجام بدیم. ولی احتمالا تا پایان دهه بعد میلادی، با پیشرفت تکنولوژی در این زمینه، این کار عملی میشه و در‌ نتیجه می‌تونیم در‌مورد حضور سیاه‌چاله‌های اطراف ابر‌سیاه‌چاله هم اطلاعات بدست بیاریم.

تصویر خیالی از حرکت سیاه‌چاله‌ها در اطراف یک ابرسیاه‌چاله. نگاره از ESO/MPE/MARC SCHARTMANN

چهارم. با اندازه‌ي الانِ تلسکوپ افق رویداد، فقط ۲ یا ۳ مورد از سیاه‌چاله‌ها رو میشه مطالعه کرد. اما اگر بتونیم از تلسکوپ‌های فضایی هم کمک بگیریم، میشه در‌واقع قطرِ موثرِ تلسکوپ رو بازم بزرگ‌تر و قدرت تفکیک رو بهتر کرد. این کار، عملا با تکنولوژیِ حال حاضر هم شدنی هست و میشه در آینده‌ای نه چندان دور، صدها سیاه‌چاله رو مورد بررسی قرار داد. در نتیجه، این زمینه‌ تحقیقاتی آینده روشنی خواهد داشت.

کاندیدای جایزه نوبل فیزیک برای این پروژه، چه افرادی می‌تونن باشن؟

بعد از انتشار تصویر اولین سیاه‌چاله توسط تیم تلسکوپ افق رویداد، اخباری دست به دست شد که یه خانمی به نام باومن – که اتفاقا هم چند وقت پیش توی تد، در مورد روش محاسباتی که برای تلسکوپ افق رویداد ساخته بودن صحبت کرده بود – باید جایزه نوبل فیزیک رو بگیره. نکته قابل توجهِ ثبتِ این تصویر، اتفاقا همکاری گسترده پژوهش‌گران در اقصا نقاط دنیا بوده که ارزش این کار رو صد چندان می‌کنه. بنابراین، این‌که یه کسی یهو این‌قدر بولد بشه، به‌نظر می‌رسه به‌خاطر مسايل دخیلِ دیگه‌ای هست که هیچ مبنای حرفه‌ای نداره! با این حال اگه قرار باشه به فرد یا افرادی جایزه نوبل فیزیک برای این پروژه تعلق بگیره، شاید افراد زیر، گزینه بهتری باشن:

۱. شِپ دوئلمَن، کسی که این پروژه رو راه‌اندازی کرد، به پیش برد و مدیریت کرد.

۲. هِینرو فالکه، کسی که مقاله اصلی درمورد این‌که چطور تلسکوپ افق رویداد با استفاده از روش وی‌ال‌بی‌آی می‌تونه تصویر رو ثبت کنه، نوشت.

۳.روی کِر، کسی که معادلات میدان گرانشی رو برای سیاه‌چاله چرخان حل کرد که پایه‌ی جزییات استفاده شده توی همه شبیه‌سازی‌های امروزی از سیاه‌چاله‌ها بودن.

۴. جین پیِر لومینِت، کسی که برای اولین‌بار، توی دهه ۱۹۷۰ میلادی،‌ با شبیه‌سازی نشون داد که تصویرِ یه سیاه‌چاله، احتمالا چه شکلی خواهد بود و حتی همون موقع، ابرسیاه‌چاله کهکشان M87 رو برای این کار پیشنهاد داد.

۵. آوری برودِریک، کسی که بعضی از مهم‌ترین کارها رو برای مدل‌سازی کردنِ دیسک برافزایشیِ اطراف سیاه‌چاله انجام داده.

تصویری از گردهمایی پژوهشگران حاضر در پروژه تلسکوپ افق رویداد در نوامبر سال ۲۰۱۸ میلادی

خب که چی؟! حالا این چیزا به چه درد ما می‌خورن؟!

احتمالا یا این سوال رو توی ذهن دارید، یا اگه توی زمینه کیهان‌شناسی و نجوم دارید پژوهش می‌کنید، این سوال ازتون پرسیده شده. اگه منظور از این سوال اینه که به چه درد همین الآن ما می‌خوره یا این‌که مثلا توقع داشته باشید که یهو با این مطالعات، اوضاع اقتصادی‌مون درست بشه، باید بگم که خیر!

یک چیز خیلی مهمی وجود داره و اون هم حس کنجکاوی بشر هست. حتی تا همین چند ده سال پیش هم که آلودگی نوری وجود نداشت و مردم هر شب عظمت آسمون رو بالای سرشون به چشم می‌دیدن، پرسش‌های زیادی پیش میومد. چیزی که ما امروزه تقریبا درکی ازش نداریم! البته همین کنجکاوی باعث به‌وجود اومدن علم شد و به تبع اون ایجاد تکنولوژي. خیلی از کاربردی‌ترین و ابزاری‌ترین چیزهایی که امروز باهاشون سروکار داریم، مثلا موبایل، بدون مفاهیم کاملا محض نظری، مثل مکانیک کوانتومی، بی‌معنی بودن. اگه همیشه بشر می‌خواست همین نگاه کوته‌بینانه رو داشته باشه، احتمالا توی غارها و با یه سری ابزارهای بدوی مشغول گذران زندگی خودش بود! بنابراین اگه می‌بینید که کسانی اندک، توی دنیا دنبال این‌جور چیزها هستن، حداقلش این‌که این‌جور سوالات رو ازشون نپرسید 🙂