رفتن به نوشته‌ها

برچسب: سیاه‌چاله

🎞گفت‌وگو در مورد فیزیک انرژی‌های بالا

این برنامه به منظور آشنایی بیشتر با فیزیک انرژی‌های بالا در قالب یک گفت‌وگوی زنده اینستاگرامی برگزار شد. در این برنامه به این مقاله اشاره شد:

The Usefulness of Useless Knowledge, Abraham Flexner

میهمانان

🎤 دکتر زهرا تبریزی 🇺🇸
دکتری فیزیک ذرات بنیادی: فیزیک نوترینو و انرژی‌های بالا، محقق پسادکتری در Virginia Tech

🎤 سینا صفرآبادی 🇨🇦
دانشجوی دکتری اخترفیزیک ذره‌ایی: شناسایی ماده تاریک، دانشگاه آلبرتا و DEAP-3600

🎤 بهراد تقوی 🇮🇷
دانشجوی دکتری فیزیک انرژی‌های بالا: پارادوکس اطلاعات سیاه‌چاله و AdS/CFT، پژوهشکده ذرات و شتابگرهای IPM

پرسش‌های اصلی که در این برنامه دنبال شد به شرح زیر است:

  • اسم دقیق این گرایش چیست؟
  • هدف و پرسش‌های معروف در این گرایش چیست؟ متخصصان به چه نوع از مسائل علاقه دارن؟
  • به نظر شما چه تصویر رایج غلطی در ذهن عوام در مورد این گرایش وجود دارد؟
  • چگونه با این رشته آشنا شدین؟ 
  • چه‌طور متوجه شدید که این گرایش مناسب شماست؟
  • محیط کار شما چه شکلی است؟ (آزمایشگاه، رصدخانه، پشت میز، کار با کامپیوتر و …)
  • یک روز عادی در زندگی حرفه‌ای شما چگونه سپری می‌شود؟
  • آیا از انتخابتان راضی هستید؟
  • سختی‌های زندگی شما شامل چه چیزهایی می‌شود؟
  • آیا به سایر علاقه‌مندان به این گرایش توصیه می‌کنید که به‌طور حرفه‌ای به این گرایش بپردازند؟
  • مقدمات علمی و فنی لازم برای ورود به این گرایش
  • درس‌های اصلی (ارائه شده و نشده در مقطع کارشناسی)
  • مهارت‌های جانبی (توانایی محاسباتی و کار کردن با نرم‌افزارهای خاص)
  • کدام دانشگاه و یا مراکز تحقیقاتی در ایران به این گرایش می‌پردازند؟
  • بازار کار در ایران و خارج چگونه است؟
  • امکان تحصیل در خارج از کشور و پذیرش گرفتن در این گرایش چگونه است؟
  • گرایش شما بیشتر نظری، محاسباتی یا تجربی است؟!
  • شما با فلسفه هم سلام و علیک دارید؟
  • آیا دلیل توسعه سرن کشف ذره هیگز بوده؟ آیا باز هم باید به توسعه آن کمک کرد؟ نظر شما در مورد این ویدیو چیست؟ https://www.youtube.com/watch?v=WIMGAFL8DVk 
  • آینده کاری و وضعیت رفاهی خود را چگونه می‌بینید؟ در ایران/خارج
  • رفتن از گرایش شما به سمت گرایش‌های دیگر سخت است؟

در اینستاگرام ببینید:

در یوتیوب بینید:

نوبل فیزیک ۲۰۲۰ برای کاوشگران تاریکی

جایزه نوبل فیزیک امسال به اخترفیزیک‌دان‌ها به خاطر خدماتشان در زمینه بهتر شناختن سیاه‌چاله‌ها رسید. نیمی از جایزه امسال به راجر پنروز و نیم‌دیگر آن به طور مشترک به رینهارد گِنزِل و آندریا ام. گز تعلق گرفت. این جایزه به خاطر کشف این که تشکیل سیاهچاله یک پیش‌بینی بی شائبه از نظریه نسبیت عام است و کشف یک شی فشرده‌ی کلان‌جرم در مرکز کهکشان تعلق گرفت.

سِر راجر پنروز (Sir Roger Penrose) (زاده ۸ اوت ۱۹۳۱)،فیزیک‌دان و ریاضیدان برجستهٔ انگلیسی است.

او به پاس کشف این که تشکیل سیاهچاله یک پیش‌بینی بی شائبه از نظریه نسبیت عام است برنده نیمی از جایزه نوبل فیزیک شد.

آندریا اِم. گِز (Andrea M. Ghez) (زن – زادهٔ ۱۶ ژوئن ۱۹۶۵ در نیویورک) استاد گروه فیزیک و اخترشناسی دانشگاه کالیفرنیا، لس‌آنجلس است. برای آشنایی با کار گز این نوشته را بخوایند.

رینهارد گِنزِل ( Reinhard Genzel) (زادهٔ ۲۴ مارس ۱۹۵۲) عضو انستیتوی فیزیک فرازمینیِ ماکس پلانک و استاد دانشگاه کالیفرنیا، برکلی است.

نیم دیگر جایزه به این دو نفر به خاطر «کشف یک شی فشرده‌ی کلان‌جرم در مرکز کهکشان» تعلق گرفت.

در مورد جایزه امسال بیشتر بخوانید:

سخنرانی اندریا گز در تد ۲۰۰۹ در مورد کشف سیاه‌چاله کلان‌جرم

بر اساس داده‌های جدیدی که از تلسکوپ‌ها به دست آمده‌است، آندریا گز نشان می‌دهد که چگونه اپتیک تطبیقی، اخترشناسان را قادر می‌سازد تا به بررسی مرموزترین اجرام عالم یعنی سیاهچاله‌ها بپردازند. او در این سخنرانی مدارکی را مطرح می‌کند که بر مبنای آن شاید سیاهچاله ای ابر پرجرم در مرکز کهکشان راه شیری کمین کرده باشد.

مصاحبه با رینهارد گنزل در مورد کارهای او پیرامون سیاه‌چاله‌های کلان‌جرم

تصویرسازی‌های موسسه نوبل

fig2-phy-en-cross-section-merged

اتحاد شوالیه‌های تاریکی

چهارشنبه ۱۲ شهریور، اعلام شد که رصدخانه امواج گرانشی لایگو در امریکا و ویرگو در ایتالیا، امواج گرانشی حاصل از ادغام دو سیاه‌چاله‌ را آشکارسازی کرده‌اند که عظیم‌ترین امواج گرانشی ثبت‌شده تا به امروز بوده‌اند. هرچند ادغام دو سیاه‌چاله چیز جدیدی نبوده و قبلاً هم چند مورد از آن آشکارسازی شده بود؛ اما این یکی، ویژگی‌های غیرمعمولی داشته که باعث شده این خبر اهمیتی دوچندان برای اخترفیزیک‌دان‌ها و پژوهشگران فعال در حوزه سیاه‌چاله‌ها داشته باشد.

Image credit: Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

وقتی عالم نیمی از عمر اکنونش را داشت، دو سیاه‌چالة سنگین در هم ادغام شدند و امواج گرانشی تولید کردند. این طنین‌های گرانشی، موجی را پیش بردند و تار‌و‌پود فضا-زمان را شبیه به یک صدای زنگ کیهانی لرزاندند و سیگنالی برای ما به‌جای گذاشتند. ساعت ۷:۳۲:۲۹ صبح روز سه‌شنبه ۳۱ اردیبهشت ۹۸، سه رصدخانه امواج گرانشی (ویرگو و هر‌دو رصدخانه لایگو) بر روی زمین، این سیگنال کوتاه را که فقط یک دهم ثانیه به‌طول انجامید، دریافت کردند. محققان می‌گویند: احتمالاً منشأ این سیگنال ـ که «جی‌دبلیو ۱۹۰۵۲۱» نام‌گذاری شده ـ ادغام دو سیاه‌چاله سنگین‌وزن با جرمی حدود ۶۶ و ۸۵ برابر جرم خورشید بوده که در‌نهایت، یک سیاه‌چاله بزرگتر را با جرمی حدود ۱۴۲ برابر جرم خورشید به‌وجود آورده و مقادیر زیادی انرژی (حدود ۸ برابر جرم خورشید) به‌شکل امواج گرانشی در سراسر جهان آزاد کرد‌ه‌اند. هم‌چنین محققان پروژه لایگو و ویرگو، اسپین (راستای محور و سرعت چرخش) دو سیاه‌چاله اولیه را محاسبه کرده و دریافتند، همان‌طور که این دو سیاه‌چاله به دور یکدیگر دوران داشته و به هم نزدیک می‌شدند، هرکدام حول محور خودشان با زاویه‌ای که هم‌راستا با محور دوران سامانه نبوده می‌چرخیدند؛ احتمالاً همین ناهم‌راستایی محور‌های چرخش، باعث شده وقتی به هم نزدیک‌تر می‌شدند، مدارهایشان حرکت تقدیمی داشته باشد و مثل دو مست میکده تلو‌تلو‌خوران دور یکدیگر بگردند! 🙂

همه سیاه‌چاله‌های مشاهده‌شده تا به امروز، در یکی از این دو دسته قرار می‌گیرند: سیاه‌چاله‌های ستاره‌ای، که تصور می‌شود موقع مرگ ستاره‌های عظیم تشکیل می‌شوند و می‌توانند طیف جرمی از حدود چند برابر جرم خورشید، تا ده‌ها برابر جرم خورشید داشته باشند؛ یا سیاه‌چاله‌های کلان‌جرم که در در قلب کهکشان‌ها هستند و جرمی از مرتبه صدها هزار، تا میلیاردها برابر جرم خورشید دارند (برای آشنایی بیشتر با سیاه‌چاله‌ها، نوشته قیام علیه سیاهی را بخوانید). با این حال، سیاه‌چالة نهایی ایجاد شده در ادغام جی‌دبلیو ۱۹۰۵۲۱، در یک محدوده جرمی متوسط ​​بین این دو دسته قرار گرفته است. در‌واقع، این سیاه‌چاله‌ تشکیل شده با جرمی حدود ۱۴۲ برابر جرم خورشید، به دسته جدیدی از سیاه‌چاله‌ها تعلق دارد که «سیاه‌چاله‌های میانه‌جرم» نام دارند و این مورد، اولین آشکارسازی واضح از این نوع سیاه‌چاله‌ها است.

نمودار ادغام‌های سیاه‌چاله‌هایی که توسط لایگو و ویرگو ثبت شده برحسب جِرمشان در واحد جرم خورشیدی. سیاه‌چاله نهاییِ تازه‌کشف‌شده مربوط به دسته‌ای جدید با نام سیاه‌چاله‌های میانه‌جرم است.
Image credit: : LIGO/Caltech/MIT/R. Hurt (IPAC)

به نظر می‌رسد دو سیاه‌چاله اولیه که سیاه‌چاله نهایی را ایجاد کرده‌اند نیز از نظر جرم بی‌همتایند. طبق مدل‌های اخترفیزیکی فعلی، ستارگانی با جرم ۱۳۰ برابر جرم خورشید می‌توانند سیاه‌چاله‌هایی را به‌وجود بیاورند که جرمشان حداکثر ۶۵ برابر جرم خورشید باشد. اما برای ستاره‌های پرجرم‌تر ، تصور می‌شود پدیده‌ای موسوم به «ناپایداری جفت» رخ دهد؛ وقتی فوتون‌های هسته خیلی پرانرژی می‌شوند، می توانند به یک جفت الکترون و پاد الکترون تبدیل شوند. این جفت‌ها فشار کمتری نسبت به فوتون‌ها ایجاد می‌کنند و باعث می‌شوند ستاره در برابر فروپاشی گرانشی ناپایدار شود؛ این ناپایداری به انفجاری می‌انجامد که به حدی قوی است که هیچ چیزی از خود به‌جای نخواهد گذاشت. حتی ستارگان پر‌جرم‌تر (بیشتر از ۲۰۰ برابر جرم خورشید) سرانجام مستقیماً فرو پاشیده و به سیاه‌چاله‌ای با حداقل ۱۲۰ برابر جرم خورشید تبدیل می‌شوند. بنابراین ، یک ستاره در حال فروپاشی قادر نیست یک سیاه‌چاله با جرمی بین ۶۵ تا ۱۲۰ برابر جرم خورشید را ایجاد کند؛ این محدودة جرمی، با عنوان شکاف جرمِ ناپایداری جفت (Pair Instability Mass Gap) شناخته می‌شود. می‌توان ادعا کرد یک یا هردو سیاه‌چاله اولیه‌ در این محدوده جرمی قرار دارند. یک احتمال برای این مسأله ـ که محققان در مقاله دوم منتشر شده در نظر گرفته‌اند ـ عبارت است از ادغام سلسله‌مراتبی؛ به این معنا که دو سیاه‌چاله اولیه قبل از نزدیک شدن و ادغام نهایی، خود از یک ادغام کوچک‌تر دیگر تشکیل شده باشند.

ادغام سلسله‌مراتبی: تشکیل سیاه‌چاله‌های اولیه از ادغام‌های کوچکتر پیشین
Image credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

آلن واینستین، از اعضای پروژه لایگو و استاد فیزیک در دانشگاه کلتک، می‌گوید:

«این رویداد، بیشتر از اینکه پاسخگوی سوالات باشه، سؤال‌های بیشتری رو مطرح می‌کنه. از نقطه‌نظر کشف کردن [پدیده‌ها] و فیزیک، این چیز خیلی هیجان‌انگیزیه».

دینامیک: نیرو، حرکت و زمان

به تازگی کامنتی دریافت کردم که چندتا سوال ازم پرسیده بود. در این نوشته می‌خوام به این پرسش‌ها جواب بدم!

۱) زمان بر نیروی وزن اثر داره ؟ منظورم اینه وقتی زمان رو ثابت یکنیم یعنی اینکه تمام قوانین فیزیک رو با استفاده از زمان ثابت کنیم باز هم جسمی مثل لیوان به زمین برخورد میکنه اونم بر اثر نیروی گرانش یا نه؟(مثلا اگر تندی زمان رو زیاد کنیم جسمی مثل لیوان با تندی زیاد به زمین میرسه)
۲) چرا بعضی از پدیده ها در حال حرکت هستند؟ (مثل نور که وقتی لامپ رو روشن میکنیم بدون اینکه کاری بکنیم پرتوی نور خود به خود حرکت میکنه)
۳) آیا واقعا نور به دام سیاهچاله میفته ؟تا جایی که من میدونم انسان برای دیدن پدیده ها و اجسام ها به نور نیاز داره پس اگه نور از سیاهچله نمیتونه فرار کنه چطور دیدیمش؟(منظورم
عکسی که از سیاهچاله توی سال ۹۸ پارسال گرفتن)
۴) آیا نور تنها پدیده ایی هستش که سرعتی بسیار زیاد داره یا نه ؟
۵) نور ثابته ؟

۱) رابطه نیرو و زمان

قوانین نیوتون به ما میگه که اگه جسمی در حال حرکت باشه، تا زمانی که به اون جسم در کل نیرویی وارد نشه، جسم به حرکت خودش ادامه میده. اگر هم جسم از اول در حال حرکت نباشه، قاعدتا همون‌جایی که هست می‌مونه. مثل توپی که یه گوشه افتاده و تا زمانی که کسی بهش لگ نزنه از جاش تکون نمی‌خوره. منظور از «حرکت» هم تغییر موقعیت جسم با گذشت زمانه. یعنی هر بار که عقربه ساعت روی دست من تیک بزنه جسم از جایی به جای دیگه بره.

مسیر حرکت یک جسم در فضای ۳بعدی. هر نقطه از این مسیر را می‌توان با زمان نشانه‌گذاری کرد. به این معنی که بردار مکان $r$ در هر لحظه با مشخص کردن زمان به صورت یکتا مشخص خواهد شد.

در فیزیک نیوتونی اختیار تند و کند کردن گذر زمان دست ما نیست. یعنی ما نمی‌تونیم کاری کنیم که زمان سریع‌تر بگذره یا کندتر بگذره یا اینکه متوقف بشه! ولی می‌تونیم این ایده رو شبیه‌سازی کنیم. مثل زمانی که از چیزی فیلم گرفته باشیم و با سرعت‌های مختلف اونو پخش کنیم. می‌تونیم تندتند بزنیم جلو ببینم آخرش چی میشه یا اصلا متوقفش کنیم. برای همین، اگه بتونیم که زمان رو متوقف کنیم، اون موقع اتفاقی که می‌افته اینه که آخرین تصویری که از هر چیزی داریم، همون باقی می‌مونه. پس اگه سیبی در حال سقوط به زمینه، با متوقف کردن زمان بین زمین و آسمون می‌مونه. این به این معنی نیست که نیرویی وجود نداره! بلکه به این معنی هست که در یک لحظه خاص، ما فقط یک فریم از یک فیلم رو انتخاب کردیم و داریم اونو می‌بینیم و با راه انداختن دوباره زمان، می‌بینیم که سیب به سقوطش ادامه میده. یا اگه فرض کنیم که گذر زمان رو سریع‌تر کنیم اون موقع می‌بینیم که سیب زودتر به زمین می‌خوره. یا اگه زمان رو به عقب برگردونیم می‌بینم که سیب به جای زمین خوردن، هوا میره 🙂

توضیح‌ فنی‌تر:

اگر دینامیک توصیف‌کننده یک سیستم، توسط معادلات تعینی داده بشه،اون موقع خروجی مسئله، یک «مسیر» می‌تونه باشه. مسیر، یک «خم» در فضای مکانه که توسط زمان نشانه‌گذاری شده. با داشتن مسیر، می‌تونیم بدونیم که سرشت نهایی سیستم چیه. به عنوان مثال با حل مسئله گرانش عمومی نیوتون برای دو جسم، به یک مسیر بسته بیضی شکل برای یکی از اون دو جسم می‌رسیم. با تغییر زمان، از نقطه‌ای به نقطه‌ی دیگه‌ از اون مدار (مسیر بسته) هدایت میشیم.

قانون دوم نیوتون، $F=ma$ یا معادله اویلر-لاگرانژ $\frac{\partial L(x,\dot{x}; t)}{\partial x } = \frac{d}{dt}\frac{\partial L(x,\dot{x}; t)}{\partial \dot{x} }$ هر دو منجر به دسته‌ای از معادلات دیفرانسیل معروف به معادلات حرکت میشن. در این روش مدل‌سازی، حرکت سیستم شما تعینی هست و شما با دونستن اطلاعات در مورد حال، دقیقا می‌تونید بگید که چه اتفاقی در آینده می‌افته.

گاهی دینامیک توصیف کننده شما توسط معادلات غیر تعینی داده میشه، مثل زمانی که حرکت یک ولگرد (قدم زن تصادفی) یا یک فرایند تصادفی رو مدل می‌کنید. اون موقع برای شروع مسئله، با معادله «مادر» یا معادله فوکر-پلانک می‌تونید پیش‌ برید. در این حالت، مسئله شما دیگه تعینی نیست و پیش‌بینی آینده یا پیش‌بینی مسیر، با عدم قطعیت (یا به عبارتی خطا) همراه خواهد بود. مثلا برای یک ولگرد نمی‌تونید با قطعیت کامل بگید که در فلان لحظه کجاست!

۲) علت حرکت چیزها

چیزها حرکت می‌کنند چون که بهشون نیرو وارد میشه! زمین دور خورشید می‌چرخه چون از طرف خورشید بهش نیرو وارد میشه یا توپ فوتبال حرکت می‌کنه چون یکی بهش ضربه می‌زنه! در مورد نور لامپ هم این جوری نیست که ما «کاری نمی‌کنیم»! در حقیقت با زدن کلید برق، جریان الکتریکی به لامپ میرسه و توی لامپ انرژی الکتریکی تبدیل به انرژی روشنایی میشه. یعنی همون‌جور که فوتبالیست به توپ ضربه می‌زنه و توپ حرکت می‌کنه، رسیدن جریان الکتریکی به لامپ‌ هم سبب ضربه زدن به نور میشه که به مسیرهای مختلف حرکت کنه. به این پدیده در فیزیک، تابش الکترومغناطیسی گفته میشه. به عبارت فنی‌تر، میدان الکتریکی اعمال شده توسط جریان خارجی (برق) سبب برانگیختگی ماده‌ای مثل تنگستن یا گاز خاصی مثل نئون میشه. برانگیختگی یعنی الکترون‌های که توی اتم‌های تشکیل دهنده اون مواد هستند از یک سطح انرژی به سطح بالاتری می‌رن (مثل وقتی که از پله‌های سرسره بالا میرین). اون موقع وقتی الکترون‌ها از یک سطح با انرژی بالاتر به سطی با انرژی پایین‌تر میان (مثل وقتی از سرسره پایین میاین)، اندازه اختلاف انرژی این دو سطح، از خودشون موج الکترومغناطیس یا ذرات نور منتشر می‌کنند!

این ویدیو رو ببینید:

۳) نور به دام سیاه‌چاله می‌افته؟

در مورد داستان سیاه‌چاله‌ها و اینکه چه‌طور از یک سیاه‌چاله میشه تصویر برداری کرد مفصل نوشتیم قبلا! این نوشته رو بخونید: قیام علیه سیاهی! به طور خلاصه، سیاه‌چاله‌ها اجسام بسیار بسیار سنگینی هستند که حتی بر حرکت نور هم اثر می‌ذارن. در مورد تصاویر منسوب به سیاه‌چاله‌ها هم، در حقیقت نوری که توی تصویر می‌بینیم دقیقا خود سیاهچاله نیست! یه سری موادی هستند که توی یه دیسک (شبیه حلقه‌های زحل) اطراف سیاهچاله دارن میچرخن و چون خیلی داغ هستن از خودشون نور تابش می‌کنن (درست شبیه به همون لامپ!). درواقع ما نور این موادی که در اطراف سیاهچاله وجود دارند و تونستن قسر دربرن و به چشم ما برسن رو می‌بینیم. تصویر ثبت شده، به خاطر اون نورها هست!

کمی توضیح فنی‌تر: ناحیه‌ای هست به‌اسم کره فوتونی که نزدیکترین مدار به افق رویداد که فوتون‌ها می‌تونن توی یه مدار پایدار دور سیاهچاله بچرخن. نزدیک‌تر از اون دیگه تقریبا فوتون شانسی برای برگشت نداره!

نمودار شماتیک از یک سیاه‌چاله شوارتزشیلد. نگاه کنید به نوشته «قیام علیه سیاهی»

۴) آیا نور فقط سرعتش زیاده؟

نه! هر چیزی می‌تونه خیلی سریع حرکت کنه. محدودیتی در اصول نداریم. مثلا در آزمایش‌های مختلف فیزیکی، نوترون‌ها، الکترون‌ها یا پروتون‌ها رو با سرعت‌های خیلی زیاد به حرکت در میارن. یکی از جاهایی که مثلا پروتون‌ها رو تا سرعت‌های نزدیک به سرعت نور به حرکت در میارن آزمایشگاه سرن هست.

۵) آیا نور ثابته؟!

سوال رو درست متوجه نشدم! اگر منظور سرعت حرکت نوره، بله سرعت حرکت نور در هر محیط ثابته ولی موقعی که از محیطی به محیط دیگه میره تغییر میکنه. مثلا سرعت نور در هوا یک چیزه و در آب یک چیز دیگه‌ است. طبق نسبیت اینشتین، نور بیشترین سرعت در حرکت رو داره.