گالیلئو گالیله قطعاً یکی از مشهورترین چهرههای تاریخ علم است؛ نه فقط بهدلیل نقش برجستهاش در گسترش و پیشرفت علم فیزیک و نجوم، بلکه بهخاطر ماجرای اختلافش با کلیسا بر سر حمایت از نظریهٔ خورشیدمرکزیِ کوپرنیک. همین امر باعث شده است آثار زیادی تا به امروز در رابطه با زندگی گالیله تألیف شود. نمایشنامهٔ «زندگی گالیله» نوشتهٔ برتولت برشت، نویسندهٔ بزرگ آلمانی، یکی از آثار شاخص ادبی در این زمینه است که تابهحال چندینبار به زبان های مختلف روی صحنه رفته.
علاوه بر دردسترسبودن نسخهٔ فیزیکی این کتاب در کتابفروشیهای مختلف، این اثر را میتوانید در قالبهای دیگر نیز از طریق لینکهای زیر بخوانید و بشنوید و ببینید:
همچنین در ادامه میتوانید گفتگوی مهدی موسوی را با دکتر امیرمحمد گمینی، عضو هیئت علمی پژوهشکدهٔ تاریخ علم دانشگاه تهران، در رابطه با نمایشنامهٔ «زندگی گالیله» مشاهده کنید. در این گفتگو که در بستر لایو اینستاگرامی برگزار شده، کتاب برشت از منظر تاریخی و فلسفی مورد بررسی قرار گرفته و درمورد سؤالات زیر بحث شده است:
آیا گالیله سوسیالیست بود؟
آیا اختلاف گالیله با کلیسا بر سر ایمان و عقلانیت بود؟
آیا گالیله نظریه خورشید مرکزی را اثبات کرده بود؟
آیا رصدهای گالیله نجوم بطلمیوسی را به طور قطع مردود کرده بود؟
(اصلاحیه: خانم منجم یونانی در قرن چهارم میلادی هوپاتیا نام داشت.)
«پشتپرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفتوگو شده و همچنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبهعلم داشته است.
امروزه با پیشرفت تکنولوژی، نقش دادهها در حوزههای مختلف علم، ازجمله علم نجوم، بیشازپیش نمایان شده است. بهنظر میرسد ابزار برنامهنویسی و شبیهسازی در آیندهای نزدیک، به یکی از مهارتهای مهم و ضروری برای پژوهش در علم (نجوم) تبدیل شود؛ کما اینکه هماکنون نیز تا حدی همینگونه است. در ششمین بخش از «پشت پرده علم» با علیرضا وفایی صدر، پژوهشگر فیزیک در مقطع پسادکتری در IPM، درمورد جایگاه علم داده در نجوم امروزی گفتوگو کردهایم. ویدیو و صوت این گفتوگو ضبط شده و در ادامه این متن میتوانید آن را ببینید و بشنوید.
در علم نجوم امروزی، بهدلیل ساخت تلسکوپها و آشکارسازهای بزرگ متعدد ـ و ترکیب تلسکوپهای بزرگ با یکدیگر با استفاده از روش تداخلسنجی، برای ساخت تلسکوپهای مجازیِ حتی بزرگتر ـ و همچنین افزایش کیفیت و رزولوشن تصاویر دریافتی از آسمان، حجم دادهها بسیار افزایش پیدا کرده و کار با دادههای کلان، به مسئلهای مهم تبدیل شده است. بهعنوان مثال، برای ثبت اولین تصویر از یک سیاهچاله که سال پیش توسط تیم تلسکوپ افق رویداد منتشر شد، هشت آرایه از تلسکوپهای رادیویی، حدود یک هفته رصد انجام دادند که منجر به دریافت دادهای با حجم حدود ۲۷ پتابایت شد و کار انتقال، پاکسازی و تحلیل آن حدود ۲ سال طول کشید (برای اطلاعات بیشتر درمورد جزئیات ثبت این تصویر، این نوشته را بخوانید)!
در گفتوگویمان با علیرضا وفاییصدر، به مسائل مختلفی در زمینه نقش داده در نجوم پرداختهایم؛ از جمله اینکه: چطور میتوان دادههای کلان را سروسامان داد؟ ماشینها (کامپیوترها) چه جنس کارهایی را در زمینه نجوم میتوانند برای ما انجام دهند؟ همکاریهای بینالمللی چه نقشی در این زمینه دارند؟
بخش ششم «پشت پرده نجوم» ویدیوی گفتوگوی محمدمهدی موسوی (فیزیکپیشه) و علیرضا وفاییصدر (پژوهشگر فیزیک در مقطع پسادکتری در IPM) درمورد جایگاه علم داده در نجوم امروزی
«پشتپرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفتوگو شده و همچنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبهعلم داشته است.
تاریخ همیشه عبرتآموز است! به همین خاطر، در اولین قسمت از برنامهی «پشتپرده نجوم» با دکتر امیرمحمد گمینی، عضو هیئت علمی پژوهشکده تاریخ علم دانشگاه تهران، درمورد علم نجوم در بستر تاریخ گفتوگو کردیم. ویدیوی این گفتوگو ضبط شده و در ادامه این مطلب آمده است.
علم در طول تاریخ، فراز و فرودهای زیادی داشته است. این تصور که بخواهیم تاریخ علم نجوم را تنها به نظرات انقلابی از قبیل: مدل زمینمرکزی بطلمیوسی و مدل خورشیدمرکزی کپرنیکی، یا چند چهرهٔ سرشناس مانند گالیله و نیوتن تقلیل بدهیم، برداشت درستی نیست.
در این گفتوگو به سؤالات زیادی در رابطه با تصورات رایج درمورد تاریخ علم (بهویژه علم نجوم) پاسخ داده شده است؛ از جمله آنکه: آیا در تمدن اسلامی، انقلاب علمی اتفاق افتاد؟ دانشمندان مسلمان چه نگاهی به مسئله علم و دین داشتهاند؟ عوامل مؤثر در روابط انسانی و اجتماعی تا چه حد میتوانند روی پیشرفت علم تأثیرگذار باشند؟
بخش اول «پشت پرده نجوم» ویدیوی گفتوگوی محمدمهدی موسوی (فیزیکپیشه) و دکتر گمینی (عضو هیاتعلمی پژوهشکده تاریخ علم دانشگاه تهران) درمورد فراز و فرودهای تاریخی علم نجوم
معرفی کتاب
در این گفتوگو دو کتاب معرفی شدند:
«دایرههای مینایی»، نوشته دکتر امیرمحمد گمینی، که میتوانید آن را از اینجا تهیه کنید. معرفی اجمالی کتاب:
کتاب «دایرههای مینایی، نوشته امیرمحمد گمینی
کیهانشناسیِ علمی از چه زمانی پا گرفت و در یونان و تمدن اسلامی تا چه حد از روش تجربی و ریاضی استفاده میکرد و چقدر تحت تأثیر فلسفه طبیعی بود؟ منجمان تمدن اسلامی چه راهکارهایی را برای حل مشکلات علمی زمان خود پی گرفتند؟ برای پاسخ به سوالات و پرسشهایی دیگر درباره تحولات علمی و تبادل نظرهای رایج در نجوم تمدن اسلامی نیاز به پژوهشهایی مبتنی بر نسخ خطی به جامانده و آخرین دستاوردهای مورّخان دانشگاهی علم قدیم است. این کتاب نتایج این پژوهشها را در کنار پژوهشهایی جدیدتر برای متخصّصان و غیرمتخصّصان علاقهمند به رشته تاریخ علم معرفی میکند. مخاطب این کتاب افرادی هستند که به تاریخ تحولات علوم در گذشتههای دور و نزدیک دلبستهاند یا میخواهند با دستاوردهای فکری و فرهنگی تمدن اسلامی در حوزه علم هیئت آشنا شوند.
«زندگینامه علمی دانشمندان اسلامی» که توسط جمعی از پژوهشگران نوشته شده و میتوانید از اینجا آن را تهیه کنید. معرفی اجمالی این اثر دوجلدی:
«زندگینامه علمی دانشمندان اسلامی» بیان شرح احوال، آثار و آرای علمی ۱۲۶ نفر از دانشمندان اسلامی است که در ریاضیات و علوم وابسته به آن مانند نجوم، نورشناسی، موسیقی و علمالحیل و علومطبیعی مانند فیزیک، شیمی، کیمیا، طب و زیستشناسی کار کردهاند.
کتاب «زندگینامه علمی دانشمندان اسلامی»،
همچنین احوال برخی از جغرافیدانان، تاریخنویسان و بعضی از فلاسفه نیز بیشتر از باب حکمت ایشان، در این مجموعه آمده است. می توان گفت که زندگی و کار مهمترین دانشمندان اسلامی در این مجموعه بررسی شده و برخی مقالات آن از لحاظ تفصیل و عمق و وسعت دامنة تحقیق، بینظیر یا کمنظیرند.
دانشمندان اسلامی که احوالشان در این مجموعه آمده همه اسلامیاند. بیآنکه همه مسلمان باشند و همه ـ از ایرانی و عرب و مغربی و مسلمان و یهودی و مسیحی ـ در سایه درخت پربار تمدن اسلامی زیسته و کار کردهاند.
جلد اول این مجموعه، شامل مقالات حروف «الف» تا «ح» است. جلد دوم، علاوه بر بقیه مقالات، دارای یک فهرست راهنمای تفصیلی و واژهنامهای مشتمل بر معادلهای برخی واژهها و توضیح برخی از اصطلاحات علمی خواهد بود، تا خوانندگانی که از این کتاب برای تحقیق در تاریخ علوم در اسلام یا در دروس مربوط به این موضوع استفاده میکنند، از آن بهتر بهره ببرند.
کلام پایانی
در پایان، شاید اشاره به این چند جمله از کارل سِیگِن در کتاب «جهان دیوزده» خالی از لطف نباشد:
«چالش بزرگ برای مروجان علم آن است که تاریخ واقعیِ پر پیچوخم اکتشافات بزرگش و سوءتفاهمها و امتناع لجوجانهی گاهوبیگاهِ دانشمندان از تغییر مسیر را شفاف کنند. بسیاری از ـ شاید اغلب ـ درسنامههای علمی که برای دانشجویان نوشته شده، نسبت به این مسئله با بیتوجهی عمل کردهاند. ارائهی جذابِ معرفتی که عصارهی قرنها پرسشگریِ جمعیِ صبورانه درباره طبیعت بوده، بسیار راحتتر از بیان جزئیاتِ دستگاهِ درهموبرهمِ عصارهگیری است. روش علم، با همان ظاهر ملالآور و گرفتهاش، بسیار مهمتر از یافتههای علم است.»
تا حالا از خودتون پرسیدید که آیا گرانش میتونه روی مسیر حرکت نور هم تاثیر بذاره و اون رو از خط مستقیم منحرف کنه یا نه؟ با من باشید. میخوایم دربارهی این موضوع با هم صحبت کنیم. دو تا دیدگاه رایج نسبت به پدیدهی گرانش وجود داره؛دیدگاه نیوتونی و دیدگاه نسبیت عام. توصیف نیوتونی گرانش منجر به پیشبینیهایی شده بود که بعدها با اومدن نسبیت عام، این پیشبینیها دقیقتر شد. یکی از این پیشبینیها خم شدن نور در میدان گرانشیه.
نیوتون معتقد بود همونطور که ذرات مادی از مسیر خودشون به واسطهی میدان گرانشی منحرف میشوند، نور هم این قابلیت رو داره. نیوتون این دیدگاه رو در کتاب اپتیک خودش منتشر کرد، و موفق شده بود مقداری برای انحراف نور ستارگان توسط میدان گرانشی خورشید محاسبه کنه.
مسئلهی خمشدگی نور در اطراف میدان گرانشی سالها قبل از تدوین نسبیت عام ذهن آینشتین رو به خودش مشغول کرده بود.در سال ۱۹۱۱ تلاشهایی کرد که بتونه مقداری برای انحراف نور ستارگان در میدان گرانشی خورشید محاسبه کنه. اولین قدمی که برداشت این بود که از فرمالیزم نیوتونی استفاده کرد و به نتیجهای نرسید. چون جرم فوتون صفره و طبق قانون گرانش نیوتون باید مقدار برهمکنش بین فوتون و خورشید صفر بشه. اما اینطوری نبود و آینشتین هم کوتاه نیومد.آینشتین میدونست که ذرات فوتون از انرژی تشکیل شدن. معتقد بود انرژی گاهی رفتار جرممانند داره. به این ترتیب موفق شد انحراف نور ستارگان در حضور میدان گرانشی خورشید رو محاسبه کنه. آینشتین در محاسبات خود عدد ۰/۸۷ ثانیهی قوسی رو به دست آورده بود که این عدد با عددی که نیوتون به دست آورده بود برابر بود. بعد از ظهور نسبیت عام این محاسبات تصحیح شد و مقدار دقیق دو برابر مقداری بود که نیوتون به دست آورده بود.
بعد از ظهور نسبیت عام، آینشتین متوجه شد که در محاسبات قبلی خودش دچار اشتباه شده.در فضا-زمان تخت هر تغییر کوچکی در هندسهی چهاربعدی با رابطهی زیر نشون داده میشه. $$ds^{2}=c^{2}dt^{2}-dl^{2}$$ که c سرعت نور، dt تغییرات زمان و dl تغییرات طوله. نور مسیری رو طی میکنه که $ds^{2}=0$ باشه. در نسبیت عام، فضا-زمان تخت نیست. پس نور هم مسیر مستقیمالخط رو طی نمیکنه.در حد میدان گرانشی ضعیف، هندسهی فضا-زمان با رابطهی زیر توصیف میشه. $$ds^{2}=(1+ \frac{2GM}{r c^{2}}) c^{2} dt^{2} – (1-\frac{2GM}{rc^{2}}) dl^{2}$$ از آنجایی که تصحیحات در مرتبهی $\frac{GM}{rc^{2}}$ کوچکه ، آینشتاین در محاسبات قبلی خودش از جملات مرتبهی بالاتر صرفنظر کرده بود. محاسبات آینشتاین تا تقریب مرتبهی اول منتهی به نتایج نیوتون میشد؛ اما بعد از اینکه تصحیحات مرتبهی بالاتر رو وارد محاسباتش کرد به مقداری دو برابر مقدار قبلی برای میزان انحراف نور ستارگان در میدان گرانشی خورشید دست پیدا کرد.
خم شدن نور در حضور جسم سنگین
تا اینجای کار فقط محاسبات روی کاغذه. باید دید که پیشبینی آینشتاین درست بوده یا نه. آیا واقعا نور در میدان گرانشی منحرف میشه؟ آیا مقداری که برای انحراف نور ستارگان به دست اومده، با آزمایش تطبیق داره؟ آرتور ادینگتون، منجم انگلیسی، در سال ۱۹۱۵ توسط ویلیام دوسیته از ظهور نسبیت عام باخبر میشه.ادینگتون بسیار به نسبیت عام علاقمند شده بود، و خیلی سریع به جنبههای تجربی نسبیت عام پرداخته بود. خورشیدگرفتگی ۲۹ می سال ۱۹۱۹ زمان مناسبی بود که ادینگتون و همکارانش درستی پیشبینی انحراف نور در میدان گرانشی رو بررسی کنند.دایسون و ادینگتون به همراه تیم رصدی خودشون به نقاط مختلف سفر کردند. دایسون و همکارانش به شمال برزیل، و ادینگتون و همکارانش به جزیرهای در غرب آفریقا سفر کردند.در این رصد ادینگتون در حین خورشیدگرفتگی از ستارگان زمینهی آسمان تصویربرداری کرد. و بعد تصاویر دیگهای از ستارگان در آسمان شب گرفت. با مقایسهی این تصاویر متوجه شد که موقعیت ستارگان در آسمان حین کسوف و شب با همدیگه فرق داره. واقعا نور ستارگان تحت تاثیر میدان گرانشی خورشید خم شده و جایگاه ستارگان متفاوت از حالت شب به نظر میرسد.
خمشدن نور در میدان گرانشی، منجر به پدیدهی همگرایی میشه. یک عدسی رو تصور کنید که وقتی پرتو نور رو از چشمهای دریافت میکنه، نور رو در نقطهی دیگری همگرا میکنه. در کیهان خوشهها، کهکشانها، و سایر اجرام پرجرم میتونن رفتاری شبیه عدسی داشته باشند. درواقع وقتی نور از ستارهای پشت این اجرام به چشم ما روی زمین میرسه، این نور در میدان گرانشی حاصل از اون جرم خم شده و از مسیرهای مختلف به چشم ما میرسه. گاهی این نوری که از مسیرهای مختلف به چشم ما میرسه، یک حلقهی نورانی برای ما تشکیل میده. پدیدهی همگرایی گرانشی منجر به این میشه که پژوهشگران بتونن اطلاعاتی دربارهی جرمی که باعث همگرایی شده به دست بیارن. امروز برای مطالعهی ماده تاریک از همین پدیدهی همگرایی گرانشی استفاده میکنند.
نسبیت عام پیشبینیهای زیادی داره. و همونطور که در سالهای گذشته دیدید با پیشرفت ابزارهای آزمایشگاهی و رصدی پژوهشگران موفق به تایید این پیشبینیها شدند. سال ۲۰۰۸ فیلمی ساخته شد به نام آینشتاین و ادینگتون . این فیلم دربارهی تلاشهای ادینگتون برای تایید درستی خمشدن نور در میدان گرانشیه. من بیشتر از این دربارهی این موضوع حرف نمیزنم. شما رو دعوت میکنم که در این روزهایی که در خانههاتون نشستید و در آستانهی سال نو، این فیلم دوستداشتنی و تاریخی رو ببینید.
اینشتین و ادینگتون (به انگلیسی: Einstein and Eddington) فیلمی به کاگردانی فیلیپ مارتین و نویسندگی پیتر موفات که در ۲۲ نوامبر ۲۰۰۸ به نمایش درآمد. این فیلم نگاهی به تکامل نظریهٔ نسبیتآلبرت اینشتین و رابطهٔ او با دانشمند بریتانیایی سر آرتور ادینگتون، اولین فیزیکدانی که ایدههای او را درک کرد میاندازد. ویکیپدیا
از هزاران سال پیش، بشر با مشاهده آسمان بالای سر، سعی کرد با رصدهای مداوم، الگوهای نهفته در آن را پیدا کرده تا بتواند پدیدههای آسمانی را پیشبینی کند و مدلی برای کیهان ارايه دهد. در طول تمام این اعصار، تنها ابزار برای دریافت اطلاعات از آسمان یا همان نورِ اجرام آسمانی، چشم انسان بود. حتی بیش از صد ابزار نجومی هم که در سدههای میانه توسط دانشمندان اسلامی ساخته شد، تنها دقت اندازهگیری موقعیت اجرام و محاسبات را افزایش میداد (برای آشنایی با تاریخ نجوم پیش از دوره نوزایی به اینجا مراجعه کنید). اما با اختراع تلسکوپ در قرن هفدهم میلادی، نقطه عطفی در تاریخ علم اخترشناسی رقم خورد؛ چرا که افق تازهای را در مقابل بشر، برای دستیابی به دادههای بیشتر و آزمودن مدلهای اخترشناسی گشود.
آنطور که در تاریخ مشهور است، اختراع تلسکوپ، اولین بار در ۱۶۰۸ میلادی توسط یک عینکساز هلندی به نام هانس لیپرشی ثبت شده است. در همان سال خبر این اختراع به گالیلئو گالیله رسید و وی توانست با بهبود دادن طراحی آن، از تلسکوپی که ساخته بود، نخستین بار برای دیدن آسمان استفاده کند. وی نتیجه اکتشافات خود، از رصدهایی که با تلسکوپ انجام داده بود را در ۱۶۱۰ میلادی در کتابی با عنوان «فرستاده ستارهای» (Starry Messenger) منتشر کرد. این اکتشافات میتوانستند شواهدی باشند بر درستی مدل خورشید-محوری و رد فلسفه ارسطویی: گالیله برای نخستین بار توانست لکههای خورشیدی و همچنین کوهها و درههای سطح ماه را مشاهده کند. این به معنی این بود که اجرام سماوی برخلاف نظر رایج، اجرامی ایدهآل و بیهیچ عیب و نقص نیستند. همچنین گالیله چهار قمر مشتری را که امروزه به «قمرهای گالیلهای» معروفند، رصد کرد که در واقع نشان میداد، مرکزهای حرکت دیگری نیز وجود دارند. بنابراین ماه میتواند در عین حال که به دور زمین میچرخد، به دور خورشید نیز حرکت کند. پدیده دیگری که اولینبار با استفاده از تلسکوپ دیده شد، رویت همه فازهای هلال سیاره زهره بود. این مشاهده بهخوبی با مدل خورشید-مرکزی سازگاری داشت؛ در سالهای بعدی، کارهای نظری نیوتن در رابطه با مفهوم اینرسی و قانون جهانی جاذبه موجب ابطال مدل زمین-مرکزی و مقبولیت مدل کپرنیکی شد. بنابراین، اختراع تلسکوپ در همان سالهای ابتدایی، نقشی مهم در درک بهتر بشر از جهان ایفا کرد.
از چهارصد سال پیش تاکنون، طراحیهای مختلفی برای تلسکوپها پیشنهاد شده است. پیشرفتهای صورت گرفته در زمینه طراحی و ساخت تلسکوپها، موجب شدهاند تا بسیاری از ابیراهیهای اپتیکی مربوطه، اصلاح شوند. در ادامه، سعی میکنیم با رویکردی تاریخی، این مسیر را نشان دهیم و در این بستر، با طراحیهای مختلف تلسکوپها تا حدودی آشنا شویم.
عدسیهایی که رو به آسمان نشانه رفتند!
تلسکوپهایی که در ساختار اصلیشان از عدسیها استفاده میشود، به «تلسکوپهای شکستی» موسومند. تلسکوپهای شکستی، از یک عدسی شیئی و یک عدسی چشمی تشکیل شدهاند که کمک میکنند نور بیشتری در چشم انسان کانونی شود، تا تصویر روشنتر و شفافتری از جرم آسمانی بهدست آید. تلسکوپی که لیپرشی و گالیله ساختند، از یک عدسی محدب به عنوان شیئی و یک عدسی مقعر به عنوان چشمی تشکیل شده بود. در این نوع تلسکوپ که امروزه با عنوان «تلسکوپ گالیلهای» شناخته میشود، عدسی محدب، پرتوها را کانونی میکند؛ اما عدسی مقعر، پیش از نقطه کانونی عدسی شیئی، مسیر پرتوها را تغییر میدهد و آنها را بهصورت موازی درمیآورد تا وارد چشم شوند. تصویر بهدست آمده، بزرگنماییشده و بهصورت مستقیم است. گالیله توانست در نهایت، تلسکوپی با قطر عدسی شیئی ۳۷ سانتیمتر و طول حدود ۱ متر بسازد. این تلسکوپ قابلیت بزرگنمایی ۲۳ برابر را داشت.
طرحی شماتیک از یک تلسکوپ گالیلهای
در ۱۶۱۱ میلادی، یوهانس کپلر، طراحی جدیدی برای ساخت تلسکوپ ارائه داد که در آن، از دو عدسی محدب استفاده میشد. عدسی محدب چشمی، به اندازه فاصله کانونیاش، بعد از نقطه کانونی عدسی اولیه قرار میگیرد و نور را موازی میکند. مزیت این نوع طراحی نسبت به تلسکوپ گالیلهای، میدان دید بسیار بزرگتر آن است. هرچند، تصویری که بدست میآيد، بهصورت وارون میباشد. در سالهای بعد، تلسکوپهایی با این طراحی که به «تلسکوپهای کپلری» معروفاند، توسط افرادی مانند کریستف شاینر و ویلیام گَسکویگن ساخته شدند. اما نخستین تلسکوپ کپلری قدرتمند را کریستین هویگنس، در ۱۶۵۵ میلادی ساخت. این تلسکوپ، دارای عدسی شیئی به قطر ۵۷ میلیمتر و فاصله کانونی ۳.۷ متر بود. هویگنس، با استفاده از این تلسکوپ، توانست درخشانترین قمر زحل، یعنی تیتان را کشف کند و برای نخستینبار، در ۱۶۵۹ میلادی، توصیف درستی از حلقههای زحل ارائه دهد.
طرحی شماتیک از یک تلسکوپ کپلری
اجسام از آنچه در آینه میبینید، از شما دورتر هستند!
نوع دیگری از تلسکوپها، «تلسکوپهای بازتابی» هستند که در آن به جای عدسی، از آینهها استفاده میشود. اگرچه خودِِ گالیله نیز از این موضوع آگاه بود که میتوان به جای عدسی از آینههای انحنادار نیز استفاده کرد، اما شاید بتوان جِیمز گریگوری را نخستین کسی دانست که به طور مفصل به این موضوع پرداخت و تلسکوپی متشکل از دو آینه طراحی کرد؛ هرچند هیچگاه نتوانست ایده خود را عملی کند و کسی را متقاعد سازد تا تلسکوپی با این طراحی بسازد. امروزه این نوع تلسکوپ، با عنوان «تلسکوپهای گریگوری» شناخته میشوند؛ گریگوری مدعی شد که این نوع طراحی میتواند مشکل ابیراهی رنگی و کروی تلسکوپها را رفع کند.
تلسکوپهای گریگوری، از دو آینه مقعر تشکیل شدهاند. آینه اولیه، از نوع سهمیگون و آینه ثانویه، از نوع بیضیگون هستند؛ بهطوری که پرتوها از آینه اولیه بازتاب داده شده و همگرا میشوند؛ و آینه ثانویه که کمی بعد از نقطه کانونی واقع شده است، پرتوها را از میان حفرهای که در وسط آینه اولیه قرار دارد، در بیرون از تلسکوپ، کانونی میکند.
طرحی شماتیک از یک تلسکوپ گریگوری
در ۱۶۶۶ میلادی، آيزاک نیوتن بر پایه نظریه خود در مورد شکست نور و رنگها، به این نتیجه رسید که مشکل ابیراهی رنگی تلسکوپهای شکستی، بهدلیل کاستیها در ساخت عدسی نیست. بلکه همه مواد شکستی، باعث شکست نور میشوند و دارای این ابیراهی هستند. بنابراین پرداختن به ساخت تلسکوپهای شکستی، بیفایده هست. البته بعدها، با الگوگیری از ساختمان چشم انسان، افرادی مانند چِستر مور هال و جان دولاند، توانستند با استفاده از ترکیب لنزهایی متشکل از مواد شکستی مختلف، لنزهایی بدون ابیراهی رنگی، موسوم به لنزهای بیرنگ بسازند.
نیوتن در ۱۶۶۸ میلادی، نخستین تلسکوپ خود را ساخت. تلسکوپ او شبیه به تلسکوپ گریگوری بود، با این تفاوت که بجای آینه ثانویه مقعر، از یک آینه تخت استفاده کرد. نیوتن برای سادگی، از یک آینه کروی برای آینه شیئی استفاده کرد. این آینه از جنس فلز اسپکیولوم (آلیاژی از قلع و مس) ساخته شده، قطر آن حدود ۳.۳ سانتیمتر و فاصله کانونی آن ۱۶.۵ سانتیمتر بود. او توانست با این تلسکوپ، قمرهای گالیلهای مشتری و فازهای هلال ماه را مشاهده کند. تلسکوپ نیوتنی، نسبت به تلسکوپهای شکستی، دارای مزیتهای زیر بود:
۱) ابیراهی رنگی نداشت.
۲) ساخت آن بسیار آسانتر بود.
۳) فاصله کانونی کوتاهتری نسبت به مشابه نمونه شکستی خود داشت که باعث میشد، جمع و جورتر و قابلیت حمل راحتتری داشته باشد.
۴) ساخت آن ارزانتر بود.
۵) میدان دید بزرگتری داشت.
طرحی شماتیک از یک تلسکوپ نیوتنی
تلسکوپی که نیوتن آن را ساخته است
نوع دیگری از تلسکوپهای بازتابی، «تلسکوپهای کاسگرینی» هستند که توسط لاورنت کاسگرین در ۱۶۷۲ میلادی پیشنهاد داده شدند. این تلسکوپ، از یک آینه اولیه بیضیگون مقعر و یک آینه ثانویه هذلولیگون محدب، تشکیل شده است. آینه ثانویه، در جایی قبل از فاصله کانونی آینه اولیه قرار گرفته و پرتوهای نور را از حفرهای که در وسط آن قرار دارد، به بیرون هدایت و کانونی میکند. این امر، موجب آن میشود تا بتوان تلسکوپهایی ساخت که با طول کوتاهتر، فاصلههای کانونی موثرِ بلندتری برای آینه اولیه داشته باشند. همچنین، میدان دید نیز افزایش مییابد.
طرحی شماتیک از یک تلسکوپ کاسگرینی
در سالهای بعد، پیشرفتهایی در زمینه طراحی و ساخت آینههای بیضیگون و هذلولیگون، از جنس فلز اسپکیولوم صورت گرفت. همچنین در بین سالهای ۱۷۷۸ تا ۱۷۸۹ میلادی، ویلیام هرشل تلسکوپهای بازتابی بزرگی ساخت که بزرگترین آنها تلسکوپی بود که ۱۲۰ سانتیمتر قطر و ۱۲ متر طول داشت. این تلسکوپ تا ۵۰ سال بعدی، بزرگترین تلسکوپ دنیا بود. او برای اینکه بازتاب ضعیفِ نور، توسط آینههای اسپکیولومی را بهبود بخشد، آینه ثانویه را حذف کرد و بهجای آن سعی کرد با چرخاندن آینه اصلی، نور را در جایی کانونی کند که بتواند بهطور مستقیم، تصویر را مشاهده کند. این نوع تلسکوپ، بعدها به «تلسکوپ هرشلی» معروف شد.
هرشل توانست با تلسکوپهایی که ساخته بود، برای نخستین بار سیاره اورانوس و چند قمر، از جمله انسلادوس و میماس از اقمار زحل را کشف کند. همچنین وی توانست چند کاتالوگ از چند هزار جرم عمق آسمان تهیه کند که شامل خوشههای ستارهای و سحابیها بودند؛ بسیاری از اجرامی که هرشل آنها را سحابی نامیده بود، بعدها در قرن بیستم، با محاسبه فاصلهشان توسط جان اسلیفر و ادوین هابل، نشان داده شد، در واقع خود، کهکشانهایی هستند که در خارج از راه شیری قرار دارند.
نقاشی از تلسکوپ ۱۲ متری ویلیام هرشل، با قطر عدسی شیئی ۱۲۰ سانتیمتر
همان طور که اشاره شد، میزان بازتاب نور از آینههایی که از جنس فلز آلیاژی اسپکیولوم بودند، مطلوب نبود. بهعلاوه، این نوع آینهها پس از مدتی تیره میشدند و کیفیت خود را از دست میدادند؛ بنابراین نیاز بود تا با آینهای جدید تعویض شوند. در پی حل این مشکل، در ۱۸۵۷ میلادی، کارل آگوست فون استینهیل و لئون فوکو، توانستند با ابداع روشی، این مشکل را تا حدی حل کنند؛ آنها طی فرآیندی، یک لایه از نقره را بر روی یک آینه شیشهای لایهنشانی کردند. این کار نه تنها میزان بازتاب و ماندگاری را افزایش میداد، بلکه همچنین این مزیت را داشت که در صورت نیاز، این لایه برداشته شده و دوباره لایهنشانی شود؛ بدون اینکه لازم باشد شکل آینه شیشهای زیرین، تغییر یابد. در سالهای بعد، تلسکوپهای بسیار بزرگی با استفاده از این نوع آینهها ساخته شدند. پیشرفت دیگر در زمینه آینههای تلسکوپ، در ۱۹۳۲ میلادی حاصل شد؛ جان دوناوان استرانگ، با استفاده از تکنیک تبخیر خلا گرمایی، توانست آلومینیوم را روی آینه لایهنشانی کند. مزیت لایه آلومینیومی این است که ماندگاری بیشتری نسبت به نقره دارد.
از جمله مهمترین طراحیهای دیگری که در طول این سالیان، برای تلسکوپهای بازتابی پیشنهاد شدند، «تلسکوپهای ریچی-کرتین» هستند. این نوع تلسکوپ، در دهه اول قرن بیستم میلادی، توسط جورج ویلیام ریچی و هِنری کرتین معرفی شد. ساختار کلی تلسکوپ ریچی-کرتین، مانند تلسکوپهای کاسگرینی است، با این تفاوت که در این مدل، هر دو آینه از نوع هذلولیگون هستند. این امر موجب میشود، علاوه بر ابیراهی کروی، ابیراهی کما یا اشک نیز تصحیح شود. بسیاری از تلسکوپهای بزرگ امروزی، مانند تلسکوپ فضایی هابل، تلسکوپهای کِک و تلسکوپ ویالتی، از نوع تلسکوپهای ریچی-کرتین هستند.
همیشه راه سومی نیز وجود دارد!
علاوه بر تلسکوپهای شکستی و بازتابی، نوع دیگری از تلسکوپها نیز وجود دارند که در طراحیشان، ترکیبی از عدسیها و آينهها بهکار رفته است. این نوع تلسکوپها را کاتادیوپتریک یا «تلسکوپهای لنز-آیینهای» مینامند. از جمله معروفترین آنها میتوان به تلسکوپهای «اشمیت-کاسگرین» و «ماکستوف-کاسگرین» اشاره کرد.
تلسکوپهای اشمیت-کاسگرین، از دو آینه کروی مقعر و محدب تشکیل شدهاند، که در موقعیت آینههای یک تلسکوپ کاسگرین قرار دارند. بهعلاوه، یک «صفحه اصلاحگرِ اشمیت»، در مسیر پرتوهای ورودی و در محل آينه ثانویه قرار میگیرد. این صفحه، در واقع یک نوع عدسی ناکروی است که دارای ابیراهی کرویِ برابر، اما مخالفِ ابیراهی کروی آینه اولیه میباشد؛ بنابراین، از این طریق ابیراهی کروی اصلاح میشود. به علت راحتی ساخت آینههای کروی، این تلسکوپ بیشتر در بین منجمان آماتور طرفدار دارد.
طرحی شماتیک از یک تلسکوپ اشمیت-کاسگرین
تلسکوپهای ماکستوف، نخستین بار توسط دیمیتری دیمیتریویچ ماکستوف، در ۱۹۴۱ اختراع شد. او با الگوگیری از تلسکوپ اشمیت، از یک عدسی هلالی کاو برای اصلاح آینه کروی استفاده کرد. این صفحه اصلاحگر یا «پوسته اصلاحگر هلالی»، معمولا بهطور کامل در گشودگی ورودی تلسکوپ قرار میگیرد. مزیت این طراحی این است که در آن، همه سطوح تقریبا «متقارنِ کروی» هستند. این طراحی، ابیراهیهای ناهممحور، همچون ابیراهی اشک را اصلاح میکند. ضمن آنکه ابیراهی رنگی نیز از بین میرود. تلسکوپهای ماکستوف را معمولا با چیدمان کاسگرینی طراحی میکنند. با این تفاوت که مشابه تلسکوپهای اشمیت-کاسگرینی، از دو آینه کروی استفاده میشود.
طرحی شماتیک از یک تلسکوپ ماکستوف-کاسگرین
تلسکوپهای امروزی
امروزه تقریبا همه تلسکوپهای پیشرفته از نوع بازتابی هستند؛ چرا که ساخت آینههای بزرگ، آسانتر و ارزانتر از عدسیهای بزرگ میباشند. ضمن آنکه تلسکوپهای شکستی را نمیتوان در عمل، از یک حدی بزرگتر ساخت؛ بزرگترین تلسکوپ شکستی جهان، در رصدخانه یِرکیز قرار دارد. قطر دهانه این تلسکوپ، ۱۰۰ سانتیمتر میباشد. هر تلسکوپ شکستی بزرگتر از این اندازه، ناپایدار است و تحت وزن خود، فرومیریزد.
تصویری از بزگترین تلسکوپ شکستی ساخت بشر در رصدخانه یِرکیز
بزرگترین تلسکوپ فعال در حال حاضر، تلسکوپ بزرگ جزایر قناری است که دارای آینهای به قطر ۱۰ متر و ۴۰ سانتیمتر میباشد. آینه اصلی این تلسکوپ، مانند بسیاری از تلسکوپهای بزرگ دیگر، شبیه به طرح لانه زنبور، از کنار هم قرار گرفتنِ آینههای شش ضلعی کوچکتر تشکیل شده است. این تکنیک باعث میشود تا بتوان آینههای بزرگتری برای تلسکوپها ساخته شوند. از دیگر تلسکوپهای بزرگی که در آینده نزدیک ساخته خواهند شد، میتوان به «تلسکوپ بزرگ ماژلان» ۲۴.۵ متری، «تلسکوپ سی متری»، و «تلسکوپ بسیار بزرگ اروپایی» که آینهای با قطر ۳۹.۳ متر خواهد داشت، اشاره کرد. همچنین در قرن بیستم، تلسکوپهایی نیز ساخته شدند که در مدارهایی به دور زمین قرار داده شوند. به این نوع تلسکوپها، «تلسکوپهای فضایی» گفته میشود که شاید معروفترین آنها، «تلسکوپ فضایی هابل» است.
مقایسه اندازه قطر دهانه تلسکوپهای مختلف در طول زمان
از جمله فناوریهای مهمی که باعث شدند تا بتوان تلسکوپهای بزرگتر و با کیفیت تصویربرداری بهترِ امروزی را ساخت، سیستمهای «اپتیک فعال» و «اپتیک تطبیقی» بودند. یک سری از عوامل هستند که باعث ایجاد خطا در دادههای دریافتی از تلسکوپ میشوند؛ از جمله میتوان به موارد زیر اشاره کرد: خطاهای ناشی از ساخت و غیرهمخط بودن المانهای اپتیکی در تلسکوپ؛ تغییر شکل آینه، در اثر وزن خودِش؛ تغییرات دمایی و وزش باد در محیط گنبد رصدخانه و اطراف آن؛ و توربولانس یا آشفتگی جو. این عوامل روی شکل جبههموج نور فرودی تاثیر میگذارند و شکل آن را از حالت تختْ خارج میکنند. با استفاده از سیستمهای اپتیک فعال و اپتیک تطبیقی میتوان شکل تغییریافته جبهه موج را مشخص کرد و تغییراتی در جهت عکس، در شکل آینه اصلی ـ با استفاده از آرایهای از بازوهای مکانیکی در پشت آن ـ یا با جابهجایی آینه ثانویه، بهوجود آورد. بنابراین، از این طریق شکل جبهه موج اصلاح میشود و تصویر نهایی، شفاف و باکیفیت خواهد بود.
تصویر گرفته شده توسط تلسکوپ VLT، قبل و بعد از بهکارگیری سیستم اپتیک تطبیقی
تفاوت بین سیستم اپتیک فعال و اپتیک تطبیقی، در فرکانس یا نرخ اِعمال تصحیحات است؛ سیستمهای اپتیک فعال، برای اِعمال تصحیحات با فرکانسهای پایین، و سیستمهای اپتیک تطبیقی، برای تصحیحات با فرکانس بالا کاربرد دارند. برای نمونه، از عواملی که در بالا به آنها اشاره شد، اثرات آشفتگی جو بر روی جبههموج فرودی را میتوان بهوسیله سیستم اپتیک تطبیقی اصلاح کرد؛ چرا که تغییرات جوی بسیار سریع هستند و به همین دلیل باید تصحیحات مربوطه، با فرکانسهای بالا ـ بیشتر از ۲۰ بار در ثانیه ـ صورت گیرند. اثرات بقیه عواملی را که به آنها اشاره شد، عمدتا میتوان با استفاده از سیستم اپتیک فعال اصلاح کرد.
یکی دیگر از روشهایی که در ساخت بعضی از تلسکوپهای پیشرفته بهکار گرفته شده، روش تداخلسنجی است؛ برای مثال، رصدخانه کک، از دو تلسکوپ بازتابی که هر کدام آینهای به قطر ۱۰ متر دارند، تشکیل شده است. این دو تلسکوپ میتوانند با روش تداخلسنجی با یکدیگر ترکیب شده و در واقع یک تلسکوپ با قطر دهانه مؤثر ۸۵ متر را تشکیل دهند. این امر باعث میشود قدرت تفکیک، بسیار افزایش یابد و بتوان جزئیات بیشتری از آسمان را مشاهده کرد.
دیدن نادیدنیها
تلسکوپهایی که تا اینجا در موردشان صحبت شد، تلسکوپهایی هستند که در محدوده نور مرئی کار میکنند. اما همانطور که میدانیم، چشم ما تنها قادر به آشکارسازی و دیدنِ بخش بسیار کوچکی از طیف موج الکترومغناطیسی یا نوری است که از اجرام آسمانی به ما میرسند. اما برای مثال، همانگونه که بهوسیله تصویربرداری فروسرخ، اجسام و موجودات را در تاریکی شب میتوان مشاهده کرد، دادههای بسیار زیادی در آسمان وجود دارند که چشم ما قادر به آشکارسازی آنها نیست.
در ۱۹۳۱ میلادی، کارل جانسکی کشف کرد که راه شیری در واقع یک منبع تولید امواج رادیویی است. بنابراین، زمینه تازهای در زمینه مطالعات نجومی، به نام نجوم رادیویی بهوجود آمد. بعد از جنگ جهانی دوم، زمینه برای ساخت تلسکوپهای رادیویی بزرگ فراهم شد. امروزه آرایههای بزرگی از تلسکوپهای رادیویی وجود دارند که با استفاده از روش تداخلسنجی، بهمانند یک تلسکوپ رادیویی بزرگ عمل میکنند. اخیرا، اولین تصویر مستقیم از یک ابرسیاهچاله نیز توسط ترکیبی از هشت آرایه از تلسکوپهای رادیویی، ثبت شد (جزئیات مربوط به این مطلب را میتوانید در اینجا بخوانید).
در قرن بیستم، تلسکوپهایی در طولموجهای دیگر نیز ساخته شدند. امروزه تلسکوپهایی در محدوده طولموجهای فروسرخ، فرابنفش، پرتو ایکس و گاما فعال هستند. بهدلیل اینکه جو زمین مانع از رسیدن نور در این طولموجها به سطح زمین میشود، در واقع همه آنها تلسکوپهای فضایی هستند.
وطنم! ای شکوه پابرجا!
طرح رصدخانه ملی ایران، بهعنوان اولین طرح کلان در زمینه علوم پایه در کشور، در سال ۱۳۷۹ آغاز شد و امروزه در مراحل پایانی ساخت قرار دارد. رصدخانه ملی میتواند نقش بهسزایی در گسترش و پیشرفت علم نجوم در کشور داشته باشد. زمینههای پژوهشی این طرح میتواند شامل موارد زیر باشد: مطالعه چگونگی تشکیل ساختارها در کیهان، تحول کهکشانها، مطالعه منشا ماده تاریک و انرژی تاریک، مطالعه فضای میانستارهای با استفاده از ابزار طیفسنجی، جستجوی سیارات فراخورشیدی و غیره.
موقعیت این رصدخانه در ارتفاعات کوه گرگش، با موقعیت بسیار مناسب برای رصد آسمان است. این رصدخانه، در حال حاضر، شامل یک ایستگاه مکانپایی و یک سامانه میدان دید باز INOLA (سرواژه Iranian National Observatory Lens Array) است که مشغول به فعالیت هستند. بخش اصلی رصدخانه، مربوط به یک تلسکوپ بازتابی بزرگ از نوع ریچی-کرتین، با عنوان INO340 خواهد بود. این تلسکوپ در محدوده طول موج ۳۲۵ تا ۲۷۰۰ نانومتر، کار میکند که البته تمرکز آن، روی محدوده مرئی خواهد بود. قطر آینه اصلی آن، ۳.۴ متر است. ضخامت این آینه، حدود ۱۸ سانتیمتر بوده و با دقت ۱ نانومتر تراش خورده و جلا داده شده است و در ساختمانی که در محل رصدخانه ساخته میشود، با آلومینیوم لایهنشانی خواهد شد. (برای اطلاعات بیشتر به سایت رصدخانه ملی ایران مراجعه کنید)
هرچند این تلسکوپ، از حیث اندازه، یک تلسکوپ میانرده به شمار میآید، ولی علاوه بر اهداف علمی و پژوهشی که در بالا به آنها اشاره شد، میتواند بهدلیل موقعیت منحصربهفرد و همچنین شرایط خوب رصدی، سهم مهمی در پروژههای بینالمللی داشته باشد. ضمن آنکه، طرحهای کلانی از این دست، میتواند باعث پیشرفت فناوریهای پیشرفته در کشور شود.
هرچند در شرایط کنونی جامعه شاید بیشتر به رویا شبیه باشد، اما امیدوارم در سالهای آینده، شاهد تعداد بیشتری از این طرحهای علمی باشیم تا کشورمان آباد شود! :))
سه سال پیش، مطلبی نوشتم در مورد تجربههایی که در دوران کارشناسی فیزیک پیدا کرده بودم. آن نوشته را به این امید نوشتم که ایدهای بدهد به تازهواردها یا کسانی که قصد دارند وارد رشته فیزیک شوند. امروز که کارشناسی ارشدم در فیزیک هم تمام شده، کماکان آن نوشته را نوشته خوبی میدانم و نظرم در مورد کلیت فیزیک خواندن همان است. با این وجود، به نظرم بد نیست که حاشیهای بنویسم بر آن نوشته، بالاخره یکی دو پیراهن از آن زمان بیشتر پاره شده در این راه!
راستش اگر کسی این روزها از من بپرسد که «به نظر شما من فیزیک بخوانم یا نه؟» جوابم این است که به دنبال جواب ساده و کوتاهی یا حاضری کمی با هم گپ بزنیم!؟ اگر جواب کوتاه را انتخاب کند، میگویم که خیر قربان/سرکار و سریع راهم را کج میکنم و میروم! اما اگر بگوید گپ بزنیم، آن موقع تا آنجا که وقت باشد با هم صحبت خواهیم کرد! علت این کار هم این است که در فیزیک، جوابهای ساده و سرراست یا میانبرهای کنکوری نداریم! راستش هر چه گذشته به خاطر شامورتیبازی موسسات کنکور و دلقکبازیهایی که تحت عنوان آموزش فیزیک به بچهها از طریق رسانه ملی(!) یا شرکت در کلاسهای کنکور داده شده، بچهها به دنبال این هستند که یک راه حل تستی برای هر مسئله فیزیک پیدا کنند. این وضع به قدری بد شده که یکبار در مواجهه با دوستی با این عبارت روبهرو شدم که «نه، تو بلد نیستی، حتما این مسئله یک راه سریعتر دارد، راهی که در ۳۰ ثانیه بشود به پاسخ رسید!». و این بلا نه تنها در مقطع کارشناسی بر سر دانشگاه نازل شده که امروز دانشجوی ارشد و دکتری ما هم با همین دوپینگها وارد دانشگاه میشود.
فیزیک سخت است. باور کنید!
خلاصه بهتر است گربه را دم حجله بکشیم؛ اگر کسی از همین اول کار به دنبال راحتالحلقوم است، خب چه کاری است که وارد فیزیک شود! آن هم وقتی فیزیک شبیه به ساقه طلایی است و نه راحتالحلقوم! فیزیک سخت است. از همه نظر. چه از لحاظ حجم کار چه از لحاظ ملاحظات مالی و اجتماعی. راستش را بخواهید برای آنکه فیزیک بخوانید عشق به تنهایی کافی نیست! اگر هم باشد برای آنکه فیزیک را ادامه بدهید نیاز به چیزهای بیشتری دارید. چیزهایی مثل همت و انگیزه بالا که در شرایط سخت، بازی را نبازید و به راه خود با همان ایمان روزهای آغازین ادامه دهید. لطفا اگر حال و حوصله کلنجار رفتن با ریاضیات یا دیباگ کردن کدهای شبیهسازی یک پدیده فیزیکی را ندارید، الکی به خودتان دلداری ندهید که درست میشود، برویم فیزیک بخوانیم! این کار مانند آن است که با یک معتاد ازدواج کنید به این امید که او ترک میکند و زندگی روبهراه میشود! اگر در آستانه ورود به دانشگاه هستید، احتمال زیاد هنوز ۲۰ سالتان نشده، برای همین حواستان باشد که فیزیکدان شدن، خانواده خوب و حمایتگر هم میخواهد؛ خانوادهای که چه از لحاظ مالی و چه از لحاظ روانی و عاطفی به شما در این مسیر کمک کند. در غیر این صورت، «افق تاریک، دنیا تنگ و نومیدی توانفرسا» خواهد بود.
پیشنهاد میکنم بر اساس مستندهای هیجان انگیز یا فعالیتهای نجوم آماتوری انتخاب رشته نکنید!
من یک وبلاگنویسم و به شدت طرفدار بیان کردن علم به زبان مردم! به شدت هم علاقهمند به ایده روایتگری هستم. اما هدف از روایتگری علم چیزی است غیر از ملاکی برای انتخاب رشته. ساخت مستندهای علمی خیلی خوب است. فعالیتهای ترویجی خیلی مهم است. ولی همه این چیزها ساخته نشدهاند که ملاک انتخاب رشته باشند!
اگر میخواهید غواص شوید، راهش دیدن مستندات نشنال جئوگرافیک یا شنیدن سخنرانی یک غواص در TED نیست! باید دل به اعماق دریا بزنید. کار حرفهای غیر از عشق و علاقه اولیه نیاز به کسب تجربه در یک محیط حرفهای به همراه خون دل و همت بالا دارد!
اگر از دیدن مستندات یا سخنرانیهایی در مورد مکانیک کوانتومی به وجد میآیید یا سریال بیگبنگ تئوری، سریال مورد علاقهتان است هیچ دلیل نمیشود که بیاید و فیزیک بخوانید! من شخصا از شنیدن آواز همایون شجریان یا از بازی آلپاچینو لذت میبرم ولی آیا این دلیل میشود که بروم خواننده یا بازیگر شوم؟! خیلی چیزها در زندگی، مانند آواز دهل است، فقط از دور خوش هستند! اکثر مردم دوست دارند جای رونالدو یا مسی باشند بدون آنکه بتوانند یک روز از زندگی حرفهای آنها را تجربه کنند! خلاصه اگر عاشق آینشتین و هاوکینگ هستید یا فیلم میانستارهای را بیش از ده بار دیدهاید دلیلی نمیشود که بیایید و فیزیک بخوانید دوست من! از طرف دیگر، فراموش نکنید که کتابها یا مستندهای عامهپسند به منظور جذب مردم به علم ساخته شدهاند. این آثار بهانهای هستند که مفاهیم علمی حداقل یکبار به گوش مردم کوچه و بازار رسیده باشد. برای همین تا جایی که شده مفاهیم ساده شدهاند و از ابزارهای گرافیکی مختلفی برای ارائه شهود نسبی به بیننده استفاده کردهاند. چیزهای عامهپسند، فیزیک نیستند! فیزیک یک کار حرفهای است و اینها تبلیغهایی عوامپسند برای جذب مخاطب هستند. بماند که این روزها خیلیها بیشتر برای گیشه مینویسند تا ترویج علم. چند وقت پیش دکتر رضا منصوری گفتند که «کتابهای هاوکینگ را نخوانید!» به نظرم حرفشان به جا بود، لااقل برای کسانی که میخواهند وارد فیزیک شوند یا در فیزیک هستند!
حکایت فعالیتهای نجوم آماتوری هم تقریبا همین است. در بسیاری از دانشگاههای دنیا دانشکدهای به اسم «دانشکده فیزیک و نجوم» وجود دارد. به بیانی میشود گفت که نجوم هم فیزیک است هم نیست! توجه کنید که شکی در عظمت نجوم و بده بستانهای بین نجوم و علم مدرن – به خصوص فیزیک – وجود ندارد، اما غرض من چیز دیگری است. قدمت نجوم بسیار زیاد است و فعالیتهایی که در نجوم شکل میگیرند بسیار شبیه به چیزهایی است که در فیزیک انجام میشود، شاید به همین خاطر است که در دنیا، دانشکدههایی که منحصرا به اسم نجوم و مستقل از دانشکده فیزیک هستند تعدادشان انگشتشمار است. بخش بزرگی از فعالیتها در نجوم، «نجوم آماتوری» است که اتفاقا فعالیتهای مهمی هستند ولی خب، از یکجایی به بعد فاصله معناداری با فیزیک به عنوان یک رشته دانشگاهی پیدا میکنند. برای همین اگر به نجوم علاقه دارید، ممکن است انتخاب فیزیک به عنوان رشتهی تحصیلی برای شما چندان پرفایده نباشد. اگر قسمتی از درس مکانیک کلاسیک که به پایداری مدارها و سیستمهای دینامیکی میپردازد را کنار بگذاریم، در اکثر دانشگاههای ایران، در دوره کارشناسی فیزیک شما یک خط هم نجوم نمیبینید!
وقتی شما در ایران زندگی میکنید، در ایران هم درس میخوانید!
نسبت به ۳ سال پیش که نوشته «چهار سال فیزیک!» را منتشر کردم، وضع کشور به مراتب از هر نظر بدتر شده. هنوز هم عزم ملی برای توسعه علم در ایران وجود ندارد! به فراخور اوضاع کشور، وضع دانشگاهها هم بد شده. گرانی سبب شده تا دانشگاهها به جای دانشجوی روزانه، دانشجوی شبانه و پردیس بگیرند، چرا که آنها پول به دانشگاه میآورند. تابستان به دانشجوها خوابگاه نمیدهند چون دانشجو مصرف کننده آب و برق و غذای با یارانه است! تالارهای خود را به هر کس و ناکسی کرایه میدهند چون دانشگاه پول ندارد و این کارها پول به دانشگاه میآورد. مشتری پر و پا قرص دانشگاهها در این مورد هم، همان موسسات کنکوری هستند که اساتید دانشگاه از شنبه تا چهارشنبه در مذمتشان سخنرانی ایراد میکنند و پنجشنبه و جمعه دانشگاه بهترین سالنها و تالارهایش را به آنها اجاره میدهد! این وسط حراست محترم هم کلا قوانینی که برای یک دانشجو یا استاد در نظر گرفته را برای آن فرد ثروتمندی که تالار را اجاره کرده در نظر نمیگیرد! بالاخره از قدیم گفتهاند که با پول روی سبیل پادشاه هم میشود نقارهخانه ساخت، رفع گیرهای اخلاقی حراست که دیگر جای خود! همه این حرفها را زدم که بگویم حتی در این شرایط بد اقتصادی، اکثر دانشگاهها هیچ راه موثری برای کسب درآمد ندارند!
در ایران دانشگاه پولش را از راه ارتباط با صنعت به دست نمیآورد، دانشگاهها این روزها به شکلی با تنفروشی کسب درآمد میکنند! این مقدمه را گفتم که بدانید در این اوضاع، کشور حتی به دانشکدههای فنی-مهندسی هم نیاز ندارد چه برسد به دانشکدههای علوم پایه! چند نوشته از بعضی عزیزان، چه دوست و چه اساتید محترم دانشگاه، خواندم که فیزیک مادر علوم مهندسی است یا اگر فیزیک توسعه نیابد، مهندسی و صنعت کشور هم دچار آسیب میشود! راستش را بخواهید، این حرفها برایم کمی عجیب است. نمیفهمم چهطور یک فرد خردمند در دانشگاههای ایران میتواند فیگور یک فرد غربی را بگیرد! ما اگر دانشکدههای فنی را تعطیل کنیم، مگر چیزی از صنعتمان کم میشود که بگوییم فیزیک فلان اثر را بر وضع کشور دارد؟! دانشکدههای علوم پایه – بهطور متوسط – بسیار از صنعت و حتی دانشکدههای مهندسی فاصله دارند و اینکه اگر چند دانشگاه مانند صنعتی شریف توانسته چند گام در این حوزه بردارد نمیتوان این ارتباط را به کل دانشگاههایمان تعمیم داد! سادهلوحانه است که بگوییم این همه دانشکده فیزیک در ایران ربطی به صنعت کشور دارند!
از سوی دیگر، وقتش رسیده که بگوییم تعداد اساتیدی که در دانشکدههای علوم پایه، روزانه مشغول به فعالیت در حوزه دلالی ارز، مسکن و خودرو یا کارهای مشابه هستند کم نیست! دانشجوی فیزیک انتظار دارد استادش دانشمند و پژوهشگر باشد نه کاسب بازاری چرک و ناپاک که وطنش را دچار تنشهای اقتصادی میکند. البته منظورم این نیست که همه اساتید این گونه هستند یا اینکه عمده فعالیتهای کاری خارج از دانشگاه اساتید دچار شبهه است! حرفم این است که در شرایطی که وضع کشور این گونه است حرف زدن از اینکه فیزیک مهم است چون صنعت به آن نیاز دارد برای یک دانشجوی تازه وارد فقط یک شعار است! شعاری که دانشجوی بیچاره تا آینده نزدیک هیچ چهره عملیاتی از آن نمیبیند. فراموش نکنیم که در این میان، آن فیزیکخواندهای که کارش تدریس کنکور و المپیاد است بدش نمیآید که مردم به فیزیک خواندن علاقهمند شوند و بازار علوم پایه هم داغ بماند. اما در سیتپور، مرام ما این است که برای فیزیک دکان باز نکنیم!
و اما در ستایش فیزیک، یا اینکه چرا با این همه مصیبت خوب است که فیزیک بخوانیم!
چون «فیزیک، فقط فیزیک نیست!» و «از فیزیک به همه جا راه است!». به نظرم برای کسانی که به دنبال فیزیک خواندن هستند این دو نوشته دلیلهای خوبی به حساب میآیند. اگر کسی مرد راه باشد، فیزیک پر است از ماجراهای هیجان انگیز! هرچند که منزل بس خطرناک است و مقصد بس بعید…
خلاصه که در انتخاب مسیر آینده با منطق تصمیمگیری کنید و نه احساسات. مراقب جوگیر شدن باشید، حتی ممکن است این نوشته هم شما را جوگیر کند! در علم باید تصمیمها را بر اساس دلیل و برهان بگیریم.
اگه قرار است فیزیک بخوانید، همه شرایط را بررسی کنید! تواناییها، عادات شخصی و علایقتان را با هم به میدان انتخاب بیاورید. حداقل کتابهای سال اول و دوم فیزیک را ورق بزنید ببینید اصلا میتوانید با این چیزها کنار بیاید یا نه!
در انتها به نظرم بد نیست به این نکته اشاره کنم که دانشگاه فقط محل برگزاری یک سری کلاس نیست! شما میتوانید کلاسهای دانشگاههای مختلف دنیا را به کمک اینترنت ببینید یا در دورههای آنلاین شرکت کنید. اما همه چیز که کلاس درس نیست! دانشگاه خوب، جایی است که ایدههای خوب شکل بگیرد، دانشگاه خوب جایی است که همصحبتهای خوب داشته باشید. یک دانشگاه خوب جایی است که از گفتگو با آدمهایش، استاد و دانشجو، لذت ببرید و در فضای حرفهای ایجاد شده بتوانید رشد کنید. دانشگاه فقط در و تخته و یک مشت کارمند نیست. اگر بعد از این نوشته تصمیم گرفتید که فیزیک بخوانید، در دانشگاهی بخوانید که این ویژگیها را داشته باشد. من در ایران چندتایی از این دانشگاهها را سراغ دارم، پس نگران نباشید 😉