رفتن به نوشته‌ها

دسته: اختر فیزیک

شکل ساختارها و اجرام سماوی

چرا ستاره‌ها و سیارات کروی هستند و کهکشان‌ها معمولاً شکل دیسکی دارند؟

می‌خواهیم بدانیم شکل اجرام نجومی که در آسمان می‌بینیم به چه صورتی هستند؟ بگذارید ببینیم در آسمان بالای سرمان چه ‌چیزهایی می‌بینیم؟ در طول روز عمدتاً خورشید را می‌بینیم! ولی در شب می توانیم ستاره‌ها را هم مشاهده کنیم. در مناطق شهری تعداد خیلی کمی از آن‌ها و در مناطق خیلی تاریک و به‌دور از آلودگی نوری شهرها تا حدود پنج الی شش هزار ستاره! امروزه می‌دانیم که خورشید یک کره بزرگ گازی است که ‌به‌دلیل هم‌جوشی هسته‌ای در مرکز آن شعله‌ور و درخشان است. ستاره‌های آسمان شب هم همگی خورشیدهایی هستند کروی‌شکل؛ در اندازه‌ها و دماهای مختلف. دیگر چه‌چیزهایی می‌توانیم در آسمان شب ببینیم؟ ماه و گاهی، بعضی‌ از سیارات منظومه‌شمسی. ماه و سیارات منظومه‌شمسی هم همگی به‌شکل کروی هستند؛ سنگی، گازی یا یخی. هم‌چنین می‌بینیم که خورشید، ماه و سیارات در محدوده‌ای در آسمان که به ‌آن منطقه‌البروج گفته می‌شود، حرکت ‌می‌کنند و این موضوع یعنی تقریباً همگی در یک صفحه حول خورشید می‌گردند.‌ بنابراین اگر می‌توانستیم از بالا به منظومه‌شمسی نگاه کنیم می‌دیدیم که ساختاری شبیه به یک دیسک دارد. دیگر چه؟ اگر در مناطق تاریک و به‌دور از شهرها باشیم این شانس را خواهیم داشت که نوار مه‌آلود کهکشان راه‌شیری را هم ببینیم. چرا نوار مه‌آلود؟ چون ما در واقع از داخل دیسک کهکشان به مناطق مرکزی آن نگاه می‌کنیم؛ بنابراین آن را به‌صورت یک نوار می‌بینیم و گرد‌ و غباری که در راستای دید ما قرار گرفته باعث می‌شود این نوار به‌شکل مه‌آلود باشد. با کمک تلسکوپ می‌توانیم کهکشان‌های دیگر را هم ببینیم که عمدتاً ساختاری دیسکی‌شکل دارند. گه‌گاه در آسمان شب می‌توانیم دنباله‌دارها و شهاب‌ها را هم ببینیم. دنباله‌دارها را می‌توان از جمله اجرام سرگردان منظومه‌شمسی دانست که معمولاً شکل‌های نامنظم دارند. دنباله‌دارها حاوی مقادیر زیادی یخ (مواد فرار مثل آب، متان، آمونیاک و غیره) هستند و معمولاً در مدارهای کشیده‌ی باز یا بسته به‌دور خورشید می‌گردند. با نزدیک شدن به خورشید یخ‌ آن‌‌ها آب شده و فوران می‌کند و به‌همراه خود بخش‌هایی از این گلوله‌های برفی کثیف را در فضا بر جای باقی می‌گذارند که تشکیل دنباله را می‌دهند. این مواد بر‌جای‌مانده که به‌شکل گرد و غبار و تکه‌سنگ‌های بزرگ و کوچک هستند می‌توانند با عنوان شهواب‌وارها گاهی در مسیر حرکت زمین قرار گرفته، وارد جو شوند و به‌دلیل اصطکاک بالا با مولکول‌های داخل جو بسوزند و ردّی درخشان از خود به‌نمایش بگذارند. همان شهاب‌های جذاب آسمان!

با این توضیحات، اجرام و ساختارهای نجومی می‌توانند اشکال مختلفی داشته باشند، اما چرا این اشکال را دارند؟ چرا تمام ستاره‌ها و سیارات به‌شکل کروی هستند؟ چرا منظومه‌شمسی و هم‌چنین بیشتر کهکشان‌ها ساختاری دیسکی دارند؟ و چرا دنباله‌دارها و اجرام سرگردان در منظومه‌شمسی شکل‌های نامنظم دارند؟

در ویدیوی زیر که قسمت اول از سری لایوهای اینستاگرامی «علامت‌ سؤال» بوده درمورد پاسخ این سؤالات توضیح داده‌ام. 

«علامت سؤال» عنوان سری لایوهای اینستاگرامی‌ای است که در هر قسمت از آن به‌ یک سؤال نجومی پاسخ داده می‌شود. این سؤال می‌تواند ساده اما حاوی نکته‌ای مهم باشد! در علامت سؤال اول درمورد شکل‌ اجرام سماوی و دلیل آن توضیح داده شده است.

ویدیو در اینستاگرام

در جستجوی فراخورشیدی‌ها

چگونه دانشمندان سیارات فراخورشیدی را کشف می‌کنند؟

حدود ۳۰ سال از تأیید کشف اولین سیاره فراخورشیدی (سیاره‌ای بیرون از منظومه شمسی) در سال ۱۹۹۲ میلادی می‌گذرد. به‌لطف رصدهای زمینی و مأموریت‌های فضایی انجام‌شده، تا‌به‌حال کشف بیش از پنج هزار سیاره فراخورشیدی به‌مرحله تأیید رسیده است. سیاراتی که چالشی بزرگ بر سر مدل‌های شکل‌گیری سیارات قرار داده‌اند. سیاراتی که طیف وسیع جرم و ویژگی‌های ساختارشان باعث شده‌ حتی تعریف دقیق یک سیاره، و مثلاً تفاوت آن با یک کوتوله قهوه‌ای، در هاله‌ای از ابهام فرو‌رود! اما منجمان چطور این سیارات را کشف کرده‌اند؟

در ویدیوی زیر که مربوط به جلسه کافه فیزیکِ انجمن فیزیک دانشگاه شهید بهشتی به‌مناسبت هفته جهانی امسال است، درمورد روش‌های متداول برای کشف سیارات فراخورشیدی و ایده اصلی این روش‌ها توضیح داده‌ام.

اشتباه‌های زیاد آینشتین

متن پیش رو ترجمه‌ جستاری از کارلو روولی فیزیک‌دان ایتالیایی است. او عمدتا در زمینه گرانش کوانتومی کار می‌کند و بنیان‌گذار نظریه گرانش کوانتومی حلقه است. اصل این نوشته اخیرا در کتابی با عنوان There Are Places in the World Where Rules Are Less Important Than Kindness منتشر شده است. این جستار پیش از رصد امواج گرانشی نوشته شده است. رصد مستقیم امواج گرانشی در ۱۴ سپتامبر ۲۰۱۵ پنج ماه پس از انتشار این مقاله انجام شد. در سال ۲۰۱۷ این مشاهده منجر به دریافت جایزه نوبل در فیزیک شد.

شکی نیست که آلبرت آینشتین یکی از دانشمندان بزرگ قرن بیستم بود که عمیق‌تر از دیگران رازهای طبیعت را دید. آیا این به معنی این است که ما باید هر کاری را که او انجام داده‌است، درست بدانیم؟ او هرگز اشتباه نمی‌کرد؟ برعکس!
در واقع، تعداد کمی از دانشمندان به اندازه آینشتین اشتباه کرده‌اند و آن‌هایی که به اندازهٔ او نظر خود را تغییر داده‌اند انگشت‌شمارند. در مورد اشتباهات او در زندگی روزمره که موضوعی شخصی است و در نهایت به خودش مربوط است صحبت نمی‌کنم. بلکه در مورد اشتباه‌های کاملا علمی او سخن می‌گویم؛ ایده‌های اشتباه، پیش‌بینی‌های نادرست، معادلات پر از خطا و ادعاهای علمی‌ای که خود او پسشان گرفت و آن‌هایی که نادرست بودنشان ثابت شد.


اجازه دهید برایتان چند نمونه بیاورم. امروزه می‌دانیم که جهان در حال انبساط است. ژرژ لومتر، فیزیک‌دان بلژیکی، با استفاده از نظریه‌های خودِ آینشتین، موفق به درک این موضوع شد و او را از یافته‌های خود آگاه کرد. آینشتین اما آن ایده‌ها را رد کرد و در پاسخ گفت که آن‌ها بی‌معنی‌اند و تنها در دههٔ سی میلادی که انبساط واقعاً مشاهده شد حرف خود را پس گرفت. یکی دیگر از پیامدهای نظریه او وجود سیاه‌چاله‌ها است؛ او چندین متن پراشتباه در این زمینه نوشت و ادعا کرد که جهان در لبه سیاه‌چاله پایان می‌یابد. وجود امواج گرانشی که اکنون برای آن شواهد غیرمستقیم داریم نیز در نتیجهٔ نظریه‌های آینشتین است. آینشتین ابتدا نوشت که این امواج وجود دارند، اما درست پیش از آن‌که به دنبال تفسیر اشتباه نظریه خودش ادعا کند که آن‌ها وجود ندارند. سپس دوباره نظر خود را تغییر داد تا نتیجه مخالف و درست را بپذیرد.


وقتی آینشتین نظریه نسبیت خاص‌اش را نوشت، از ایده فضازمان استفاده نکرد. این ایده که گویی به مفهوم یک پیوستار (فضای پیوسته) چهاربعدی شامل فضا و زمان اشاره می‌کند، در واقع کار هرمان مینکوفسکی بود که از آن برای بازنویسی نظریهٔ آینشتین استفاده کرد. هنگامی که آینشتین از آنچه مینکوفسکی انجام داده بود آگاه شد، ادعا کرد که این کار فقط از نظر ریاضیاتی بغرنج‌کردن بیهودهٔ نظریه‌اش است، البته پس از مدت کوتاهی کاملاً نظر خود را تغییر داد و دقیقاً از مفهوم فضازمان برای نوشتن نظریهٔ نسبیت عام استفاده کرد. در موضوع نقش ریاضی در فیزیک، آینشتین بارها دیدگاهش را تغییر داد و در طول زندگی‌اش طرفدار ایده‌های گوناگونی بود که با هم صریحا در تناقض بودند.
آینشتین پیش از نوشتن معادلاتِ درست کار اصلی‌اش، یعنی نظریهٔ نسبیت عام، مجموعه مقاله‌هایی منتشر کرد که همه غلط بودند و هرکدام معادلهٔ نادرستِ متفاوتی را پیشنهاد می‌دادند. او حتی تا جایی پیش رفت که یک اثر پیچیده و مفصل منتشر کرد تا استدلال کند که این نظریه نمی‌تواند تقارن خاصی داشته باشد، تقارنی که او بعداً به عنوان اساس نظریه‌اش برگزید!


آینشتین در سال‌های پایانی زندگی‌اش، سرسختانه پافشاری می‌کرد که می‌خواهد یک نظریهٔ وحدت‌بخش برای گرانش و الکترومغناطیس بنویسد، بدون توجه به این که الکترومغناطیس جزئی از یک نظریه بزرگ‌تر (نظریهٔ الکتروضعیف) است، کما این‌که پس از مدت کوتاهی نشان داده شد. بنابراین، پروژه او در متحد کردن آن با گرانش بی‌فایده بود.
آینشتین همچنین بارها موضع خود را در مناظره‌های مربوط به مکانیک کوانتومی تغییر داد. او در ابتدا می‌گفت که این نظریه در تضاد با بقیه چیزها است. سپس پذیرفت که این‌طور نیست و خودش را محدود به پافشاری بر این ایده کرد که این نظریه ناکامل است و نمی‌تواند تمام طبیعت را توصیف کند.
در مورد نسبیت عام، اینشتین برای مدت طولانی متقاعد شده بود که معادلات در نبودِ ماده نمی‌توانند جواب داشته باشند و بنابراین، میدان گرانشی به ماده وابسته است. او دست از این باور برنداشت تا زمانی که ویلم دوسیته و دیگران نشان دادند که او اشتباه می‌کند. سرانجام نظریه را این گونه تفسیر کرد که میدان گرانشی یک موجود مجزای واقعی است که به خودی‌ خود وجود دارد.


در اثر خارق‌العادهٔ ۱۹۱۷ او کیهان‌شناسی نوین را بنیان گذاشت. آینشتین به این پی برد که جهان می‌تواند یک ۳-کره باشد. او ثابت کیهان‌شناسی را معرفی کرد که امروز مورد تایید است ولی با این کار همزمان یک خطای فاحش به فیزیک (عدم تغییر عالم در زمان) و یک خطای چشمگیر به ریاضی اضافه کرد؛ او متوجه نشد جوابی که ارائه کرده بود ناپایدار است و نمی‌تواند دنیای واقعی را توصیف کند. در نتیجه، آن مقاله‌ ترکیب عجیبی از ایده‌های بزرگِ جدید و انقلابی و انبوهی از خطاهای جدی است.


آیا این اشتباه‌ها و تغییر رویه‌ها چیزی از تحسین و ستایش ما نسبت به آلبرت آینشتین کم می‌کند؟ به‌ هیچ‌ وجه. اگر تغییری هم در ما باشد، برعکس است. به نظر من در عوض، این چیزها نکته‌ای راجع به ذات هوش به ما می‌آموزند. هوش، طرفداری سرسختانه از نظرات خود نیست بلکه آمادگی لازم برای تغییر و حتی کنار گذاشتن آن نظرات است. برای درک جهان، باید شهامت آن را داشته باشید که ایده‌ها را بدون ترس از شکست آزمایش کنید، پیوسته نظرات خود را بازبینی کنید و آن‌ها را بهبوبد ببخشید.


آینشتینی که بیش از هر کس دیگری مرتکب خطا می‌شود دقیقاً همان آینشتینی است که بیش‌تر از دیگران در فهم طبیعت موفق است و این‌ها مکمل هم و از جنبه‌های ضروری همان هوش عمیق هستند: بی‌پروایی در تفکر، شهامت خطر کردن، ایمان نداشتن به ایده‌های دریافت‌شده، از همه مهم‌تر ایده‌های خود شخص. اینکه شهامت اشتباه کردن داشته باشی، ایده‌های خود را تغییر دهی، و نه یک بار بلکه بارها، تا به مرحله کشف برسی.
آنچه مهم است درست بودن نیست، تلاش برای فهمیدن است.

نوبل فیزیک ۲۰۲۰ برای کاوشگران تاریکی

جایزه نوبل فیزیک امسال به اخترفیزیک‌دان‌ها به خاطر خدماتشان در زمینه بهتر شناختن سیاه‌چاله‌ها رسید. نیمی از جایزه امسال به راجر پنروز و نیم‌دیگر آن به طور مشترک به رینهارد گِنزِل و آندریا ام. گز تعلق گرفت. این جایزه به خاطر کشف این که تشکیل سیاهچاله یک پیش‌بینی بی شائبه از نظریه نسبیت عام است و کشف یک شی فشرده‌ی کلان‌جرم در مرکز کهکشان تعلق گرفت.

سِر راجر پنروز (Sir Roger Penrose) (زاده ۸ اوت ۱۹۳۱)،فیزیک‌دان و ریاضیدان برجستهٔ انگلیسی است.

او به پاس کشف این که تشکیل سیاهچاله یک پیش‌بینی بی شائبه از نظریه نسبیت عام است برنده نیمی از جایزه نوبل فیزیک شد.

آندریا اِم. گِز (Andrea M. Ghez) (زن – زادهٔ ۱۶ ژوئن ۱۹۶۵ در نیویورک) استاد گروه فیزیک و اخترشناسی دانشگاه کالیفرنیا، لس‌آنجلس است. برای آشنایی با کار گز این نوشته را بخوایند.

رینهارد گِنزِل ( Reinhard Genzel) (زادهٔ ۲۴ مارس ۱۹۵۲) عضو انستیتوی فیزیک فرازمینیِ ماکس پلانک و استاد دانشگاه کالیفرنیا، برکلی است.

نیم دیگر جایزه به این دو نفر به خاطر «کشف یک شی فشرده‌ی کلان‌جرم در مرکز کهکشان» تعلق گرفت.

در مورد جایزه امسال بیشتر بخوانید:

سخنرانی اندریا گز در تد ۲۰۰۹ در مورد کشف سیاه‌چاله کلان‌جرم

بر اساس داده‌های جدیدی که از تلسکوپ‌ها به دست آمده‌است، آندریا گز نشان می‌دهد که چگونه اپتیک تطبیقی، اخترشناسان را قادر می‌سازد تا به بررسی مرموزترین اجرام عالم یعنی سیاهچاله‌ها بپردازند. او در این سخنرانی مدارکی را مطرح می‌کند که بر مبنای آن شاید سیاهچاله ای ابر پرجرم در مرکز کهکشان راه شیری کمین کرده باشد.

مصاحبه با رینهارد گنزل در مورد کارهای او پیرامون سیاه‌چاله‌های کلان‌جرم

تصویرسازی‌های موسسه نوبل

fig2-phy-en-cross-section-merged

اتحاد شوالیه‌های تاریکی

چهارشنبه ۱۲ شهریور، اعلام شد که رصدخانه امواج گرانشی لایگو در امریکا و ویرگو در ایتالیا، امواج گرانشی حاصل از ادغام دو سیاه‌چاله‌ را آشکارسازی کرده‌اند که عظیم‌ترین امواج گرانشی ثبت‌شده تا به امروز بوده‌اند. هرچند ادغام دو سیاه‌چاله چیز جدیدی نبوده و قبلاً هم چند مورد از آن آشکارسازی شده بود؛ اما این یکی، ویژگی‌های غیرمعمولی داشته که باعث شده این خبر اهمیتی دوچندان برای اخترفیزیک‌دان‌ها و پژوهشگران فعال در حوزه سیاه‌چاله‌ها داشته باشد.

Image credit: Mark Myers, ARC Centre of Excellence for Gravitational Wave Discovery (OzGrav)

وقتی عالم نیمی از عمر اکنونش را داشت، دو سیاه‌چاله سنگین در هم ادغام شدند و امواج گرانشی تولید کردند. این طنین‌های گرانشی، موجی را پیش بردند و تار‌و‌پود فضا-زمان را شبیه به یک صدای زنگ کیهانی لرزاندند و سیگنالی برای ما به‌جای گذاشتند. ساعت ۷:۳۲:۲۹ صبح روز سه‌شنبه ۳۱ اردیبهشت ۹۸، سه رصدخانه امواج گرانشی (ویرگو و هر‌دو رصدخانه لایگو) بر روی زمین، این سیگنال کوتاه را که فقط یک دهم ثانیه به‌طول انجامید، دریافت کردند. محققان می‌گویند: احتمالاً منشأ این سیگنال ـ که «جی‌دبلیو ۱۹۰۵۲۱» نام‌گذاری شده ـ ادغام دو سیاه‌چاله سنگین‌وزن با جرمی حدود ۶۶ و ۸۵ برابر جرم خورشید بوده که در‌نهایت، یک سیاه‌چاله بزرگتر را با جرمی حدود ۱۴۲ برابر جرم خورشید به‌وجود آورده و مقادیر زیادی انرژی (حدود ۸ برابر جرم خورشید) به‌شکل امواج گرانشی در سراسر جهان آزاد کرد‌ه‌اند. هم‌چنین محققان پروژه لایگو و ویرگو، اسپین (راستای محور و سرعت چرخش) دو سیاه‌چاله اولیه را محاسبه کرده و دریافتند، همان‌طور که این دو سیاه‌چاله به دور یکدیگر دوران داشته و به هم نزدیک می‌شدند، هرکدام حول محور خودشان با زاویه‌ای که هم‌راستا با محور دوران سامانه نبوده می‌چرخیدند؛ احتمالاً همین ناهم‌راستایی محور‌های چرخش، باعث شده وقتی به هم نزدیک‌تر می‌شدند، مدارهایشان حرکت تقدیمی داشته باشد و مثل دو مست میکده تلو‌تلو‌خوران دور یکدیگر بگردند! 🙂

همه سیاه‌چاله‌های مشاهده‌شده تا به امروز، در یکی از این دو دسته قرار می‌گیرند: سیاه‌چاله‌های ستاره‌ای، که تصور می‌شود موقع مرگ ستاره‌های عظیم تشکیل می‌شوند و می‌توانند طیف جرمی از حدود چند برابر جرم خورشید، تا ده‌ها برابر جرم خورشید داشته باشند؛ یا سیاه‌چاله‌های کلان‌جرم که در در قلب کهکشان‌ها هستند و جرمی از مرتبه صدها هزار، تا میلیاردها برابر جرم خورشید دارند (برای آشنایی بیشتر با سیاه‌چاله‌ها، نوشته قیام علیه سیاهی را بخوانید). با این حال، سیاه‌چاله نهایی ایجاد شده در ادغام جی‌دبلیو ۱۹۰۵۲۱، در یک محدوده جرمی متوسط ​​بین این دو دسته قرار گرفته است. در‌واقع، این سیاه‌چاله‌ تشکیل شده با جرمی حدود ۱۴۲ برابر جرم خورشید، به دسته جدیدی از سیاه‌چاله‌ها تعلق دارد که «سیاه‌چاله‌های میانه‌جرم» نام دارند و این مورد، اولین آشکارسازی واضح از این نوع سیاه‌چاله‌ها است.

نمودار ادغام‌های سیاه‌چاله‌هایی که توسط لایگو و ویرگو ثبت شده برحسب جِرمشان در واحد جرم خورشیدی. سیاه‌چاله نهاییِ تازه‌کشف‌شده مربوط به دسته‌ای جدید با نام سیاه‌چاله‌های میانه‌جرم است.
Image credit: : LIGO/Caltech/MIT/R. Hurt (IPAC)

به نظر می‌رسد دو سیاه‌چاله اولیه که سیاه‌چاله نهایی را ایجاد کرده‌اند نیز از نظر جرم بی‌همتایند. طبق مدل‌های اخترفیزیکی فعلی، ستارگانی با جرم ۱۳۰ برابر جرم خورشید می‌توانند سیاه‌چاله‌هایی را به‌وجود بیاورند که جرمشان حداکثر ۶۵ برابر جرم خورشید باشد. اما برای ستاره‌های پرجرم‌تر ، تصور می‌شود پدیده‌ای موسوم به «ناپایداری جفت» رخ دهد؛ وقتی فوتون‌های هسته خیلی پرانرژی می‌شوند، می توانند به یک جفت الکترون و پاد الکترون تبدیل شوند. این جفت‌ها فشار کمتری نسبت به فوتون‌ها ایجاد می‌کنند و باعث می‌شوند ستاره در برابر فروپاشی گرانشی ناپایدار شود؛ این ناپایداری به انفجاری می‌انجامد که به حدی قوی است که هیچ چیزی از خود به‌جای نخواهد گذاشت. حتی ستارگان پر‌جرم‌تر (بیشتر از ۲۰۰ برابر جرم خورشید) سرانجام مستقیماً فرو پاشیده و به سیاه‌چاله‌ای با حداقل ۱۲۰ برابر جرم خورشید تبدیل می‌شوند. بنابراین ، یک ستاره در حال فروپاشی قادر نیست یک سیاه‌چاله با جرمی بین ۶۵ تا ۱۲۰ برابر جرم خورشید را ایجاد کند؛ این محدوده جرمی، با عنوان شکاف جرمِ ناپایداری جفت (Pair Instability Mass Gap) شناخته می‌شود. می‌توان ادعا کرد یک یا هردو سیاه‌چاله اولیه‌ در این محدوده جرمی قرار دارند. یک احتمال برای این مسأله ـ که محققان در مقاله دوم منتشر شده در نظر گرفته‌اند ـ عبارت است از ادغام سلسله‌مراتبی؛ به این معنا که دو سیاه‌چاله اولیه قبل از نزدیک شدن و ادغام نهایی، خود از یک ادغام کوچک‌تر دیگر تشکیل شده باشند.

ادغام سلسله‌مراتبی: تشکیل سیاه‌چاله‌های اولیه از ادغام‌های کوچکتر پیشین
Image credit: LIGO/Caltech/MIT/R. Hurt (IPAC)

آلن واینستین، از اعضای پروژه لایگو و استاد فیزیک در دانشگاه کلتک، می‌گوید:

«این رویداد، بیشتر از اینکه پاسخگوی سوالات باشه، سؤال‌های بیشتری رو مطرح می‌کنه. از نقطه‌نظر کشف کردن [پدیده‌ها] و فیزیک، این چیز خیلی هیجان‌انگیزیه».

جایگاه علم داده در نجوم امروزی

بخش ششم از سری گفت‌وگوهای «پشت‌پرده نجوم»

«پشت‌پرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفت‌و‌گو شده و هم‌چنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبه‌علم داشته است.

امروزه با پیشرفت تکنولوژی، نقش داده‌ها در حوزه‌های مختلف علم، از‌جمله علم نجوم، بیش‌از‌پیش نمایان شده است. به‌نظر می‌رسد ابزار برنامه‌نویسی و شبیه‌سازی در آینده‌ای نزدیک، به یکی از مهارت‌های مهم و ضروری برای پژوهش در علم (نجوم) تبدیل شود؛ کما اینکه هم‌اکنون نیز تا حدی همین‌گونه است. در ششمین بخش از «پشت پرده علم» با علیرضا وفایی صدر، پژوهشگر فیزیک در مقطع پسا‌دکتری در IPM، در‌مورد جایگاه علم داده در نجوم امروزی گفت‌و‌گو کرده‌ایم. ویدیو و صوت این گفت‌وگو ضبط شده و در ادامه این متن می‌توانید آن را ببینید و بشنوید.

در علم نجوم امروزی، به‌دلیل ساخت تلسکوپ‌ها و آشکارساز‌های بزرگ متعدد ـ و ترکیب تلسکوپ‌های بزرگ با یکدیگر با استفاده از روش تداخل‌سنجی، برای ساخت تلسکوپ‌های مجازیِ حتی بزرگ‌تر ـ و هم‌چنین افزایش کیفیت و رزولوشن تصاویر دریافتی از آسمان، حجم داده‌ها بسیار افزایش پیدا کرده و کار با داده‌های کلان، به مسئله‌ای مهم تبدیل شده است. به‌عنوان مثال، برای ثبت اولین تصویر از یک سیاه‌چاله که سال پیش توسط تیم تلسکوپ افق رویداد منتشر شد، هشت آرایه‌ از تلسکوپ‌های رادیویی، حدود یک هفته رصد انجام دادند که منجر به دریافت داده‌ای با حجم حدود ۲۷ پتا‌بایت شد و کار انتقال، پاکسازی و تحلیل آن حدود ۲ سال طول کشید (برای اطلاعات بیشتر درمورد جزئیات ثبت این تصویر، این نوشته را بخوانید)! 

در گفت‌وگویمان با علیرضا وفایی‌صدر، به مسائل مختلفی در ‌زمینه نقش داده در نجوم پرداخته‌ایم؛ از جمله اینکه: چطور می‌توان داده‌های کلان را سرو‌سامان داد؟ ماشین‌‌ها (کامپیوترها) چه جنس کارهایی را در زمینه نجوم می‌توانند برای ما انجام دهند؟ همکاری‌های بین‌المللی چه نقشی در این زمینه دارند؟

بخش ششم «پشت‌ پرده نجوم»
ویدیوی گفت‌و‌گوی محمد‌مهدی موسوی (فیزیک‌پیشه) و علیرضا وفایی‌صدر (پژوهشگر فیزیک در مقطع پسادکتری در IPM) درمورد جایگاه علم داده در نجوم امروزی

به این گفت‌وگو گوش دهید:

فراز‌ و‌ فرودهای تاریخی علم نجوم

بخش اول از سری‌ گفت‌وگوهای «پشت‌پرده نجوم»

«پشت‌پرده نجوم» عنوان یک سری از لایوهای اینستاگرامی هست که در آن با چند نفر از دانشجویان و اساتید دانشگاهی، درمورد تصویر درست علم نجوم و فرآیندها و اتفاقاتی که در عمل، در جامعه علمی در جریان است، گفت‌و‌گو شده و هم‌چنین کندوکاوی درمورد مسائل مهمی از قبیل روایتگری در علم و شبه‌علم داشته است.

تاریخ همیشه عبرت‌آموز است! به‌ همین‌ خاطر، در اولین قسمت از برنامه‌ی «پشت‌پرده نجوم» با دکتر امیر‌محمد گمینی، عضو هیئت علمی پژوهشکده تاریخ علم دانشگاه تهران، در‌مورد علم نجوم در بستر تاریخ گفت‌وگو کردیم. ویدیوی این گفت‌و‌گو ضبط شده و در ادامه‌ این مطلب آمده است.

علم در طول تاریخ، فراز‌ و‌ فرود‌های زیادی داشته است. این تصور که بخواهیم تاریخ علم نجوم را تنها به نظرات انقلابی از قبیل: مدل زمین‌مرکزی بطلمیوسی و مدل خورشید‌مرکزی کپرنیکی، یا چند چهرهٔ سرشناس مانند گالیله و نیوتن تقلیل بدهیم، برداشت درستی نیست. 

در این گفت‌و‌گو به سؤالات زیادی در‌ رابطه با تصورات رایج در‌مورد تاریخ علم (به‌ویژه علم نجوم) پاسخ داده شده است؛ از جمله آن‌که: آیا در تمدن اسلامی، انقلاب علمی اتفاق افتاد؟ دانشمندان مسلمان چه نگاهی به مسئله علم و دین داشته‌اند؟ عوامل مؤثر در روابط انسانی و اجتماعی تا چه حد می‌توانند روی پیشرفت علم تأثیرگذار باشند؟

بخش اول «پشت‌ پرده نجوم»
ویدیوی گفت‌و‌گوی محمد‌مهدی موسوی (فیزیک‌پیشه) و دکتر گمینی (عضو هیات‌علمی پژوهشکده تاریخ علم دانشگاه تهران) درمورد فراز و فرودهای تاریخی علم نجوم

معرفی کتاب

در این گفت‌و‌گو دو کتاب معرفی شدند:

  • «دایره‌های مینایی»، نوشته دکتر امیر‌محمد گمینی، که می‌توانید آن را از اینجا تهیه کنید. معرفی اجمالی کتاب:
کتاب «دایره‌های مینایی، نوشته امیرمحمد گمینی

کیهان‌شناسیِ علمی از چه زمانی پا‌ گرفت و در یونان و تمدن اسلامی تا چه حد از روش تجربی و ریاضی استفاده می‌کرد و چقدر تحت تأثیر فلسفه طبیعی بود؟ منجمان تمدن اسلامی چه راهکارهایی را برای حل مشکلات علمی زمان خود پی گرفتند؟ برای پاسخ به سوالات و پرسش‌هایی دیگر درباره تحولات علمی و تبادل نظرهای رایج در نجوم تمدن اسلامی نیاز به پژوهش‌هایی مبتنی بر نسخ خطی به جا‌مانده و آخرین دستاوردهای مورّخان دانشگاهی علم قدیم است. این کتاب نتایج این پژوهش‌ها را در کنار پژوهش‌هایی جدیدتر برای متخصّصان و غیرمتخصّصان علاقه‌مند به رشته تاریخ علم معرفی می‌کند. مخاطب این کتاب افرادی هستند که به تاریخ تحولات علوم در گذشته‌های دور و نزدیک دلبسته‌اند یا می‌خواهند با دستاوردهای فکری و فرهنگی تمدن اسلامی در حوزه علم هیئت آشنا شوند.

  • «زندگینامه علمی دانشمندان اسلامی» که توسط جمعی از پژوهشگران نوشته شده و می‌توانید از اینجا آن را تهیه کنید. معرفی اجمالی این اثر دو‌جلدی:

«زندگینامه علمی دانشمندان اسلامی» بیان شرح احوال، آثار و آرای علمی ۱۲۶ نفر از دانشمندان اسلامی است که در ریاضیات و علوم وابسته به آن مانند نجوم، نورشناسی، موسیقی و علم‌الحیل و علوم‌طبیعی مانند فیزیک، شیمی، کیمیا، طب و زیست‌شناسی کار کرده‌اند.

کتاب «زندگینامه علمی دانشمندان اسلامی»،

همچنین احوال برخی از جغرافی‌دانان، تاریخ‌نویسان و بعضی از فلاسفه نیز بیشتر از باب حکمت ایشان، در این مجموعه آمده است. می توان گفت که زندگی و کار مهم‌ترین دانشمندان اسلامی در این مجموعه بررسی شده و برخی مقالات آن از لحاظ تفصیل و عمق و وسعت دامنة تحقیق، بی‌نظیر یا کم‌نظیرند.

دانشمندان اسلامی که احوالشان در این مجموعه آمده همه اسلامی‌اند. بی‌آنکه همه مسلمان باشند و همه ـ از ایرانی و عرب و مغربی و مسلمان و یهودی و مسیحی ـ در سایه درخت پربار تمدن اسلامی زیسته و کار کرده‌اند.

جلد اول این مجموعه، شامل مقالات حروف «الف» تا «ح» است. جلد دوم، علاوه بر بقیه مقالات، دارای یک فهرست راهنمای تفصیلی و واژه‌نامه‌ای مشتمل بر معادل‌های برخی واژه‌ها و توضیح برخی از اصطلاحات علمی خواهد بود، تا خوانندگانی که از این کتاب برای تحقیق در تاریخ علوم در اسلام یا در دروس مربوط به این موضوع استفاده می‌کنند، از آن بهتر بهره ببرند.

کلام پایانی

در پایان، شاید اشاره به این چند جمله از کارل سِیگِن در کتاب «جهان دیو‌زده» خالی از لطف نباشد:

«چالش بزرگ برای مروجان علم آن است که تاریخ واقعیِ پر‌ پیچ‌و‌خم اکتشافات بزرگش و سوءتفاهم‌ها و امتناع لجوجانه‌ی گاه‌و‌بیگاهِ دانشمندان از تغییر مسیر را شفاف کنند. بسیاری از ـ شاید اغلب ـ درسنامه‌های علمی که برای دانشجویان نوشته شده‌، نسبت به این مسئله با‌ بی‌توجهی عمل کرده‌اند. ارائه‌ی جذابِ معرفتی که عصاره‌ی قرن‌ها پرسش‌گریِ جمعیِ صبورانه درباره طبیعت بوده، بسیار راحت‌تر از بیان جزئیاتِ دستگاهِ درهم‌وبرهمِ عصاره‌گیری است. روش علم، با همان ظاهر ملال‌آور و گرفته‌اش، بسیار مهم‌تر از یافته‌های علم است.»