توی قسمت قبلی دیدیم که اگر هر تابع f رو داشته باشیم می‌تونیم برای اون تابع مجموعه‌ی ژولیای مربوط به اون رو پیدا کنیم که خب یکمی از کامپیوتر هم کمک گرفتیم. کار ما این بود که یک تابع رو بر می‌داشتیم شرایط اولیه‌ای (یک سری نقطه توی فضای مختلطی (موهومی)) بهش می‌دادیم، مقدار تابع رو به ازای اون شرایط اولیه به دست می‌اوردیم و همین طور دوباره این مقدار رو به تابع می‌دادیم و این روند رو ادامه میدادیم تا ببینیم آیا شرایط اولیه‌ای که انتخاب کردیم به بی‌نهایت میل میکنه یا نه، اگر نمی‌کرد اون موقع مجموعه‌ی ژولیا اون تابع رو تشکیل میداد.  همین طور گفتیم که از بین همه‌ی توابع، توابعی که به صورت چندجمله‌ای های مربعی می‌باشند بیشتر مشهور هستند؛ توابعی با فورم: $$f(z)=z^2 +c$$توی این پست در مورد علت این شهرت توضیح میدم؛

تابع ${f(z)=z^2 +c}$ رو در نظر بگیرید؛ فراموش نکنید که c می‌تونه هر عددی – ولی حتما مختلط – باشه. حالا اگر با نقطه‌ی z=0 شروع کنیم، به این دنباله‌ می‌رسیم:

  $$  c , c² + c , (c²+c)² + c , ((c²+c)²+c)² + c , (((c²+c)²+c)²+c)² + c , …$$

اگر این دنباله واگرا نباشه، یعنی اگر c هایی انتخاب کنیم که در نهایت این دنباله به بی‌نهایت نرسه اون موقع مجموعه‌ی ژولیایی که توسط این cها برای تابع  ${f(z)=z^2 +c}$ ساخته میشه، «همبند» هست. احتمالای توی نظریه‌ی گراف با مفهموم همبند بودن آشنا شدین (معمولا سال آخر دبیرستان بچه‌های رشته‌ی ریاضی فیزیک نظریه‌ی گراف رو توی درس ریاضیات گسسته می‌خونند!) اگر نشدین، همبند بودن یک جور مفهموم متصل بودن رو داره، وقتی یک گراف یا شبکه‌ای همبند باشه اونموقع اگر شما از یک نقطه‌ای شروع به حرکت کردید، می‌تونید به هر نقطه‌ای که دلتون می‌خواد برید وبدون اینکه جایی مسیرتون قطع بشه. خلاصه این که اگر دنباله‌ای که ساختیم واگرا

مجموعه مندلبرو

نشد اون موقع ما یک مجموعه‌ی ژولیای همبند می‌تونیم بسازیم. (اثبات این مطلب فراتر از حوصله‌ی ماست!) خب حالا این مجموعه‌ی ژولیای همبند به چه دردی می‌خوره آیا؟! اجازه بدید تا یک مجموعه‌ی جدید معرفی کنیم به نام «مجموعه‌ی مندلبرو».

«مجموعه مندلبرو شامل نقاطی (c) از صفحه‌ی مختلط هست که به ازای آن ها مجموعه‌ی ژولیا تابع ${f(z)=z^2 +c}$ همبند باشد.»

شما می‌تونید یک برنامه بنویسید تا براتون مقادیری که C ممکنه بگیره رو پیدا کنه ولی یک نکته‌ای هست و اون اینه که همه‌ی مجموعه‌های ژولیا همبند شامل نقطه‌ی 0 = 0+ z= 0i  هستند! بنابراین «اربیت» یا «چرخش» یا «تکرار» مبدا برای این دسته از مجموعه ها، همیشه باید یک مقدار کران‌دار باشه و به بی‌نهایت میل نکنه، پس نقطه‌ی صفر در همه‌ی مجموعه‌های ژولیای همبند صدق میکنه. به طور مشابه در همه‌ی مجموعه‌های ژولیای ناهمبند نقطه‌ی صفر وجود نداره! خب این یک سنگ محکی شد برای تشخیص اینکه آیا نقطه c دلخواهی عضو مجموعه‌ی مندلبرو هست یا نه! یعنی کافیه تا ما «اربیت» یا «چرخش» یا «تکرار» نقطه‌ی z=0 رو برای تابع  ${f(z)=z^2 +c}$ بررسی کنیم، اگر مقادیری که به دست میاند (همون «اربیت» یا «چرخش») کران‌دار باشند اون موقع اون c مورد نظر ما عضو مجموعه مندلبرو هست ولی اگر به بی‌نهایت میل کنه اون‌موقع اون c دیگه عضو مجموعه مندلبرو نیست! شرمنده 😀

مندلبرو در حال کار در IBM

مجموعه‌ی مندلبرو یکی از موضوعات دینامیک مختلطه که برای اولین بار ایده‌ش اوایل قرن بیستم توسط ریاضی‌دانان فرانسوی بهنام «فاتو» و«ژولیا» مطرح شد. اون موقع‌ها هنوز کامپیوتر زیاد رونق نداشت برای همین مثلا فاتو نتونست شهود و تصویر خوبی از این مجموعه ارائه بده. تا اینکه مندلبرو اول مارس ۱۹۸۰(اواخر قرن بیستم!) به لطف کامپیوترهای شرکت IBM تونست این کار رو انجام بده و بعدش هم این موضوع رو گسترش زیادی داد. آدم‌های زیادی بعد از مندلبرو روی این موضوع کار کردند ولی به خاطر خدمات مندلبرو یا به احترام مندلبرو، اسم این مجوعه رو «مجموعه مندلبرو» گذاشتند!

این مجموعه در حقیقت یک فرکتال هست با مرز بسیار بسیار پیچیده، جوری که شیشیکورا ثابت کرد (۱۹۹۸) که بعد این مرز ۲ هست! این فرکتال برخلاف مجموعه‌ی ژولیا کاملا خودمتشابه نیست و اگر روی شکل زوم کنید این رو به راحتی متوجه خواهید شد!

همین طور این مجموعه توی صفحه‌ی مختلط، توی دیسکی یه شعاع ۲ قرار میگیره و  تقاطع اون با محور حقیقی بازه [۰/۲۵, ۲-] هست. حدودا دو سال پیش مساحت مجموعه مندلبرو 0.0000000028 ± 1.5065918849 واحدمربع تخمین زده شد! پیشنهاد می‌کنم حتما به صفحه‌ی ویکی پدیای این مجوعه عجیب و غریب  سر بزنید، مخصوصا اگر دوست دارید که الگوریتم‌هایی که برای تولید این دسته از فرکتال‌ها مورد استفاده قرار می‌گیرند چه جوری هستند!

برای مطالعه، پیشنهاد میکنم کتاب زیر رو بخونید، خیلی خوب توضیح داده هم فرکتال‌ها رو هم آشوب رو!

David P. Feldman, Chaos and Fractals, An Elementary Introduction, Oxford University

به عنوان حسن ختام، یک جمله از مندلبرو رو نقل میکنم (از سخنرانی تد ۲۰۱۰) : «خب، اجازه دهید تمام کنم. این شکل در اینجا تنها از یک تمرین در ریاضیات محض بوجود آمد. ظهور شگفتی های بی پایان از قواعد ساده، که بی نهایت تکرار می شوند.»

مطلبی که ترجمه کردم برگرفته شده از اینجاست. لطفا به صفحه‌ی اصلی برای به‌روزرسانی‌ لینک‌ها سر بزنید!

*  از آقای امیرهادی ضیایی به خاطر کمکشون تشکر میکنم!

ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ

خِراردوس توفت (به هلندی: Gerard ‘t Hooft) به همراه مارتینیوس ولتمن در سال ۱۹۹۹ برای مشخص کردن ساختار کوانتومی در برهمکنش الکتروضعیف در فیزیک موفق به دریافت جایزه نوبل در فیزیک شد. اصل تمام‌نگاری از اوست.

اگر مایلید در فهم قوانین فیزیک نظری شرکت کنید (که اگر در آن موفق شوید کار جالبی است) چیزهای زیادی وجود دارد که باید بدانید! اول اینکه همه دوره های آموزشی لازم در دانشگاه‌ها ارائه می‌شوند (در موردش مطمئن باشید)‌، پس طبیعی است که در یک دانشگاه پذیرفته شوید و هرچه را که میتوانید فرا بگیرید. ولی اگر هنوز در مدرسه به سر می برید باید آن قصه های کودکانه ای که به اسم «علم» به شما تدریس می‌شود را فعلاً تحمل کنید! اگر سن و سالتان فراتر از دوران مدرسه هست وعلاقه ای هم به پیوستن به جو پرهیاهوی دانشجویی ندارید چه؟!

خب امروزه تمامی دانشی که لازم دارید را میتوانید از اینترنت به دست آورید! ولی مشکل این است که مطالب به دردنخور زیادی نیزدر اینترنت پیدا میشود! برای همین من در پایان این مطلب اسامی و موضوعات درسگفتارهای (lecture courses) لازم را لیست کرده ام. معمولا من سعی میکنم که چرخی در اینترنت بزنم و مطالب لازم که ترجیحاقابل دانلود هستند را گردآوری کنم. با وجود این، تبدیل شدن به یک فیزیکدان نظری خوب هزینه ای بیشتر از هزینه یک رایانه متصل به اینترنت، یک پرینتر و یک سری قلم و کاغذ ندارد. تک تک مطالب اشاره شده در لیست را باید بخوانید! بهترین کتاب‌، پر مساله ترین کتاب است! سعی کنید مسئله ها را حل کنید! به دنبال آن باشید که همه چیز را بفهمید. تلاش کنید به جایی برسید که بتوانید اشتاباهات چاپی و اشکالات کوچک را به راحتی اشتباهات بزرگ بیابید و به این فکر کنید که مطلب مورد نظر را چگونه میتواند با زیرکی و هوشمندی بیشتری بنویسید!

میتوانم از تجربه ی شخصی خودم برایتان بگویم.من شانس بزرگی از این بابت داشتم که معلمهای بسیار خوبی دوروبرم بوده‌اند ،کسانی که به افراد کمک میکردند تااز سرگردانی فرار کنند! و این در تمامی مسیر به من کمک کرد تا برنده جایزه نوبل شوم. ولی در آن زمان من اینترنت نداشتم! برای همین سعی میکنم تا مربی شما باشم (کار سختی است)! من مطمئنم که هرکسی میتواند یک فیزیکدان نظری خوب (از نوع بهترین ها،‌از نوع برندگان جایزه نوبل)شود فقط کافیست مقدار مشخصی هوش، علاقه و اراده داشته باشد!

فیزیک نظری مانند یک آسمان خراش است که پایه‌های محکمی در ریاضیات مقدماتی و مفاهیم فیزیک کلاسیک (قبل از قرن بیستم) دارد. فکر نکنید فیزیک قبل از قرن بیستم غیرضروری است چون ما هم‌اکنون اطلاعات بسیار بیشتری داریم، نه، درآن روزها شالدوه ی چیزهایی که الان از آن‌ها لذت میبریم بناشده است! سعی نکنید که آسمان خراشتان را قبل از اینکه ابتدا برای خودتان این مفاهیم را بازسازی کرده باشید بنا کنید. چند طبقه اولیه ی آسمان خراش شما شامل صورت گرایی های ریاضی است که به نظریه‌های فیزیک کلاسیک زیبایی خودشان را اهدا میکند. اگر میخواهید بالاتر روید به آن‌ها نیاز دارید. پس از آن به موضوعات لیست زیر احتیاج دارید. در آخر،‌ اگر شما به اندازه ی کافی شیفته آن هستید که مسائل فوق‌العاده گیج‌کننده ی فیزیک گرانشی منطبق را دنیای کوانتوم حل کنید باید تا آخر به مطالعه نسبیت عام، نظریه ابرریسمان، نظریه-ام، Calabi-Yau compactification  و … به پردازید. در حال حاضر این بالای آسمان خراش است نوک های دیگری از جمله تراکم بوز-آینشتاین، اثر کسری هال و چیزهای بیشتری نیز وجود دارند که برای برنده شدن جایزه نوبل خوب به نظر میرسند (حداقل سال‌های گذشته که این‌طور نشان داده است!)

و اما یک هشدار: حتی اگر شما به شدت باهوش باشید ممکن است جایی گیر کنید! سری به اینترنت بزنید. چیزهای بیشتر پیدا کنید و به من یافته هایتان را گزارش دهید!

اگر این مطلب به کسی که درحال آماده شدن برای شروع دانشگاه است مفید بود و یا اگر انگیزه کافی به کسی داد یا کسی را در راهش کمک کرد و مسیرش به علم را هموارتر ساخت آن وقت میپندارم که این سایت مفید بوده. پس لطفاً مرا در جریان بگذارید.

و اما لیست:

(لیست با ترتیب منطقی چیده شده، همه چیز قرار نیست که با این ترتیب انجام شود ولی سعی برآن بوده تا جوری چیده شود که تقریباً وابستگی موضوعات به یکدیگر را نشان دهد. برخی از موضوعات در سطح بالاتری نسبت به بقیه قرار می گیرند.)

  1. زبان

  2. ریاضیات مقدماتی

  3. مکانیک کلاسیک

  4. اپتیک

  5. ترمودینامیک و مکانیک آماری

  6. الکترونیک

  7. الکترومغناطیس

  8. مکانیک کوانتوم

  9. اتم ها و مولکول ها

  10. فیزیک حالت جامد

  11. فیزیک هسته ای

  12. فیزیک پلاسما

  13. ریاضیات پیشرفته

  14. نسبیت خاص

  15. مکانیک کوانتومی پیشرفته

  16. پدیدار شناسی

  17. نسبیت عام

  18. نظریه میدان کوانتومی (QFT)

  19. نظریه ابرریسمان

Continue reading