رفتن به نوشته‌ها

دسته: کیهان شناسی

یلدا از جنس انقلابی زمستانی!

شب یلدا رو همه به عنوان طولانی‌تر شب سال می‌شناسیم. توی این پست شب یلدا (انقلاب زمستانی) رو از نظر نجومی بررسی می‌کنیم و درمورد علت به‌وجود اومدن فصل‌ها و تغییر طول روز و شب بحث می‌کنیم. امیدوارم شب یلدا بهتون خوش بگذره و آغاز زمستونی پر برکت برای همه باشه :))

چرا فصل‌های مختلفی رو تجربه می‌کنیم؟

مدار زمین به شکل بیضی هست و خورشید توی یکی از کانون‌های این بیضی قرار داره. درواقع زمین طی حرکت سالینه خودش نسبت به خورشید فاصله‌اش تغییر میکنه. اما مقدار اون در مقابل فاصله متوسط زمین تا خورشید خیلی ناچیز هست؛ زمین در حضیض مداری خودش حدود ١۴٧ میلیون کیلومتر، و در اوج مداری حدود١۵٢ میلیون کیلومتر از خورشید فاصله داره. یعنی حدودا ٢ درصد اختلاف از فاصله میانگین. به بیان دقیق‌تر، خروج از مرکز مدار بیضوی زمین ٠.٠١٧ هست؛ این به معنی اینه که مدار زمین خیلی شبیه یک دایره هست.

موقعیت مداری زمین و خورشید در فصل‌های مختلف. نگاره از time and date

بنابراین این تصور که فصل‌ها به دلیل دور و نزدیک شدن زمین به خورشید اتفاق میفتن، اشتباهه (اتفاقا زمین در ١٣ تیرماه به نقطه اوج، و در ١۴ بهمن به نقطه حضیض مداریش میرسه). دلیل اصلی ایجاد فصل‌ها، انحراف محور چرخش زمین نسبت به حالت عمود بر صفحه منظومه شمسی هست. همون‌طور که توی شکل می‌بینید، زمانی‌که خورشید به صورت مایل‌تر به نیم‌کره شمالی زمین می‌تابه، فصل زمستان و وقتی تابش به صورت عمودتر هست، فصل تابستان رو تجربه می‌کنیم. این درحالیه که توی نیم‌کره جنوبی، بالعکس، به ترتیب، فصل تابستان و زمستان رو داریم.

 

کجی محور زمین

قبل از این‌که وارد بحث حرکت ظاهری خورشید و تغییر طول روزهای سال بشیم، توی این قسمت می‌خوام به‌طور خلاصه، کمی درمورد مسأله کجی محور زمین بحث بشه. اصولاً اینکه چرا سیارات حول محوری به دور خودشون می‌گردن، برمی‌گرده به دوران شکل‌گیری منظومه شمسی. وقتی که توده گرد و غبار پیش ستاره‌ای خورشید در حال چرخیدن و شکل‌گیری بود، بعضی از مناطق بیرونی‌تر هم که دورتر قرارگرفته بودن، موفق شدن مقداری از مواد اطرافشون رو از طریق گرانش جذب کنن و گویچه‌هایی رو به‌وجود بیارن که به‌تدریج هسته اولیه سیارات رو تشکیل دادن. این فرایند جذب یا انباشت مواد توسط سیارات، همراه با چرخش بوده. و بعد از این‌که هم‌جوشی هسته‌ای در مرکز خورشید اتفاق افتاده و اصطلاحا خورشید شعله‌ور شده، این چرخش (یا به بیان دقیق‌تر تکانه زاویه‌ای)، همراه سیارات باقی مونده (اصل بقای تکانه زاویه‌ای).

حرکت تقدیمی و ناوشی محور زمین. نگاره از world-mysteries

به‌همین خاطر، سیارات علاوه بر حرکت مداری به دور خورشید، یک چرخش وضعی به دور خودشون هم دارن. حالا این‌که چرا محور چرخش به دور خودشون، کمی نسبت به عمودِ صفحه‌ی منظومه شمسی انحراف داره، احتمالا به دلیل برخوردهای شدیدی بوده که در دوران شکل‌گیری منظومه شمسی اتفاق میفتاده و سیارات، تحت بمباران شدید، توسط تکه سنگ‌های غول‌پیکر سرگردان بودن ( بعد از اینکه خورشید شعله‌ور شد، به علت بادهای شدید خورشیدی که در ابتدا گسیل می‌شد، دقیقا شبیه به یه سشوار پر قدرت، خیلی از این تکه سنگ‌ها به فاصله‌های دورتر فرستاده شدن، که امروز به شکل کمربند کوییپر و ابر اورت، در لبه‌های منظومه شمسی قرار دارن). این برخوردها می‌تونستن باعث بشن که محور چرخش کمی جابجا بشه. محور زمین به‌طور میانگین حدود ٢٣.۵ درجه از حالت قائم انحراف داره. به علت پخ بودن کره زمین در قطبین، نیروهای گرانشی که خورشید و ماه به زمین وارد می‌کنن، باعث حرکت تقدیمی زمین میشن؛ درواقع محور زمین با حفظ زاویه انحراف خودش، حول محور عمود هم می‌چرخه. شبیه چیزی که توی فرفره می‌بینیم. البته یک دور گردش بر اثر حرکت تقدیمی، حدودا ٢۵٧٧٢ سال طول می‌کشه. شاید این رقم خیلی بزرگی به‌نظر برسه، ولی دست کم باعث شده ستاره قطبی که درست بالای قطب شمال کره زمین قرار داره و با استفاده از اون می‌تونیم جهت شمال رو پیدا کنیم، تغییر کنه؛ الان ستاره‌ای که به‌عنوان ستاره قطبی می‌شناسیمش، ستاره آلفای صورت فلکی دب اصغر هست، درحالی‌که حدود سه هزار سال قبل از میلاد، ستاره ثعبان در صورت فلکی اژدها راهنمای جهت شمال بود.
اگه دقت کرده باشید، گفتیم کجی محور زمین «به‌طور میانگین»، حدود ٢٣.۵ درجه هست. چون صفحه مداری ماه نسبت به صفحه مداری زمین به دور خورشید، حدود ۵ دقیقه انحراف داره، این موضوع باعث میشه کمی مقدار انحراف محور زمین تغییر کنه و با دوره تناوب حدود ١٨.۶ سال، بین بازه ٢٢.١ تا ٢۴.۵ درجه، متغیر باشه. در حال حاضر، مقدار کجی محور زمین ٢٣.٢۶ درجه هست. به این رقص محوری زمین، حرکت ناوشی یا ترقصی گفته میشه.

حرکت ظاهری سالیانه خورشید

اگه ما در قسمت‌های مختلف مدار زمین به خورشید نگاه کنیم، می‌بینیم که انگار موقعیت خورشید در طول سال نسبت به ستاره‌های پس‌زمینه (با فرض اینکه بتونیم ستاره‌ها رو در طول روز هم ببینیم)، تغییر می‌کنه؛ فرض کنید محور زمین رو دایروی در نظر بگیریم، در نتیجه خورشید هر روز کمی کمتر از ١ درجه نسبت به ستاره‌های پس‌زمینه آسمون، به سمت شرق جابجا میشه ( تعداد روزهای سال ٣۶۵ روز و یک دایره کامل ٣۶٠ درجه هست). به مسیر حرکت ظاهری سالیانه خورشید، دایره البروج میگن. به همین خاطر هست که انگار خورشید در ماه‌های مختلف، توی برج‌ها یا صورت فلکی‌های مختلفی قرار داره.

نقاط اعتدالین و انقلابین و حرکت ظاهری سالیانه خورشید روی کره سماوی. نگاره از stars.astro.illinois.edu

داخل پرانتز: البته که طالع‌بینی اساس علمی نداره و خرافاته، ولی از اون‌جایی که متأسفانه توی قرن ٢١اُم هم هنوز عده زیادی به این خزعبلات اعتقاد دارن، جا داره این نکته رو عنوان کنم: تاریخ طالع‌بینی حدودا به ٣٠٠٠ سال پیش برمی‌گرده. برج‌هایی که مربوط به ماه تولد هستن از اون زمان تا الان، به‌خاطر حرکت تقدیمی زمین، تغییر کردن. مثلا اگه شما فروردین ماهی و توی ادبیات طالع بینی برج حمل هستید، به این معنیه که خورشید در ماه فروردین، توی صورت فلکی حمل قرار داره. این درحالیه که الان دیگه خورشید توی این برج قرار نداره. بلکه در فروردین ماه توی صورت فلکی حوت هست. بنابراین زیاد توجهی به این اراجیف ماه تولد نکنید لطفاً! :))

به‌خاطر کجی محور زمین، دایره البروج از استوای سماوی، ٢٣.۵ درجه انحراف داره (اگر استوای کره زمین رو ادامه بدید تا کره سماوی رو قطع بکنه، بهش استوای سماوی میگن). به محل تلاقی این دو دایره، اعتدالین گفته میشه. برای نیم‌کره شمالی، اگه خورشید در مسیر حرکت به سمت بالای استوای سماوی باشه، این نقطه اعتدال بهاری(آغاز فصل بهار)، و اگه در مسیر حرکت به سمت پایین استوای سماوی باشه، این نقطه اعتدال پاییزی(آغاز فصل پاییز) هست. هم‌چنین وقتی که خورشید در بالاترین نقطه دایره البروج نسبت به استوای سماوی قرار داره، انقلاب تابستانی (آغاز فصل تابستان) و هنگامی‌که در پایین‌ترین نقطه دایره البروج نسبت به استوای سماوی هست، انقلاب زمستانی(آغاز فصل زمستان) بهش گفته میشه.

محل طلوع و غروب خورشید در طول سال چطور تغییر می‌کنه؟

موقع اعتدال بهاری و پاییزی، خورشید دقیقا از سمت شرق، طلوع و از سمت غرب، غروب می‌کنه؛ بنابراین دو بار در طول سال، این امکان وجود داره که بتونید جهت‌های جغرافیایی‌تون رو، به‌وسیله خورشید چک بکنید (البته در واقعیت، چون نقاط اعتدالین تنها در یک لحظه اتفاق میفتن، که لزوما هم در لحظه طلوع یا غروب خورشید نیست، بنابراین مکان طلوع و غروب خورشید از محل دقیق شرق و غرب، مقدار ناچیزی اختلاف داره که میشه ازش صرف‌ نظر کرد).
اما همین‌طور که از نقاط اعتدالین فاصله می‌گیریم، محل طلوع و غروب خورشید هم از شرق و غرب فاصله میگیره و به سمت شمال یا جنوب متمایل میشه؛ اگه شما روی استوای زمین قرار داشته باشید، در انقلاب تابستانی، خورشید از ٢٣.۵ درجه‌ای شمال شرق، طلوع و در ٢٣.۵ درجه‌ای شمال غرب، غروب می‌کنه. برعکس، در انقلاب زمستانی، طلوع خورشید در ٢٣.۵ درجه‌ای جنوب شرق، و غروبش در ٢٣.۵ درجه‌ای جنوب غرب هست. بنابراین روی استوا، حداکثر انحراف محل طلوع یا غروب خورشید از شرق یا غرب، ٢٣.۵ درجه هست که در انقلاب تابستانی و انقلاب زمستانی رخ میده. اما فرض کنید که شما بالاتر از استوا زندگی می‌کنید. در این‌صورت، برای محاسبه مقدار زاویه انحراف محل طلوع و غروب خورشید از شرق و غرب جغرافیایی، باید یک فاکتور (عرض جغرافیایی)sec هم ضرب کنید (عرض جغرافیایی، زاویه مختصاتی هست که مکان شمالی/جنوبی یک نقطه روی سطح زمین رو نشون میده و از صفر درجه در استوا، تا نود درجه شمالی/جنوبی در قطب‌ شمال/جنوب، متغیره). مثلا شهر تهران در عرض جغرافیایی ٣۵ درجه شمالی قرار داره. بنابراین حداکثر میزان انحراف، 23.5 * (35)sec ، حدودا ٢٨.۶٨ درجه هست. هرچند که این یه فرمول تخمینیه، اما تا عرض‌های جغرافیایی ۵٠ درجه صادقه (اگه علاقه‌مند به محاسبات کامل با استفاده از هندسه کروی هستید، به اینجا مراجعه کنید).

طول روز یا شب در طول سال چطور تغییر می‌کنه؟

خب، فکر می‌کنم تا الان تقریبا به این سوال جواب داده شده باشه که چرا شب یلدا که معادل با انقلاب زمستانی هست، طولانی‌ترین شب ساله؟ با توجه به توضیحاتی که درمورد حرکت ظاهری سالیانه خورشید داده شد، حداکثر ارتفاع خورشید نسبت به افق در طول سال تغییر می‌کنه و زمان انقلاب زمستانی به حداقل، و زمان انقلاب تابستانی به حداکثر مقدار خودش می‌رسه. بنابراین در انقلاب زمستانی، خورشید مسیر کوتاه‌‌تری (دایره عظیمه کوچکتر) رو باید توی آسمون طی بکنه و در انقلاب تابستانی، روی مسیر بلندتری (دایره عظیمه بزرگ‌تری) حرکت می‌کنه. هنگام اعتدال بهاری و پاییزی که حد وسط انقلابین هستن، طول روز و شب در همه جای دنیا برابر هست. یعنی تقریبا ١٢ ساعت روز و تقریبا ١٢ ساعت شبه. البته، به دو علت، طول روز، یک مقداری بلندتر از طول شب هست. اول اینکه؛ در زمان اعتدالین، مرکز هندسی خورشید ١٢ ساعت بالای افق هست، در حالی‌که طلوع خورشید، طبق تعریف، لحظه‌ای هست که لبه‌ی بالایی قرص خورشید از افق پیدا میشه (و نه مرکز خورشید)، و غروب خورشید هم به همین صورت، لحظه‌ایه که لبه بالایی قرص خورشید میره زیر افق و دیگه دیده نمیشه. بنابر این تعریف، طول روز مقداری بیشتر از ١٢ ساعت هست. علت دوم اینکه؛ به علت شکسته شدن نور خورشید توی جو زمین، ما موقع طلوع خورشید، لبه بالایی قرصش رو زودتر می‌بینیم، و موقع غروب، لبه‌ی بالایی رو حتی بعد از اینکه خورشید غروب کرده هم مشاهده می‌کنیم. این پدیده، باعث میشه، طول روز، حدود ۶ دقیقه (بسته به اینکه دما و فشار هوا بصورت موضعی چقدر توی ارتفاعات مختلف تغییر می‌کنه) بیشتر از زمانی باشه که اثر شکست نور توی جو وجود نداره. به‌خاطر این دو دلیلی که ذکر شد، زمان اعتدال بهاری و پاییزی، طول روز چند دقیقه بلندتر از طول شب هست.

آنالما

تصویری که می‌بینید، حرکت ظاهری خورشید در طول ساله که معروف به آنالمای خورشیدی هست (اگه کسی معادل فارسی عبارت آنالما رو می‌دونه بگه! ://)

تصویر آنالما. نگاره از visualphotos

داستان از این قراره که اگه توی یک ساعت خاصی از روز، مثلا ١٢ ظهر، در طول سال از خورشید عکس برداری بکنید، می‌بینید که شبیه عدد هشت انگلیسی میشه. اگه امکانات عکس‌برداری براتون مقدور نیست، می‌تونید یک میله شاخص نصب کنید و انتهای سایه‌ی اون رو در یک ساعت خاص، در طول سال علامت‌گذاری کنید. دقت کنید که اگه ساعت رسمی کشور عقب یا جلو رفت، شما طبق همون ساعت قدیم خودتون عمل کنید. در نهایت، شکل آنالما به‌دست میاد.
اگر به تصویر دقت کنید، می‌بینید که خورشید هم به سمت بالا و پایین، و هم به سمت راست و چپ حرکت کرده. علت این‌که خورشید در طول سال ارتفاعش تغییر میکنه رو قبلا بررسی کردیم. ولی به نظرتون چرا باید خورشید به سمت راست و چپ هم حرکت بکنه؟ درواقع علتش اینه که مدار زمین به دور خورشید بیضوی هست و نه دایروی. بنابراین در تصویر آنالمای خورشیدی یک کشیدگی به سمت شرق و غرب هم دیده میشه.

دوست دارم در پایان، این بیت از غزلی رو که از دوست خوبم مرتضی استاد عظیم هست، تقدیمتون کنم:

کمی آرام شو دیگر، تو ای شب زنده‌دار عشق!
که یلدا هم سحر دارد و آخر سر به سر آید…

تلاش برای توصیف جهان از زاویه‌ی گرانش

داستان معروف سیبی که از درخت افتاد و به سبب اون نیوتون کشف کرد که زمین جاذبه داره رو همه از بریم. این داستان چندان واقعی نیست نیوتون سالها توی اتاقش داشت با انواع و اقسام روابط سر و کله میزد تا بالاخره تونست که فیزیک جدیدی رو پایه‌گذاری کنه و واقعا با یک سیب نبود که نظریه‌ای متولد شد.

اگه گرانش رو به زبان خیلی ساده بخوام بگم، میشه فرمول‌بندی نیوتون از حرکات سیاره‌ها. قبل‌تر از نیوتون فردی به نام کپلر سه قانون رو در مورد حرکات سیاره‌ها پیدا کرده بود.کپلر معتقد بود که سیاره‌ها دارن در مدارهایی بیضوی به دور خورشید میچرخند که خورشید در یکی از کانون‌های بیضی قرار گرفته.. زمانی که سیاره به خورشید نزدیکتره با سرعت بیشتری حرکت میکنه نسبت به زمانی که از خورشید دورتره و رابطه ی بین فاصله سیارات از خورشید و پریود حرکتشون هم به دست آورده بود.

بعدتر از کپلر، نیوتون حرکات سیارات رو با صورت بندی گرانش ارائه کرد. نیوتون میگفت گرانش یک نیروی بلندبرده و بین اجرام مختلف برقراره. اگر دو تا جرم مختلف به نحوی بتونن همدیگه رو مشاهده کنن،شروع میکنن به جذب کردن همدیگه. شدت نیرویی هم که حس میکنن متناسب با حاصل ضرب جرمشون تقسیم بر مجذور فاصله دو تا جرم از همدیگه است.

این تا اوایل قرن نوزده بهترین تصویر ما از جهان بوده. اینکه اجرام به شکلی پراکنده‌اند در جهان و طبق گرانش نیوتونی رفتار میکنن. اما از اونجایی که علم همواره در حال تحوله و تصویر ما از جهان ثابت نمی‌مونه، شواهدی پیدا شدن که باعث شد دانشمندان درباره ی این نظریه به تردید بیفتند.اوایل قرن نوزدهم اینشتین با ارائه نظریه نسبیت عام تصویر جدیدی از جهان رو ارائه کرد.در این نظریه گرانش نه یک نیرو که یک ویژگی از فضا- زمان درنظر گرفته میشه.تغییرات در فضا-زمان هم به دلیل پراکندگی اجرام در فضا به وجود میاد.یک مثال آشنا از این اجرام میتونه سیاهچاله ها باشند. سیاهچاله ها در واقع بخشی از فضا زمان هستند که حتی نور هم امکان گریختن از افق رویداد سیاهچاله ها رو نداره. معادله‌ی میدان در نسبیت عام با رابطه‌ی زیر نشون داده میشه.

معادله ی میدان اینشتین

سمت چپ این معادله تانسور انیشتین رو میبینید. این تانسور درواقع حامی تمام اطلاعات هندسه‌ی فضا- زمان هست.سمت راست معادله هم تانسور انرژی- تکانه‌ رو میبینید. که درواقع حاوی تمام اطلاعات یک جرم گرانشی یا بهتر بگم یک ماده است.این جرم گرانشی میتونه زمین باشه، ستاره نوترونی باشه، یا حتی یک سیال باشه.

نسبیت عام موفقیت‌های چشم‌گیری تا به امروز داشته. پیش‍بینی ام‍واج گرانشی، توصیف سیاهچاله‌ها، سفر در زمان و… همگی از دستاوردهای نسبیت عام هستند.اما نسبیت عام در اواسط قرن بیستم و بعدتر با چالش‌های جدی مواجه شد. همین اتفاق باعث شد که دریچه‌ی جدیدی به سوی گرانش باز بشه و نظریات جدید گرانشی متولد بشن.

اینشتین وقتی معادله‌ی میدان گرانشی در نسبیت عام رو نوشت با یک سوال مواجه شد. چرا جهان تحت گرانش خودش فرو نمیریزه؟ نیوتون برمبنای بی‌نهایت بودن و همسانگردی جهان مطمئن بود که جهان تحت گرانش خودش فرو نمیریزه. نیوتون بر مبنای این فرضیات معتقد بود که هر نقطه از جهان نیروی برابری رو حس میکنه، بنابراین جهان هرگز تحت گرانش فرونمیریزه. انیشتین برای رفع این مسئله جمله‌ای رو دستی وارد معادلاتش می‌کنه. این جمله به صورت یک نیروی دافعه‌ی کیهانی، که به عنوان ثابت کیهان‌شناسی معرفی شده، وارد این معادلات میشه. جالبه بدونید اینشتین بعدها از این کارش به عنوان یک اشتباه بزرگ یاد میکنه.

بعد از وارد شدن جمله ی ثابت کیهان شناسی معادله‌ی میدان اینشتین به فرم زیر در میاد.

معادله‌ی میدان اینشتین در حضور ثابت کیهان‌شناسی

با فرض عدم وجود ماده، یعنی در حالتی که مقدار تانسور انرژی- تکانه در این معادله صفر باشه، میتونیم به جمله‌ی ثابت کیهان‌شناسی انرژی خلا رو نسبت بدیم. در این حالت لمبدا رو معادل چگالی انرژی خلا میدونیم.

اما مشکلی که تا به امروز هنوز حل نشده چی بود؟

ما باید بدونیم مقدار این ثابت کیهان شناسی چقدره و از چه مرتبه‌ایه. نظریه‌ی میدان‌های کوانتومی مقداری رو که برای انرژی خلا پیش‌بینی می‌کنه بسیار بسیار بیشتر از عددی است که از رصدها بدست میاد. چیزی در حدود شصت تا صد و بیست مرتبه‌ی بزرگی بزرگتر. همین اختلاف مقدار در نظریه و رصد باعث شد نظریات جدید گرانشی‌ای متولد بشن تا شاید این مشکل رو حل کنند.

مشکل بعدی‌ای که نسبیت عام نتونست از پسش بربیاد مسئله‌ی ماده تاریک بود. اگه بخوام مختصرا بگم ماجرای ماده تاریک از کجا جدی شد، باید برگردیم به رصدهایی که انجام شده و مهم‌ترین شاهد حضور ماده تاریک نمودارهای سرعت چرخش ستاره‌ها و کهکشان‌ها بودند.ما از گرانش نیوتونی میدونیم که سرعت حرکت دایره‌ای یک ستاره از رابطه‌ی زیر بدست میاد.

معادله سرعت چرخش کهکشان‌ها

در این رابطه G ثابت جهانی گرانش، M جرم محصور و r فاصله شعاعی است. برای فواصل بیشتر از دیسک کهکشانی قانون گاوس بیان می‌کند که با فرض اینکه تمام جرم در مرکز محصور شده در فواصل دور مقدار جرم ثابته و سرعت باید با r-1/2  کاهش پیداکنه. اما آن چیزی که رصدها نشون میده چنین نیست. رصد ها میگه از فاصله ای به بعد سرعت حرکت به مقدار ثابتی میل میکنه. انگار که برخلاف اون چیزی که از قانون گاوس میدونیم، جرم اینجا متغیره و داره با فاصله تغییر میکنه. در واقع  تغییرات جرم متناسب با تغییرات فاصله است. این جرم اضافی از کجا میاد؟ به نظر میاد این وسط ماده‌ای فراتر از ماده‌ی مرئی وجود داره که بهش میخوایم بگیم ماده‌ی تاریک. ماده‌ی مرموزی که خیلی خوب نمیشناسیمش. وجود داره ولی مشاهده نمیکنیمش. برهمکنش نمیکنه و هرجایی خودش رو نشون نمیده، اما این وسط داره تو معادلاتمون و در کیهان‌شناسی نقش مهمی بازی میکنه.

نمودار سرعت چرخش کهکشان‌ها

نظریات گرانشیِ بعد از نسبیت عام  تلاش هایی برای توصیف ماده تاریک هم داشته اند. البته عده‌ای از فیزیکدانان انرژی‌های بالا معتقدند که ماده تاریک واقعا به صورت ذراتی وجود داره. و تلاش‌های زیادی چه از بابت نظری و چه عملی برای توصیف و آشکارسازی ذرات ماده تاریک کرده‌اند.

نظریات جدید گرانشی که عمدتا ازشون به عنوان گرانش تعمیم یافته یاد میشه، اضافه کردن درجات آزادی به نظریه‌ی نسبیت عام هست. در واقع ماجرا از این قراره که فیزیکدانان تلاش میکنن با اضافه کردن درجات آزادی به کنش نسبیت عام راهی پیدا کنند که بتونن سوالاتی که نسبیت عام نمیتونه بهشون پاسخ بده رو پاسخ بدن. این درجات آزادی در ساده‌ترین حالت میتونه اضافه کردن یک میدان اسکالر باشه. یا عده‌ای هم دوست دارن بردار، تانسور یا میدان‌های با رنک بالاتر اضافه کنند به این کنش. هر مدلی از گرانش که ساخته میشه باید تست‌پذیر باشه. یعنی نتایجی که پیش‌بینی میکنه با نتایج آزمایش و رصد سازگار باشه. و اساسا قابلیت در معرض آزمایش قرارگرفتن رو داشته باشه.

از دل این تلاش‌ها مدل‌های زیادی برای توصیف جهان ساخته شده اند، که اینجا مختصرا اشاره میکنم و در پست‌های بعدی بهشون می‌پردازم.نظریه‌های اسکالر-تانسور، دینامیک تعمیم یافته نیوتونی، نظریه‌ی انیشتین- اِتِر، نظریه‌های بایمتریک، نظریه‌های f(R )، گرانش غیر موضعی و گرانش ابعاد بالا مشهورترین نظریه‌های گرانشی اند.

سرنوشت نظریات گرانشی به کجا رسیده؟

هنوز فیزیکدانان در حال تلاش‌اند تا بتونن برای سوالاتی که مطرح شده نظریه‌ای بسازند که پاسخ سوالاتشان رو بده. برای محقق شدن این امر نیاز به ایده‌های بهتر و داده‌های رصدی و آزمایشگاهی بیشتر دارن.

پی نوشت:

  1. برای تعریف  تانسور به این آدرس سر بزنید.
  2. برای اینکه مختصری درباره‌ی درجه‌ی آزادی در فیزیک بدونید به این آدرس مراجعه کنید. البته درجه‌ی آزادی در متن بالا کمی متفاوت از چیزیه که در متن پیوست شده مشاهده میکنید.

انتقال به سرخ به زبان آدمیزاد

توی این پست میخوام مقداری درمورد مفهوم «انتقال به سرخ» و انواعش توضیح بدم. انتقال به سرخ یا «Redshift» مفهومیه که به کمک اون تونستیم دریچه‌ای از کهکشان‌ راه شیری خودمون به باغ وحشی از کهکشان‌ها و ساختارهای بزرگ مقیاس کیهانی باز کنیم. به کمک این پدیده، از حدود صد سال پیش، متوجه شدیم که کیهان، فقط محدود به کهکشان راه شیری نیست و بیش از پیش به اصل کوپرنیکی معتقد شدیم.

انتقال به سرخ یعنی چی؟

حتما دقت کردید وقتی یه ماشین یا موتوری با سرعت از جلوتون رد میشه، صداش تغییر میکنه؛ همین‌طور که نزدیک‌تر میشه صداش زیرتر و وقتی عبور می‌کنه و دور میشه صداش کمی بم‌تر میشه. کمی اگر دقیق‌تر صحبت کنیم این اتفاق، به ترتیب، به معنی طول موج‌های کوتاه‌تر و بلندتر هست. به این پدیده، اثر داپلر میگن. خب حالا چرا این اتفاق میفته؟(دقت کنید که راننده اتومبیل تغییری توی صدا احساس نمی‌کنه!) احتمالا این وسط یا اتفاقی برای صوتی که به ما می‌رسه میفته یا اینکه برای خود ما! خداروشکر مشکل از ما و سیستم شنواییمون نیست که بگیم دچار کج‌شنوایی شدیم! داستان به اینجا برمی‌گرده که منبع تولید موج صوتی نسبت به ما در حال حرکت هست؛ بنابراین همین‌طور که اتومبیل از ما دورتر میشه، هر قله(دره) متوالی، از جایی دورتر از ما، نسبت به موج قبلی منتشر میشه و یه خرده زمان بیشتری می‌بره تا به ما برسه. با فرض این‌که سرعت موج صوتی ثابت هست، پس فاصله بین قله‌ها (دره‌ها) هم باید بیشتر باشه؛ یعنی طول موج بیشتر میشه (معادل فرکانس کمتر). وقتی که منبع صوت درحال نزدیک شدن هست، دقیقا عکس این اتفاق میفته و طول موج برای «ما» که ناظر هستیم تغییر می‌کنه و کوتاه‌تر میشه.

توجه کنید که این‌جا مسأله، انتخاب چارچوب مرجع هست. یعنی اگه ما که وایستادیم هم مثلا درحال شیپور زدن باشیم(به دلایلی نامعلوم! ؛)) اتومبیل در حال عبور، همین تغییر در فرکانس رو حس می‌کنه. بنابراین اثر داپلر به‌دلیل حرکت نسبی بین منبع صوت و ناظر اتفاق میفته.

اثر داپلر

در ۱۸۴۲ میلادی، جناب آقای داپلر برای اولین‌ بار این توجیه فیزیکی رو برای این پدیده ارائه داد و ادعا کرد که این پدیده برای هر نوع موجی درسته و مشخصا پیشنهاد داد که رنگ‌های مختلف ستاره‌ها، به‌خاطر حرکتی هستش که نسبت به ما دارن (البته خیلی زود معلوم شد که رنگ ستاره‌ها، فقط به دمای سطحی‌ اون‌ها بستگی داره و نه حرکتشون نسبت به زمین). شش سال بعد، جناب فیزو به این نکته اشاره کرد که جابه‌جایی که در خطوط طیفی ستاره‌ها مشاهده میشه، به‌‌دلیل اثر داپلر هست. به همین خاطر بعضی مواقع به این اثر، «اثر داپلر-فیزو» هم میگن. برای این‌که بحث رو ادامه بدیم، اجازه بدید اول توی یه قسمت پرانتزطوری، مختصرا درمورد طیف‌ها صحبت کنیم تا موضوع روشن بشه.

منظور از طیف یه ستاره چیه؟  

اگه یه منشور رو جلوی نور خورشید بگیرید، رنگین کمانی در طول موج‌های مرئی تشکیل میشه که بهش طیف پیوسته میگن. حالا فرض کنید که گاز سردی از ماده خاصی رو بر سر راه این نور قرار بدید. وقتی نور به اتم‌های گاز سرد برخورد می‌کنه، توی بعضی از طول موج‌های خاص که تابعی از اختلاف انرژی بین تراز‌های الکترون‌های برانگیخته شده هست، جذب میشه. بنابراین توی طیف جدید، چند خط تیره در طول‌ موج‌های مختلف وجود داره. به این طیف، «طیف جذبی» میگن. این‌بار فرض کنید که این گاز رو داغش بکنیم. دقیقا توی طول موج‌هایی که توی حالت قبل جذب اتفاق افتاده بود، این‌بار گسیل نور داریم؛ توی این حالت، وقتی الکترون‌های برانگیخته از ترازهای انرژی بالاتر به تراز‌های انرژی پایین‌تر گذار می‌کنن، نوری گسیل میشه که طول موجش، متناسب با اختلاف انرژی تراز ابتدایی و انتهایی هست. این بار طیف، فقط شامل چند خط روشن در طول موج‌های مختلف هست و بهش «طیف گسیلی» میگن. نکته‌ای که وجود داره اینه که عناصر مختلف دقیقا توی طول موج‌های مشخصی جذب یا گسیل دارن. به‌عبارت دیگه هر عنصر، طیف منحصر به فرد خودش رو داره. بنابراین با دیدن طیف یه ستاره، میشه فهمید که چه عناصری در جوّش وجود دارن.

همون‌طور که اشاره شد، طیف عناصر مختلف دارای خطوط طیفی در طول موج‌های مشخصی هستن. وقتی که ستاره‌ای نسبت به ما در حال حرکت باشه، خطوط طیفی که مربوط به عناصر مختلف شناخته شده هست کمی جابجا میشن؛ اگه ستاره در حال دور شدن از ما باشه، خطوط طیفی به سمت طول موج‌های بلندتر (انتقال به سرخ) و اگه در حال نزدیک شدن باشه، به سمت طول موج‌های کوتاه‌تر جابجا میشن(انتقال به آبی).

انواع انتقال به سرخ

ما سه نوع انتقال به سرخ برای نور داریم: داپلر نسبیتی، کیهانی و گرانشی. اساس همه‌شون همون انتخاب چارچوب مرجع و تأخیر (تسریع) زمانی بین قله‌های متوالی موج هست که منجر به انتقال به سرخ(آبی) خطوط طیفی میشه. اما منشأ اون میتونه علت‌های مختلفی داشته باشه.

داپلر نسبیتی

تا این‌جا توضیحاتی که در مورد انتقال به سرخ دادیم مربوط به این نوع هست. یعنی سرعت نسبی منبع نور و ناظر باعث این اثر میشه. هر چی این سرعت نسبت به ناظر بیشتر باشه، مقدار انتقال به سرخ و جابجایی در طیف بیشتره. از روی مقدار جابه‌جایی خطوط طیفی میشه سرعت منبع نور رو بدست آورد. وستو اسلیفر در ۱۹۱۲ میلادی، سرعت چندتا از سحابی‌ها رو با این روش اندازه گرفت و دید که سرعتشون خیلی بیشتر از اجرام معمولی دیگه‌ هستش که قبلا رصد کرده بودن. هرچند تا اون زمان، فرضیاتی مطرح شده بودن که احتمالا کهکشان‌های دیگه ای بیرون از کهکشان راه شیری وجود دارن، اما شاهدی برای این موضوع وجود نداشت. چند سال بعد ادوین هابل، فاصله این سحابی‌ها رو اندازه گرفت و متوجه شد که این‌ها در واقع کهکشان‌هایی بیرون از کهکشان راه شیری هستن. (الآن می‌دونیم که حدود ۱۰۰ میلیارد کهکشان دیگه توی کیهانمون وجود داره، تقریبا اندازه تعداد ستاره‌های داخل کهکشان خودمون!) بنابراین این اثر، ابزار قدرتمندی رو در اختیارمون قرار میده که ما باهاش می‌تونیم سرعت اجرام سماوی رو اندازه بگیریم.

انتقال به سرخ کیهانی

سال ۱۹۲۹، هابل نمودار سرعت بر حسب فاصله رو برای تعدادی از کهکشان‌ها رسم کرد و نتیجه گرفت که هرچقدر اونا دورتر هستن با سرعت بیشتری درحال دور شدن از ما هستن (قانون هابل) و این یعنی جهان در حال انبساطه. این کشف، تأییدی بود برای حلی که چند سال قبل‌تر، از معادلات میدان انیشتین به‌دست اومده بود که الآن معروف به معادلات فریدمان هست. پس بنابراین چون جهان درحال انبساطه یا به بیان بهتر، فضا-زمان داره منبسط میشه، کهکشان‌ها نسبت به ما در حال حرکتند و چون همه‌شون دارن از ما دور میشن بنابراین در خطوط طیفیشون انتقال به سرخ مشاهده میشه. منشأ این انتقال به سرخ انبساط کیهانه. به‌همین‌خاطر به اون انتقال به سرخ کیهانی گفته میشه.

اما از کجا تشخیص بدیم که جابجایی طیفی به‌خاطر انبساط کیهان هست یا حرکت مشخصه خود منبع نور؟ خب نکته‌ای که وجود داره اینه که انبساط کیهانی رو توی فواصل نزدیک نمیشه دید. عملا انتقال به سرخ از حدود فاصله چندین هزار سال نوری به بعد قابل ملاحظه هست. برای ستاره‌ای که داخل کهکشانی با این فاصله قرار داره، قسمتی از انتقال به سرخش مربوط به حرکت موضعی خودش هست (اثر داپلر نسبیتی) و قسمتیش هم مربوط به انبساط فضا-زمان (انتقال به سرخ کیهانی). اما از اونجایی که سازوکار این دو تا با هم متفاوت هست، میشه انتقال به سرخ کیهانی رو از مدل کیهان‌شناسی که درنظر گرفتیم بدست بیاریم و از قسمت مربوط به حرکت مشخصه ستاره تفکیک کنیم.

از اون‌جایی‌ که کیهان‌شناس‌ها با فواصل خیلی زیاد سروکار دارن، کهکشان‌ها رو عملا یک نقطه در نظر می‌گیرن (بدون اعتنا به اتفاقاتی که داخل کهکشان‌ها داره میفته و ستاره‌ها و سیارات و احتمالا موجوداتی که دارن اون‌جا زندگی می‌کنن!) و به‌جای استفاده از واحدهایی مثل سال نوری یا پارسک برای گفتن فاصله‌ها، معمولا از انتقال به سرخ(رِد شیفت) استفاده میکنن. انتقال به سرخ‌های بزرگ‌تر، یعنی فواصل دورتر از نظر مکانی و هم از نظر زمانی! چون نور اجرام دورتر، بیشتر طول میکشه تا به ما برسه. پس هر چی فواصل دورتری رو توی عالم رصد بکنیم، درواقع داریم خاطرات قدیمی‌تری از عالم رو مرور می‌کنیم؛ قدیمی‌ترین تصویر عالم، مربوط به تابش زمینه کیهانی، با رِدشیفت ۱۰۸۹ هست.   

انتقال به سرخ گرانشی

طبق نظریه نسبیت عام انیشتین، ماده یا انرژی میتونه فضا-زمان اطرافش رو خمیده کنه و از این طریق گرانش کنه. نوری که از داخل یه چاه پتانسیل گرانشی، مثلا از سطح یه ستاره، به‌سمت بیرون در حال حرکته، با تأخیر زمانی همراهه. درنتیجه توی طیفش انتقال به سرخ دیده میشه. هرچقدر گرانش اون جسم بیشتر باشه، این انتقال بیشتر هست. مثلا در اطراف ستاره‌های نوترونی و سیاه‌چاله‌ها که بسیار پرجرم هستن، این اثر رو میشه دید.

خلاصه اینکه انتقال به سرخ مفهوم بسیار مهم و کاربردی برای فهم ما از عالم پیرامونمون هست. راستی انتقال به سرخ یه کاربرد دیگه‌ای هم داره. از اون توی دوربینای کنترل سرعت هم استفاده میشه که احتمالا خاطرات خوبی باهاش دارید! :)) جا داره این پست رو با یادی از همه‌ گذشتگان راه علم به پایان ببریم. روحشان شاد!

 

تورم کیهانی، تلاشی برای رفع مشکلات نظریه مه‌بانگ

«در ۱۹۸۱ میلادی، مدل تورم توسط آلن گوت، برای پاسخ به چند مشکل اساسی در نظریه مهبانگ داغ، ارایه شد.»

 

نظریه مهبانگ داغ از جهات زیادی، یک نظریه‌ی موفقیت‌آمیز بوده و هم‌خوانی زیادی با مشاهدات رصدی داشته است که به‌طور خلاصه می‌توان به موارد زیر اشاره کرد:

  • گسترش کیهان
  • وجود تابش زمینه کیهانی و توصیف طیف آن
  • فراوانی عناصر سبک در کیهان(دوران هسته سازی)
  • اینکه سن پیش بینی شده‌ی کیهان، قابل مقایسه با اندازه‌گیری‌های مستقیم انجام شده روی سن اجرام درون آن است
  • و اینکه با وجود داشتن بی‌نظمی‌های موجود در تابش زمینه‌ی کیهانی، میتوان توصیف قابل قبولی برای رشد ساختار در کیهان به وسیله‌ی رمبش گرانشی داشت.

مسأله‌ افق

اما با وجود این موفقیت‌ها، نظریه‌‌‌‌ی مهبانگ داغ نمی تواند به چند پرسش اساسی پاسخ دهد؛ اول آن‌که چرا کیهان در مقیاس‌های بزرگ تا این اندازه همگن و همسانگرد است؟ با نگاه کردن به طیف تابش زمینه‌ی کیهانی می‌توان دریافت که نقاط مختلف آسمان، با دقت زیاد(از مرتبه‌ی یک در صد هزار)، در همه‌ی جهات دارای ویژگی‌های کاملا یکسان هستند. به طور معمول برای آنکه دو جسم شبیه به هم باشند، باید زمانی با یکدیگر در تماس بوده باشند تا اصطلاحا به تعادل گرمایی برسند. به عنوان مثال وقتی یک لیوان چای داغ را در محیط اتاق قرار دهید، پس از مدتی با محیط هم‌دما شده و به تعادل گرمایی می‌رسند. اما دو نقطه‌ در جهت مقابل یک‌دیگر در آسمان که نورشان از دوران واجفتیدگیِ نور و ماده به ما می‌رسد، نمی‌توانند روزی در تماس با هم بوده باشند؛ چرا که نور هر یک، از آن زمان تا به حال در راه بوده تا تنها به نقطه‌ای که ما قرار داریم برسد.

مسأله‌ی افق. فوتون‌هایی که از دو لبه‌ی کیهان به ما می‌رسند، زمان کافی برای این‌که در گذشته به تعادل ترمودیناکی برسند را نداشته‌اند. نگاره از ویکی‌پدیا

حال آن‌که حداقل به همان اندازه زمان نیاز بوده است تا بتواند با نقطه‌ی دیگر برهم‌کنش داشته باشد. البته با انجام محاسبات، می‌توان نشان داد که حتی دو نقطه‌ در فاصله‌ی زاویه‌ای حدود دو درجه در آسمان نیز زمان کافی برای رسیدن به تعادل گرمایی را نداشته‌اند؛ زیرا دو نقطه، باید پیش از دوران واجفتیدگی به تعادل گرمایی رسیده باشند. دوره‌ی واجفتیدگی به دوره‌ای گفته می‌شود که به علت گسترش فضا و در نتیجه کاهش دمای کیهان، انرژی فوتون‌ها به اندازه‌ای کاهش یافته است که از آن پس، فوتون‌ها دیگر با هسته‌های اتم برهم‌کنش نداشته و آزادانه در فضا منتشر شده اند. تا پیش از آن، فوتون‌ها به علت پراکندگی زیاد از هسته‌ها، قادر به طی کردن مسافت‌های طولانی نبودند. بنابراین از آن‌‌جایی که برای برهم‌کنش دو نقطه با یک‌دیگر، نور باید مسافت بین‌شان را بپیماید، نسبت به حالت عادی بعد از این دوره، زمان بیشتری نیاز است تا به تعادل گرمایی برسند. این پرسش که چرا طیف تابش زمینه‌ی کیهانی در همه‌ی جهات تقریبا یکسان است، معروف به مسأله‌ی افق می‌باشد.

مسأله تخت بودن

پرسش دیگر موسوم به مسأله‌ی تخت بودن، در مورد هندسه‌ی کیهان است. طبق مشاهدات رصدی به خصوص تابش زمینه‌ی کیهانی، جهان تقریبا تخت است. در واقع هندسه‌ی فضا ـ زمان با همان هندسه‌ی آشنای اقلیدسی یا به بیان دیگر متریک مینکوفسکی توصیف می‌شود؛ طبق نظریه‌ی نسبیت عام انیشتین، فضا ـ‌ زمان میتواند بسته به توزیع چگالی ماده‌ي (یا انرژی) درون آن، دارای انحنا باشد.

هندسه محلی جهان با توجه به اینکه چگالی نسبی Ω کوچکتر،بزرگتر یا برابر با یک باشد، تعیین می گردد. از بالا به پایین: یک جهان کروی با چگالی بیشتر از چگالی بحرانی (Ω>1, k>0)؛ جهان هایپربولیک با چگالی کمتر از چگالی بحرانی (Ω<1, k<0)؛ و یک جهان تخت با چگالی دقیقا برابر با چگالی بحرانی (Ω=1, k=0). جهان ما برخلاف این نمودار ها، سه بعدی است. نگاره از ویکی‌پدیا

اگر چگالی ماده در جهان کمتر از مقدار معینی موسوم به چگالی بحرانی باشد، انحنا منفی بوده و جهان باز است؛ در واقع کیهان تا ابد به گسترش خود ادامه خواهد داد. اگر چگالی کل ماده از چگالی بحرانی بیشتر باشد، انحنا مثبت بوده و اصطلاحا جهان بسته است؛ به عبارت دیگر، گسترش کیهان پس از مدتی متوقف شده و شروع به رمبش می‌کند تا به نقطه‌ی تکینگی یا مه‌رُمب برسد. در حالتی که چگالی ماده در کیهان با چگالی بحرانی برابر است، با جهانی تخت رو به رو هستیم که انحنای آن صفر می‌باشد. همچنین به نسبتِ چگالی کل کیهان به مقدار چگالی بحرانی آن در هر زمان، پارامتر چگالی گفته می‌شود. طبق تعریف های بالا می‌توان به سادگی دریافت، در صورتی که این پارامتر برابر یک باشد، جهان تخت است و اگر بزرگ‌تر یا کوچک‌تر از یک باشد، به ترتیب انحنای فضا ـ زمان، مثبت و منفی خواهد بود. طبق آخرین داده‌های رصدی، مقدار پارامتر چگالی در حال حاضر بسیار به یک نزدیک بوده و جهان با دقت نیم درصد تخت است. با حل معادلات می‌توان نشان داد که با گذشت زمان، انحراف از تخت بودن افزایش می‌یابد، به‌طوری‌که کوچک‌ترین انحراف از تختی در دوران اولیه‌ی کیهان، خیلی زود به جهانی با انحنای غیر صفر می‌انجامد. بنابراین با توجه به مقدار کنونیِ پارامتر چگالی، هر چه به زمان‌های عقب‌تر برویم، مقدار این پارامتر به یک نزدیک‌تر شده و جهان به تخت بودن، نزدیک و نزدیک‌تر می‌شود.

مثلا در دوران واجفتیدگی (سیصد و هشتاد هزار سال بعد از مهبانگ)، اختلاف پارامتر چگالی از عدد یک، از مرتبه‌ي یک در صد هزار است. در دوران هسته سازی (یک ثانیه پس از مهبانگ)، این مقدار از مرتبه‌ی یک در یک میلیارد میلیارد بوده و در مقیاس‌های انرژی الکتروضعیف (یک هزار میلیاردم ثانیه بعد از مهبانگ)، کیهان با دقتِ یک در هزار میلیارد میلیارد میلیارد، تخت بوده است!

مسأله تخت بودن و تنظیم ظریف.

پرسشی که در اینجا مطرح می‌شود این است که چرا کیهان باید با مقدار اولیه‌ای تا این اندازه نزدیک به تخت بودن، آغاز شده باشد. گویی که کیهان دارای تنظیمی ظریف است. هر اختلاف ناچیزی از این مقدار اولیه، می‌توانسته به تفاوتی فاحش منجر شده و کیهان را به شکلی دیگر درآورد.

مسأله ذرات یادگاره

این دو پرسش یعنی مسأله‌ی افق و مسأله‌ی تخت بودن، توسط یاکوف بوریسوویچ زلدوویچ، در اوایل دهه‌ی ۱۹۷۰ میلادی مطرح شد. وی چند سال بعد، در ۱۹۷۸ میلادی، مسأله‌ی دیگری با عنوان مسأله‌ی تک‌قطبی مغناطیسی را مطرح کرد که در واقع نوع دیگری از همان مسأله‌ی افق است که در فیزیکِ ذراتِ بنیادین مطرح می‌شود. طبق پیش‌بینی نظریه‌های مدرنِ ذرات، یک سری از ذرات یادگاره‌ که در دوران آغازین کیهان تولید شده‌اند، باید در کیهان امروزی نیز وجود داشته باشند. این یادگاره‌ها شامل موارد زیر هستند:

هر چند که در ابتدا، مسأله‌ی تک‌قطبی‌های مغناطیسی که از نتایج نظریه‌ی وحدت بزرگ هستند مطرح شد، اما این بحث برای بقیه‌ی یادگاره‌ها نیز برقرار است. تک‌قطبی‌ مغناطیسی نسبت به ذراتی مانند پروتون‌ بسیار سنگین‌تر بوده و به‌همین‌خاطر باید در زمان‌های نزدیک به ما به صورت غالب در کیهان ما حضور داشته باشند. این در حالی است که تا به امروز هیچ تک‌قطبی مغناطیسی در جهان مشاهده نشده است!

مدل تورم

نگازه از edge.org
آلن گوث، نگازه از edge.org

سه سال بعد، آلن گوت، مدل تورم را برای پاسخ به مسأله‌ی تک‌قطبی مغناطیسی پیشنهاد داد. اما خیلی زود مشخص شد که این مدل می‌تواند پاسخ‌گوی بقیه‌ی پرسش‌ها نیز باشد. ایده‌ی مدل تورم بسیار ساده است؛ جهانِ خیلی آغازین، دست‌خوش گسترشی بسیار بزرگ شده است. در واقع در بازه‌ی زمانی ۱۰−۳۶ تا حدود ۱۰−۳۲ ثانیه پس از مهبانگ، کیهان به صورت نمایی گسترش یافته، به‌طوری که در این بازه‌ی زمانی بسیار کوتاه، از چیزی بسیار کوچک‌تر از یک اتم تا حدود اندازه‌ی یک توپ بسکتبال، افزایش حجم پیدا کرده است! گسترش بسیار سریع کیهان در دوره‌ی تورم، موجب شد تا ذرات یادگاره رقیق شوند؛ بدین ترتیب، مقدار آن‌ها در کیهان امروزی قابل اغماض خواهد بود. هم‌چنین دو نقطه‌ای که در حال حاضر در فاصله‌ي زیاد از یک‌دیگر قرار دارند، در زمان پیش از تورم، قادر بوده‌اند در تماس با یک‌دیگر باشند؛ چرا که تورم باعث دور افتادن آنها از یک‌دیگر با سرعتی بسیار بیشتر از سرعت نور شده است. بنابراین دو نقطه‌‌ی به ظاهر غیر مرتبط با یک‌دیگر در زمان کنونی، پیش از تورم در تعادل گرمایی بوده‌اند. در مورد مسأله‌ی تخت بودن نیز این‌طور می‌توان بیان کرد که به علت کش‌آمدگی زیادِ کیهان در این دوره، هر گونه انحنای اولیه‌ی فضا ـ زمان، به جهانی بسیار نزدیک به جهانِ تخت منجر شده تا آن‌جا که امروز نیز کیهان تقریبا تخت است. تنها در آینده‌ای دور است که بار دیگر پارامتر چگالی از مقدار یک فاصله خواهد گرفت.

علاوه بر موارد یاد شده، امروزه می‌دانیم مدل تورمی، نقش مهمی در توصیف منشأ ساختارها در کیهان و وجود ناهمسانگردی‌های موجود در طیف تابش زمینه‌ی کیهانی دارد؛ همانطور که پیشتر اشاره شد، طیف تابش زمینه‌ی کیهانی کاملا همگن نیست، بلکه افت و خیزهای دمایی ناچیزی از مرتبه‌ی یک در صد هزار، در آن مشاهده می‌شود. احتمالا این افت و خیزها توسط نیروی گرانش تقویت شده‌ و بنابراین مناطقی با چگالی بیشتر و بیشتر به وجود آمده‌اند که هسته‌های اولیه برای اولین ستارگان را تشکیل داده و بعدها منجر به ساختِ ساختارهای بزرگ‌تر مانند کهکشان‌ها، خوشه‌های کهکشانی و نهایتاً ابرخوشه‌ها در کیهان شده‌اند.

نمایش تعمیم نظریه مه‌بانگ توسط مدل تورم

طبق مدل تورم، طی این دوره، افت و خیزهای کوانتومی اولیه در خلأ، با کش‌ آمدن کیهان، تبدیل به افت و خیزهای کلاسیک شدند و ناهمسانگردی‌های موجود در طیف تابش زمینه‌ی کیهانی را به وجود آوردند.

در پایان، باید به این نکته توجه داشت که مدل تورم به عنوان رقیبی برای نظریه‌ی مه‌بانگ داغ نیست، بلکه در دوران خیلی آغازینِ کیهان اتفاق افتاده و نظریه‌ی مهبانگ داغ، برای زمان‌های بعد از این دوره، با تمام موفقیت هایش در توصیف کیهان، صادق است.

 

«می‌خواهمت اگر چه دلم با تو صاف نیست!» به‌مناسبت روز نجوم!

این روزها در سراسر ایران، برنامه‌های ترویجی زیادی به مناسبت روز جهانی نجوم برپا شده. برنامه‌های مختلفی که با یک جستجوی ساده در گوگل می‌شود از جزئیاتشان باخبر شد. مثل برنامه‌ فردای مرکز علوم و ستاره‌شناسی تهران یا برنامه‌هایی که جمعه در برج میلاد تهران و رصدخانه زعفرانیه برگزار می‌شوند. در مورد مهم بودن نجوم، اهل فن به قدر کافی نوشته‌اند ([۱]، [۲] و [۳]) و به نظرم نیازی نیست با وجود این همه کتاب خوب به زبان فارسی، نگران این باشیم که اینجا در مورد نجوم به‌طور مفصل بنویسیم. از طرف دیگر، ۱۷ سالی است که در ایران مردم به شیوه‌های مختلف مشغول کارهای ترویجی پیرامون نجوم هستند؛ از برنامه‌های مناسبتی نهادهای مختلف مردمی و غیرمردمی گرفته تا برنامه‌های تلوزیونی مثل آسمان شب. وقت آن است که به همه‌ این عزیزان دست‌مریزاد بگویم! دم برادران صفاریان‌پور گرم که بسیاری علاقه‌شان به نجوم را وام‌دار کارهای حرفه‌ای این دو عزیز هستند. تشکر ویژه از دکتر خواجه‌پور به‌خاطر ترجمه کتاب نجوم به زبان ساده. ممنونیم از دکتر میرترابی به‌خاطر سخنرانی‌های فوق‌العاده‌شان. از همه کسانی که این مدت هر قدمی در راه ترویج و روایتگری در علم برداشته‌اند تشکر می‌کنیم. اصلا مگر می‌شود از بابک امین‌ تفرشی به‌خاطر عکس‌های فوق‌العاده‌اش یا از پوریا ناظمی به خاطر نوشته‌هایش تشکر نکرد؟! یا مگر میشود این حجم از فعالیت‌های مجله نجوم طی این مدت را نادیده گرفت؟! قدردان زحمات همه کسانی که راه را هموار ساخته‌اند هستیم. 

اما در کجای راه هستیم؟

علی‌رغم همه تلاش‌های صورت گرفته، به‌عنوان یک دانشجوی فیزیک، از وضع کنونی نجوم چندان دل خوشی ندارم! ۱۷ سال است که مشغول کارهای ترویجی پیرامون نجوم هستیم! ۱۷ سال! وقت آن است که به‌طور جدی بپرسیم، از این همه وقت و سرمایه چه چیزی عایدمان شده؟! چقدر به چشم‌اندازی که تصور می‌کردیم برای نجوم رسیده‌ا‌یم؟ راستی اصلا چشم‌اندازی در کار بوده؟!

جاستین بیبر ( Justin Drew Bieber) (زادهٔ ۱ مارس ۱۹۹۴)؛ خواننده، ترانه‌سرا، آهنگساز، نوازنده، بازیگر و سرگرمیساز کانادایی است. نگاره از ویکی‌پدیا.

بدون تعارف، از نظر من «امروز نجوم در ایران، جاستین بیبر علوم شده است!». مشهور است، دخترها برایش هورا می‌کشند، کیف پسرها پر است از پیکسل‌های نجومی، اردوهای رصدی کماکان از پرطرفدارترین برنامه‌های دانشگاهی است، در بین پربازدیدترین مستند‌ها، مستندات نجومی در صدر هستند، در بین صفحات مختلف اجتماعی، صفحاتی که به نجوم می‌پردازند پر از دنبال‌کننده هستند، برای برخی کارل سیگن از بزرگترین فیزیک‌دانان قرن اخیر است و چه بسیار کسانی که نیل دگراس تایسون را یک منجم بزرگ می‌دانند بی‌آنکه فرق بین نجوم، اخترفیزیک و کیهان‌شناسی را بدانند! این وسط عده‌ای هم خود را صاحب فن می‌نامند بی‌آنکه دو خط مکانیک سماوی بدانند!  خب شاید بگویید این که اشکالی ندارد! عده‌ای هستند که می‌خواهند از آسمان زیبای شب لذت ببرند و با دیدن مستندات علمی به وجد آیند! اصلا به شما چه؟! فرمایش شما متین، ولی این برای ۱۷ سال تلاش برای ترویج علم دستاورد خوبی نیست! برنامه‌های ترویجی برای آشنا کردن مردم کوچه و بازار با علم است. به بیان دیگر، می‌خواهیم به بهانه‌های مختلف، کاری کنیم که مردم در زندگی روز‌مره‌شان روش علمی را به کار برند و قاعدتا بازخوردی از این کار را در سطوح بالاتر جامعه ببینیم! مثلا به‌طور جدی باید بپرسیم که پس از گذشت ۱۷سال ترویج نجوم، چقدر مردم به طالع‌بینی اعتقاد دارند؟! راستی به این دقت کرده‌اید که وقتی مهران مدیری در برنامه دورهمی، هر شب از مهمان خود می‌پرسد متولدین فلان ماه چه ویژگی‌هایی دارند، هیچ واکنشی مبنی بر یاوه‌ای که می‌گوید از مردم دریافت نمی‌کند؟! ۱۷سال تلاش‌کرده‌ایم ولی هنوز در تلگرام دنبال این هستیم که ببینیم اگر دوستمان متولد مردادماه است به چه چیزهایی علاقه دارد! اولین هدف در برنامه‌های ترویجی و روایتگری در علم، بالابردن فرهنگ علمی مردم است که انگار چندان هم در آن موفق نبوده‌ایم! فراموش نکنیم که هنوز کسانی هستند که فکر می‌کنند زمین تخت است و هیچ‌گونه دست‌بردار این ایده نیستند! برایش تبلیغ می‌کنند، سمینار برگزار می‌کنند و هوررررا می‌کشند!

در دانشگاه‌های ما چه خبر است؟

دل‌نگرانی بعدی من به این خاطر است که پس از گذشت تقریبا دو دهه، ما فعالیت‌های حرفه‌ای را به نجوم آماتوری کاهش داده‌ایم! هیچ خبری از فعالیت‌های حرفه‌ای در مقیاس بزرگ نیست! انگیزه‌ی قسمتی از کارهای ترویجی در نجوم این است که افراد علاقمند را به سمت تحصیل و پژوهش در رشته نجوم سوق دهیم. چقدر در این کار موفق بوده‌ایم؟! برای تحصیل نجوم، در مقطع کارشناسی باید وارد رشته فیزیک شوید و اگر در یکی از دانشگاه‌های خوب کشور باشید و خیلی خوش‌شانس، شاید یک درس ۳ واحدی برای نجوم بگذرانید! خب تا اینجای کار زیاد بد نیست. به‌هرحال، همین که در رشته فیزیک هستید اصول اولیه نجوم را یاد می‌گیرید. نکته اینجاست که در چندتا از دانشگاه‌های کشور، گرایش نجوم در مقطع تحصیلات تکمیلی وجود دارد؟! چند استاد در کل دانشگاه‌های ایران هستند که حرفه‌شان نجوم باشد؟! دقت کنید، نجوم، و نه اخترفیزیک یا کیهان‌شناسی! آیا می‌دانستید برخی از اساتید که به‌طور حرفه‌ای کارشان نجوم بوده، در حال کوچ کردن به سمت کیهان‌شناسی یا سایر گرایش‌ها هستند؟! مردم، باور کنید که حال نجوم حرفه‌ای این روزها خوب نیست! راستی، از رصدخانه ملی‌مان چه خبر؟! فراموش نکنید که یکی از هدف‌های برنامه‌های ترویجی این است که پیشرفت علم را به یک دغدغه برای مردم کند! اصلا پس از ۱۷ سال جشن و بزک، آیا مطالبه مردمی برای زودتر به سرانجام رسیدن پروژه رصدخانه ملی وجود دارد؟! ۱۷ سال گذشت، دولت و مجلس برای نجوم چه کرده‌اند؟! فیزیک، علمی تجربی است و آزمایشگاه می‌خواهد، آزمایشگاه نجوم، رصدخانه است! بدون رصدخانه حرفه‌ای خبری از تربیت نسل جوانی از منجمین نیست. مگر یک سری کار با داده‌های وارداتی!

خلاصه این که…

کویر مرنجاب – برنامه رصد اردیبهشت ۹۳

تقریبا دو دهه است که تمرکز عجیبی روی برنامه‌های ترویجی برای نجوم داشته‌‌ایم. علی‌رغم همه تلاش‌ها و خون‌دل‌ها هنوز کارهای زیادی برای انجام دادن وجود دارد. مردم و مسئولین ما هنوز متقاعد نشده‌اند که علم، قدرت‌آفرین است! هنوز با مفهوم توسعه شوخی می‌کنیم! علم را نشناخته‌ایم، هدف دانشگاه‌ را فراموش کرده‌ایم و نیروی انسانی ارزشمند خود را دو دستی صادر می‌کنیم و به جای آن خروار خروار مواد آرایشی وارد کشور می‌کنیم! منجمین حرفه‌ایمان را مجبور به مهاجرت می‌کنیم و نجوم را به عنوان یک تفریح بزک می‌کنیم و به مردم به عنوان یک فعالیت حرفه‌ای در علم نشانش می‌دهیم. بسیاری از علاقمندان به نجوم و حتی خیل زیادی از کسانی که خود را منجم آماتور می‌دانند، پس از ورود به رشته فیزیک شدیدا از رشته فیزیک و نجوم حرفه‌ای متنفر می‌شوند! علتش این است که آن نجوم بزک‌شده، در دانشگاه صورت خود را شسته و اکنون چهره‌ واقعی نجوم برای دانشجوی بیچاره یک چهره خشن و زشت است! نجوم حرفه‌ای را دریابیم!

«النّاسُ ثَلاثَةٌ: فَعالِمٌ رَبّانِىٌّ، وَ مُتَعَلِّمٌ عَلى سَبيلِ نَجاة، وَ هَمَجٌ رَعاعٌ، اَتْباعُ كُلِّ ناعِق، يَميلُونَ مَعَ كُلِّ ريح، لَمْ يَسْتَضيئُوا بِنُورِ الْعِلْمِ، وَ لَمْ يَلْجَاُوا اِلى رُكْن وَثيق. مردم سه گروهند: دانشمند ربّانى، دانشجوى بر راه نجات، و مگسانى ناتوان که به دنبال هر صدایى مى روند، و با هر بادى حرکت مى کنند، به نور دانش روشنى نیافته، و به رکنى محکم پناه نبرده‌اند.» چقدر از هر دسته در جامعه ما وجود دارد؟!

دست همه عزیزانی که طی ۱۷ سال گذشته در توسعه نجوم نقش داشته‌اند را به گرمی می‌فشاریم. اما اکنون باید تلاش کنیم برنامه‌های ترویجی هدف‌مندتری برگزار کنیم!

انبساط کیهان

در سال ۱۹۲۹ ادوین هابل، با کشف جنجالی که انجام داد، درک بشر از جهان پیرامونش را دست‌خوش تغییراتی اساسی کرد. در قرن نوزدهم میلادی، اخترشناسان اجرام سماوی را بسته به این‌که به نظر، شبیه نقطه می‌رسند یا لکه‌ای محو و یا در حال حرکت هستند یا ساکن، به چهار دسته تقسیم و نام‌گذاری می‌کردند:

متحرک ساکن
لکه‌ی محو دنبالهدار سحابی
نقطه‌‌ای سیاره ستاره

در آن زمان تصوری از کهکشان‌های دیگر نبود و همه‌ی جهان قابل مشاهده، محدود به کهکشان راه شیری می‌شد. در این دسته‌بندی، کهکشان‌های امروزی نیز جزو سحابی‌ها به‌شمار آمده‌اند.

در سال ۱۹۱۲ میلادی، وِستو اسلیفر که در پی کشف مواد تشکیل دهنده‌ی چندی از درخشان‌ترین سحابی‌های مارپیچی به‌وسیله‌ی طیف‌سنجی بود، متوجه انتقال در طیف این اجرام شد. این انتقال مربوط به اثر دوپلر بوده و بدین معنی است که جسم مورد نظر نسبت به ناظر در حال حرکت است. اگر این انتقال به سمت طول موج‌های بلندتر باشد، به آن «انتقال به سرخ» گفته می‌شود و جسم در حال دور شدن است. بالعکس، اگر انتقال طیف به سمت طول موج‌های کوتاه‌تر باشد، «انتقال به آبی» گفته می‌شود و جسم در حال نزدیک شدن به ناظر است. از میزان این جابجایی میتوان به سرعت جسم پی برد. اسلیفر با محاسبه‌ی سرعت این سحابی‌های مارپیچی دریافت که آنها با سرعتی بسیار بیشتر از سرعت ستارگانی که قبلا اندازه‌گیری شده بود در حال حرکت بوده و اغلب آنها، در حال دور شدن از ما هستند.

در سال ۱۹۲۳ میلادی، ادوین هابل، ستاره‌شناس آمریکایی، با استفاده از تلسکوپ ۲٫۵ متری هوکر در رصدخانه‌ی ویلسن، متغیرهای قیفاووسی واقع در چندین سحابی مارپیچی که از آن جمله سحابی آندرومدا بود را مورد بررسی قرار داد. (متغیرهای قیفاووسی نوعی از ستارگان متغیر هستند که می‌توان با دانستن دوره تناوب درخشندگی‌شان، فاصله‌ی آنها تا زمین را محاسبه کرد.) هابل دریافت که این فواصل خیلی بیشتر از آنست که بتوانند درون کهکشان راه شیری باشند. درواقع این کشف، اثباتی بود برای این موضوع که کهکشان ما با تمام شکوهش تنها یکی از کهکشان‌های سرگردان در هستی است.

نمودار سرعت برحسب فاصله. Copyright 1929, The Huntington Library, Art Collections and Botanical Gardens

 

دو سال بعد، وی با کمک داده های اسلیفر، نمودار سرعت بر حسب فاصله‌‌ی کهکشان‌ها را رسم کرد و به نتیجه‌ای شگفت‌انگیز رسید: سرعت با فاصله، رابطه‌ای خطی و مستقیم دارد(قانون هابل)؛ درواقع کهکشان‌ها هرچه دورتر باشند با سرعت بیشتری از ما دور می‌شوند و این یعنی جهان در حال انبساط است!

ضریب تناسبی که در قانون هابل وجود دارد، معروف به ثابت هابل یا به بیانی بهتر، پارامتر هابل است. این کمیت جزو مهم‌ترین پارامترهای کیهان‌شناسی است که برای تعیین نرخ انبساط جهان و ویژگی‌های اساسی تحول کیهان نقش ایفا می‌کند. امروزه نیز دانشمندان به دنبال افزایش دقت آزمایش‌ها برای اندازه‌گیری پارامتر هابل هستند تا بتوانند مدل‌های کیهان‌شناسی را بهتر ارزیابی کنند. به عنوان مثال، در ماه ژانویه‌ی امسال، دانشمندان ناسا و اسا(ESA) اعلام کردند که طبق مشاهدات تلسکوپ فضایی هابل، کیهان با سرعتی ٪۵ تا ۹٪ بیشتر از چیزی که انتظار می‌رفت در حال انبساط است.

در سال ۱۶۸۷ میلادی، آیزاک نیوتن، در کتاب معروف خود موسوم به اصول ریاضی فلسفه طبیعی” برای اولین بار بطور مشخص اصل کیهان‌شناسی را مطرح کرد. طبق این اصل، جهان همگن و همسانگرد است؛ به این معنی که اولا جهان در همه‌ی جهات یکسان است(همسانگرد). ثانیا برای هر نقطه‌ای در جهان این ویژگی صدق می‌کند(همگن). در واقع این اصل مبین دیدگاه جهان‌بینی کوپرنیکی است که ما در عالم، حداقل بطور متوسط، هیچ جایگاه خاصی نداریم. امروزه با استفاده از مشاهدات رصدی، علی‌الخصوص تابش زمینه کیهانی، می‌دانیم که این اصل برای مقیاس‌های به اندازه کافی بزرگ، کاملا صادق است.

توصیف انبساط. نگاره از goo.gl/kPQJSA

شاید قانون هابل به نظر با اصل کیهان‌شناسی در تضاد باشد؛ چرا که همه کهکشان‌ها در حال دور شدن از ما هستند و گویی که ما در مرکز جهان قرار داریم. در پاسخ باید گفت که انبساط کیهان نه تنها برای ما، بلکه برای هر نقطه‌ دیگری در جهان اتفاق می‌افتد. برای روشن شدن موضوع، بادکنکی را در نظر بگیرید که مورچه هایی روی آن در حال حرکت هستند. اگر این بادکنک را باد کنیم، هر کدام از مورچه ها اینطور احساس می‌کند که مابقی مورچه‌ها در حال دور شدن از آن هستند. با بیشتر شدن فاصله‌‌ی مورچه‌ها از یکدیگر، اثر انبساط بادکنک بیشتر شده و با سرعت بیشتری از یکدیگر دور می‌شوند.

در سال ۱۹۸۸ میلادی، دو تیم تحقیقاتی که به‌طور هم‌زمان در حال مطالعه بر روی انتقال به سرخِ ابرنواخترهای نوع Ia بودند، به کشفی بزرگ دست یافتند. (ابرنواخترهای نوع Ia نوع خاصی از ابرنواخترها هستند که برای تعیین فواصل کیهانی تا چند صد مگا پارسک مورد استفاده قرار می‌گیرند). آنها هر یک بطور مستقل دریافتند که کیهان، در حال انبساط شتابدار است. درواقع نه‌تنها عالم در حال منبسط شدن است، بلکه سرعت این انبساط نیز در حال افزایش است. به خاطر این کشف بزرگ، جایزه نوبل فیزیک سال ۲۰۱۱ به‌صورت مشترک به سه نفر از نمایندگان این پروژه، به نام‌های آدام ریس، سل پرلموتر و برایان اشمیت، داده شد.

مدل لامبدا-سی دی ام. نگاره از ویکی‌پدیا

تا قبل از کشف این موضوع، کیهان‌شناسان تصور می‌کردند که انبساط جهان کند شونده بوده و رفته رفته از سرعت انبساط کاسته می‌شود تا سرانجام به سمت صفر میل کند. برای جهانی با انبساط تندشونده در چارچوب نظریه نسبیت عام، می‌توان به وسیله‌ یک مقدار مثبت از ثابت کیهان‌شناسی که معادل با انرژی خلا مثبت یا همان انرژی تاریک است، آن را توصیف کرد. این مدل موسوم به «مدل لاندا سی دی ام» می‌باشد. البته مدل‌های دیگری نیز می‌توان در نظر گرفت. با این وجود، این مدل به‌دلیل هم‌خوانی با داده‌ها، تاکنون با اقبال بیشتری روبرو بوده است.

 

کیهان‌شناسی نوین

در این مقاله سعی شده است تا با مروری کوتاه بر سیر تاریخی کیهان‌شناسی نوین، گوشه‌ای از تلاش‌های کیهان شناسان و فیزیکدانان، برای ارایه‌ی توصیفی از تحول کیهان، نمایش داده شود.

به یاد آنان که راه را هموار ساختند…

آلبرت آینشتین – نگاره از ویکی‌پدیا

در سال ۱۹۱۵ میلادی، آلبرت انیشتین با ارایه نظریه‌ی نسبیت عام، فصلی تازه در علم کیهان‌شناسی رقم زد و در واقع کیهان‌شناسی مدرن را پایه‌ریزی نمود. در آن زمان انیشتین بر این باور بود که عمر کیهان بی‌نهایت است و جهان در طول زمان تغییری نمی‌کند. این درحالی است که جواب‌های معادلات نسبیت عام، جهانی را توصیف می‌کردند که در حال تحول بود. بدین ترتیب انیشتین در مقاله‌‌اش در سال ۱۹۱۷ میلادی، برای توصیف جهان ایستای خود، با فرض برقراری اصل کیهان‌شناسی، عددی ثابت به نام «ثابت کیهان‌شناسی» را در معادلات خود وارد کرد تا این اثر را خنثی کند. طبق اصل کیهان‌شناسی، جهان در مقیاس‌های به‌اندازه کافی بزرگ، همگن و همسانگرد (در همه جهات یکسان) است. البته بعدها با کشف انبساط کیهان، انیشتین اضافه کردن این ثابت در معادلاتش را بزرگترین اشتباهش خواند.

در همان سال، ویلیام دو سیتر جواب دیگری از معادلات را برای جهانی با فضای غیر تخت و خالی از ماده اما شامل ثابت کیهان‌شناسی، ارایه داد. اگرچه ممکن است این مدل غیر واقعی و بی‌اهمیت به‌نظر بیاید، اما جالب است بدانید که امروزه این مدل در نظریه تورم که مربوط به کیهان آغازین است، نقشی اساسی ایفا می‌کند. در مدل دوسیتر جهان به‌صورت نمایی منبسط می شود.

چگونگی انتقال به سرخ و آبی بسته به (به‌ترتیب) دور یا نزدیک شدن منبع. نگاره از ویکی‌پدیا

الکساندر فریدمان (۱۸۸۸-۱۹۲۵)، ریاضیدان و فیزیکدان روسی، در سال ۱۹۲۲ میلادی، مدل دیگری ارایه داد که در واقع می‌توان آن را حد وسطی از مدل انیشتین و مدل دوسیتر دانست. اگرچه این مدل در آن زمان چندان مورد اقبال واقع نشد، اما پنج سال بعد در حالی‌ که فریدمان از دنیا رفته بود، این جواب ها توسط ژرژ لومتر، کشیش و فیزیکدان بلژیکی، بطور مستقل به‌دست آمدند. وی تلاش کرد تا پیش‌بینی‌های این مدل مبنی بر انبساط کیهان را با نتایج رصدی که به تازگی انجام گرفته بود، مرتبط سازد. این مشاهدات حاکی از آن بود که در طیف کهکشان‌های دوردست، اثری موسوم به «انتقال به سرخ» دیده می‌شود که می‌توان آن‌ را در نتیجه‌ی دور شدن کهکشان‌ها و در واقع انبساط کیهان دانست. البته فردی به نام فریتس تسوئیکی نظر دیگری داشت. وی مدلی موسوم به «نور خسته» را پیشنهاد داد که در آن ادعا می‌شد که نور به دلیل برهم‌کنش با موادی که بر سر راهش هستند، مقداری از انرژی خود را از دست می‌دهد و طول موجش افزایش می‌یابد. بنابراین طیف کهکشان‌های دور دست به سمت طول موج‌های بلندتر منتقل می‌شود. امروزه می‌دانیم که این مدل با داده های رصدی مغایرت داشته و فاقد اعتبار است.

در سال ۱۹۳۱ لومتر مقاله‌ای منتشر کرد که در آن ادعا شده بود که در مدل فریدمان، کیهان باید از یک حالت اولیه تکامل پیدا کرده باشد که شامل مقدار بسیار زیادی از پروتون‌ها، الکترون‌ها و ذرات آلفا بوده است که همگی با چگالی از مرتبه‌ی هسته‌ی اتم در کنار یکدیگر قرار داشته‌اند. وی این حالت را «اتم قدیم: Primaeval Atom» نامید. لومتر را می‌توان در واقع پدر نظریه مه‌بانگ دانست. عبارت «مه‌بانگ» را اولین بار فرد هویل در سال ۱۹۴۹ میلادی، هنگامی‌که در یک برنامه‌ی رادیویی بی‌بی‌سی در مورد این مدل صحبت می‌کرد، به حالت طعنه آمیزی بکار برد. اما این تعبیر خیلی زود رایج شده و مورد استفاده قرار گرفت.

گیرنده‌ای که پنزیاس و ویلسون با آن تابش زمینه کیهانی را کشف کردند. نگاره از ویکی‌پدیا

یکی از مباحث داغی که در سال های ۱۹۴۰ میلادی وجود داشت، موضوع منشأ عناصر شیمیایی بود. در سال ۱۹۴۶ جرج گاموف، فیزیکدان هسته‌ای، با الگوگیری از نظرات لومتر مقاله‌ای منتشر کرد مبنی بر این‌که فازهای اولیه‌ی مدل فریدمان می‌توانند محتمل‌ترین مکان برای هسته‌سازی عناصر شیمیایی باشند. گاموف ادعا کرد که اگر در مدل فریدمان به عقب برگردیم می‌توانیم به نقطه‌ای به اندازه‌ی کافی چگال و پر انرژی برسیم که در آن فرآیندهایی غیر تعادلی مربوط به هسته سازی امکان‌پذیر باشند. در همان سال رالف آلفر،‌ دانشجوی گاموف، نیز به او پیوست تا روی محصولات ناشی از این هسته‌سازی کار کند. دو سال بعد گاموف و آلفر به همراه هانس بیته، مقاله‌ای منتشر کردند و در آن به جزییات موضوع پرداختند. اهمیت این مقاله بر این بود که نشان داد اگر عناصر طبیعی منشأیی کیهانی داشته باشند، نیاز به فازی بسیار داغ و چگال در کیهان اولیه ضروری خواهد بود. در همان سال آلفر و رابرت هرمان محاسبات را دقیق‌تر کرده و این بار تحولات کیهان اولیه‌‌ای که در حال انبساط بود هم در نظر گرفتند و به نتیجه‌ای جالب و مهم رسیدند؛ بقایای سرد شده‌ی فازهای داغ اولیه‌، هنوز هم باید در کیهان امروزی وجود داشته باشند. آنها دمای این بقایا را در حدود پنج کلوین پیش‌بینی کردند. امروزه این بقایا با عنوان «تابش پس زمینه کیهانی» شناخته می‌شوند.

طبق محاسباتی که توسط آلفر و هرمان انجام شد، در دوران هسته‌سازی حدود ۲۵٪ از اتم‌های هیدروژن اولیه به اتم هلیوم تبدیل شده و تنها مقدار بسیار ناچیزی (حدود ۰/۰۰۰۰۱٪ )، تبدیل به اتم‌های عناصر سنگین‌تر شدند. این درحالی بود که مشاهدات نشان می‌دادند که مقدار عناصر سنگین در جهان، خیلی بیشتر از مقدار پیش بینی شده است. بدین ترتیب نظریه مهبانگ با مشکل بزرگی برای توجیه میزان اتم‌های سنگین روبرو بود. (البته چند سال بعد معلوم شد که عناصر سنگینی مانند کربن، اکسیژن و آهن، در دل ستارگان پرجرم و انفجارهای ابرنواختری تولید می‌شوند.) این موضوع موجب شد تا در سال ۱۹۴۸ میلادی، فرد هویل، توماس گلد و هرمان بوندی، «نظریه حالت پایدار» را به‌عنوان جایگزینی برای مدل مهبانگ ارائه دهند. در این نظریه ادعا شده است که جهان، هم در فضا و هم در زمان، همگن و همسانگرد است.(اصل کیهان‌شناسی کامل) در واقع جهان، همواره به همین شکل و شمایل امروزی وجود داشته است.

«به یک معنا، شاید به‌توان گفت که نظریه حالت پایدار در شبی شروع شد که بوندی، گلد و من، مشتری یکی از سینماها در کمبریج شدیم. اگر درست خاطرم باشد، اسم فیلم «مرگ تاریکی» بود؛ فیلم دنباله‌ای از چهار داستان از ارواح بود که همان‌طور که چند تن از شخصیت‌ها در فیلم می‌گفتند، به نظر می‌رسید که ربطی میانشان نباشد اما با یک ویژگی جالب که انتهای داستان چهارم به طرز غیرمنتظره‌ای به ابتدای داستان اول مربوط بود. در نتیجه به‌موجب آن، پتانسیل برای یک چرخه‌ی بی پایان وجود داشت. وقتی آن شب سه نفرمان به اتاق‌های بوندی در دانشگاه ترینیتی برگشتیم، ناگهان گلد گفت: چه می‌شود اگر عالم نیز شبیه این باشد!؟ شاید این‌طور تصور شود که حالت‌های بدون تغییر، لزوما ساکن و راکد هستند. کاری که فیلم داستان ارواح برای ما انجام داد این بود که خیلی سریع این تصور اشتباه را از هر سه نفرمان برطرف کرد. می‌توان حالت‌های بدون تغییری داشت که پویا باشند. مانند یک رودخانه‌ی آرام در حال جریان. عالم باید پویا باشد؛ چرا که قانون انتقال به سرخ هابل این را اثبات می‌کند… از این‌جا می‌توان به سادگی دریافت که نیاز است که خلق پیوسته‌ی ماده وجود داشته باشد.»

هویل نرخ خلق ماده را یک ذره در سانتی متر مکعب در هر ۳۰۰۰۰۰ سال، به‌دست آورد. برخلاف بوندی و گلد که رهیافتی فلسفی به نظریه حالت پایدار داشتند، هویل فرضیه خود را از دیدگاه نظریه‌ی میدان بنا نهاد و میدانی به نام «میدان سی: C-Field» را برای خلق ماده در نظر گرفت. این نظریه در همان سال نخست توانست نظر بسیاری از ستاره‌شناسان و حتی مردم عامه را به خود جلب کند. نظریه حالت پایدار از آنجایی برای ستاره شناسان دارای اهمیت بود که می‌توانست توضیح جایگزینی از منشأ عناصر ارایه دهد.

این نگاره، نمایشی هنری از انبساط متریک فضاست که در آن فضا (که شامل قسمت‌های فرضی غیرقابل مشاهده جهان هم هست) را در هر لحظه از زمان را می‌توان با برشی قرصی از نمودار نمایش داد. توجه کنید که در سمت چپ شکل می‌توانید انبساط دراماتیک فضا در دوره تورمی را ببینید. نگاره از ویکی‌پدیا

تا مدتی، کیهان‌شناسان به دو گروه که هریک طرف‌دار یکی از نظریه‌های حالت پایدار یا مه‌بانگ بودند، تقسیم شده بودند. تا آنکه شواهد رصدی‌ای مانند «شمارش منابع رادیویی: the Counts of Radio Sources»، بر اعتبار نظریه مهبانگ افزود و سرانجام در سال ۱۹۶۵ میلادی هنگامی‌که آرنو پنزیاس و رابرت ویلسون بر روی امواج رادیویی کار می‌کردند، توانستند به طور کاملا اتفاقی، تابش زمینه کیهانی که از پیش بینی‌های مهم نظریه مه‌بانگ بود را کشف کنند. در واقع این کشف، مهر تأییدی بود بر نظریه مه‌بانگ که موجب شد تا این نظریه به عنوان نظریه‌ای مورد توافق همگان در بیاد.

البته نظریه مهبانگ قادر نبود تا به بعضی از سوالات اساسی مانند مسئله‌ی افق یا مسئله‌ی تخت بودن جهان و یا مسئله تک‌قطبی‌های مغناطیسی پاسخ بدهد. به همین خاطر در سال ۱۹۸۱ میلادی، آلن گوت، با معرفی مدلی موسوم به «مدل تورم» توانست پاسخگوی این سوالات باشد. مدل تورم ادعا میکند که کیهان در بازه‌ی زمانی بین۱۰−۳۶ تا حدود ۱۰−۳۲ثانیه بعد از نقطه‌ی تکینگی اولیه، دستخوش انبساطی با نرخ نمایی شده است! امروزه با استفاده از ابزارهای دقیق رصدی می‌توانیم شواهدی دال بر وجود دوران تورم را به ویژه در تابش زمینه‌ی کیهانی مشاهده کنیم.

پیشرفت های رصدی و همچنین پیشرفت‌هایی که از لحاظ نظری در زمینه رشد ساختارهای بزرگ مقیاس در اواخر قرن بیستم میلادی صورت گرفت، منجر به نتایج زیر شد:

  • اولا احتمالا به‌مقدار نسبتا قابل توجهی ماده‌ی تاریک غیر نسبیتی (ماده‌ی تاریک سرد) وجود دارد.
  • ثانیا باید یک ثابت کیهان‌شناسی غیر صفر (لامبدا) وجود داشته باشد.

سرانجام این نتایج موجب شد تا مدل لامبدا سی‌دی‌ام: ΛCDM Model، در سال ۱۹۹۵، توسط جرمی اوستریکر و پائول استینهاردت پیشنهاد شود. چهار سال بعد، با کشف این‌که جهان به صورت شتاب‌دار در حال انبساط است، این مدل به عنوان مدل پیشرو مورد توجه قرار گرفته و خیلی زود توسط مشاهدات دیگر نیز تأیید شد.