Allahاین پست آغازگر سلسله پست های من درباره ی گذار فاز هست. در واقع بنا دارم مفاهیم اصولی و پایه ای که در این باره وجود دارد را طی چند مطلب به صورت کامل و جامع  در اختیارتون قرار بدم. در این پست صرفا تصمیم دارم راجع به مفهوم و ماهیت فاز و گذار فاز صحبت کنم و در پست های بعدی مطالبم رو بسط بدم.

همانطور که از معنای لغوی اون پیداست، گذار فاز، یعنی از یک فاز به فاز دیگر رفتن! فازهای مختلف مواد رو از قبل میشناسیم. اما گذار بین آن‌ها رو چطور؟ در ساده‌ترین حالت می‌توانم بگویم آب، یخ بزنه و از فاز مایع به فاز جامد تبدیل شود. اما آیا از مفهوم گذار فاز این چنان سطحی می‌توان گذشت؟ پاسخ قطعا یک “نه” محکم است.

  • از فاز تا گذار فاز با یک مثال ملموس:
گذار فازهای مختلف

گذار فاز عبارتست از انتقال یک سیستم ترمودینامیکی از یک فاز یا حالت ماده به حالتی دیگر 

ما از اصطلاح فاز برای توضیح حالت خاصی از ماده مثل جامد ، مایع یا گاز استفاده می‌کنیم.  ترکیب آب در فاز جامد به صورت یخ، در فاز مایع به صورت آب و در فاز گازی به صورت بخار است. گذار از یک فاز به فاز دیگر، تغییر فاز یا گذار فاز نامیده می‌شود. نکته‌ی مهم این است که برای هر فشار معین، تغییر فاز در دمای معینی اتفاق می‌افتد، که معمولاً با جذب و گسیل گرما و تغییر حجم و چگالی همراه است. آب شدن یخ مثال آشنایی از تغییر فاز است. وقتی به یخ صفردرجه‌ی سانتیگراد در فشار جوی عادی گرما دهیم، دمای یخ افزایش نمی‌یابد. درواقع  مقداری از آن به شکل آب ذوب می‌شود. اگر به آرامی گرما را اضافه کنیم تا دستگاه خیلی نزدیک به تعادل گرمایی بماند، دما در صفردرجه ی سانتیگراد باقی می‌ماند تا تمام یخ ذوب شود. اثر افزودن گرما به این دستگاه بالا بردن دمای آن نیست، بلکه گذار فاز از جامد به مایع است.

پس باید شرایطی برقرار شود تا گذار اتفاق بیفتد. اما چگونه باید این شرایط را توصیف کرد؟علم توصیف این شرایط چیزی نیست جز مکانیک آماری. مکانیک آماری همان دانشی است که مثل یک پل به ما کمک می‌کند از فیزیک میکروسکوپی به پدیده‌های ماکروسکوپیک برسیم. پس در بحث گذار فاز نوع نگاه ما نیز مهم است. وقتی با ابزار مکانیک آماری در این موضوع روبه‌رو می‌شویم باید یک نگاه جمع‌گونه به مساله داشته باشیم. به نوعی انگار قرار است رفتار جمعی ذرات را (نه خود ذرات را به تنهایی) بررسی کنیم، بع این صورت که بر اساس درجات آزادی هامیلتونی را می‌نویسیم و سپس مساله را حل می‌کنیم (برخلاف روند اولیه که یاد گرفتیم).

علم ترمودینامیک و متغیرهای ترمودینامیکی همانند بسیاری مسائل که در توصیف طبیعت بکار می‌آیند، بازهم نقشی محوری برای ما بازی می‌کنند. بهترین پارامترهایی که سیستم‌‌های در حال گذار رو توصیف می‌کنند همان متغیرها هستند. دما، حجم، فشار و …

خوب است بدانید که در بررسی مسائل که با گذار فاز سروکاردارند، با مفاهیم متفاوتی روبه‌رو می‌شویم که درک آن‌ها برای توصیف پدیده ضروری است. برای مثال ممکن است با توابع ترمودینامیکی روبه‌رو شویم که دارای تکینگی یا ناپیوستگی هستند. از پدیده‌های مهم در این زمینه می‌توان به چگالش گازها، ذوب جامدات، پدیده‌های فرومغناطیس و آنتی‌فرومغناطیس، گذار نظم – بی نظمی در آلیاژها، گذار ابرشاره از هلیومI به هلیومII و گذار از حالت معمولی ماده به ابررسانا اشاره کرد.

همانطور که دیدید به شرایط گذار اشاره کردیم. یکی از مهمترین پارامترها در این زمینه دما است. ما دمایی را به عنوان دمای بحرانی تعریف میکنیم. در بالاتر از این دما و پایین‌تر از آن خواص ماده‌ای که در پدیده‌ی ما شرکت می‌کند متفاوت می‌گردد و سروکله یک سری روابط عجیب و غریب ریاضی که وجه اشتراک همشون تکینگی هست پیدا می‌شود.  ناحیه‌ای که این دما در آن تعریف می‌شود ناحیه‌ی بحرانی می‌گویند. پس با یک مفهوم جدید روبه‌رو شدیم و آن “بحرانیت” است که در پست‌های آینده به اون خواهیم پرداخت.

اگر کتاب‌های ترمودینامیک رو دیده باشید مشاهده می‌کنید که برای شرط تعادل بین فازهای یک ماده برابری تابع انرژی آزاد گیبس اون‌ها هست.

{\displaystyle G\equiv U+PV-TS\,}

یا بطور معادل: 

{\displaystyle G\equiv H-TS\,}

که در آن: U انرژی درونی، P فشار، V حجم، T دما برحسب کلوین، S آنتروپی و H آنتالپی .

در بحث گذار فاز نیز باهمین توابع روبه‌رو هستیم. در واقع باید تابع گیبس سیستم رو بدست آوریم و ببینیم کدام مشتق آن (در چه مرتبه‌ای) از خود ناپیوستگی نشان می‌دهند و براین اساس گذار را به دو دسته‌ی مرتبه اول و دوم تقسیم می‌کنیم.

خب در این پست من فقط تلاش کردم مفهوم کلی گذار فاز و اینکه چه اتفاقی در اون میفته رو شرح مختصری بدم. مفاهیمی از قبیل بحرانیت، جهان شمولی، گذار از نظم به بی نظمی و … مطالبی هستند که من در آینده راجع بهشون براتون خواهم گفت و منابع خوبی رو هم در اختیارتون خواهم گذاشت.

besmهمه‌ی ما قطعا بارها کلمه‌ی احتمال را شنیده‌ایم و به گوشمون خورده. توی کتاب‌های درسی هم در خیلی از سرفصل‌ها به خصوص درس جبر و احتمال با مبانی و تئوری آمار و احتمال آشنا شدیم. ولی الان میخوایم یک قدم فراتر بریم و کمی افق دیدمون رو از مسائل کلیشه‌ای که قبلا تو کتاب‌هامون دیدیم فراتر ببریم. بنا داریم به یکی از مهمترین نتایجی که از دل نظریه‌ی آمار و احتمال بیرون میاد بپردازیم و این نتیجه چیزی نیست جز قضیه‌ی حد مرکزی یا همون ‌Central Limit Theorem.

شاید به گوشتون خورده باشه که تابع توزیع بعضی از فرآیندهایی که در طبیعت رخ می‌دهد نرمال یا گاوسی هست و حالا ما میخواهیم ببینیم چرا و چگونه؟!

خب قبل از هر چیز ببینیم چرا به این قضیه میگن حد مرکزی. در دایره‌ی آمار، اطلاعات و احتمالات نقش مرکز رو داره و بسیاری از محاسبات بر اساس این قضیه انجام میشه. از طرفی صورت مجانبی داره و برای حد نمونه‌های بزرگ درست هست و خیلی خوب کار می‌کنه. از همین رو و به خاطر این دو دلیل میشه حد مرکزی.

اولین اطلاعاتی که ما می‌تونیم از یک فرآیند که مجموعه‌ای از متغیرها در اون وجود دارند بدست آوریم از تابع توزیع اون فرآیند بدست میاد. مثلا تابع توزیع احتمال بیانگر احتمال هر کدوم از متغیرهای تصادفی و یا احتمال قرار گرفتن هر متغیر در یک بازه‌ی معلوم هست که اولی برای متغیرهای گسسته و دومی برای متغیرهای پیوسته تعریف می‌شود.

صورت قضیه : تابع توزیع متغیر تصادفی که خودش از جمع $n$ تا متغیر تصادفی دیگه که دارای تابع توزیع $p(x)$ و واریانس محدود $\sigma_{i}$هستند، به سمت تابع توزیع گاوسی میل می‌کند.

یعنی متوسط گیری در تعداد زیاد (نگاه آماری ما به مساله) به سمت توزیع گاوسی متمایل میشه. بدون اینکه مهم باشه مجموعه‌های تصادفی تشکیل دهنده، خود دارای چه تابع توزیعی هستند. پس یک نکته‌ی خیلی خوب و مفید اینه که بدون داشتن اطلاعات اولیه میشه تا حد خوبی تابع توزیع رو روی جمع متغیرهای تصادفی تعیین کرد. حتی اگر متغیرهای اولیه‌ی ما خودشون هم دارای تابع توزیع مشخصی باشند، متوسط گیری روی اونها به سمت تابع توزیع گاوسی متمایل میشه، با اینکه مستقل از هم اندازه‌گیری می‌شوند.

یکی از مثال‌های ملموس در این زمینه :

زمانی که یک لودر خاکی را در یک پروژه‌ی عمرانی جابجا می‌کند و در یک نقطه تخلیه می‌کند، انتظار داریم خاک‌های ریخته شده شبیه یک تپه شود. یک تل از خاک شبیه یک تابع توزیع گاوسی دو بعدی است. هر فرآيندی که در طبیعت رخ می‌دهد، به شرطی که انحراف از معیار اون واگرا نباشد و عامل خارجی هم تصادفی بودن توزیع رو بهم نزنه، در نهایت توزیع به سمت تابع توزیع گاوسی میل می‌کند.

 عکس زیرنمونه‌ای از تابع توزیع گاوسی یا همان نمودار زنگوله‌ای رو نشان می‌دهند.($\mu$ مقدار متوسط است)

یک توزیع نرمال یا گاوسی

یک توزیع نرمال یا گاوسی

توی این شکل هم می‌توان به نوعی تجمع داده‌ها در زیر نمودار تابع توزیع نرمال مشاهده کرد که نشون‌دهنده‌ی تجمع داده‌ها حول مقدارمتوسط هست.

قسمت آبی تیره در فاصلهٔ یک برابر انحراف معیار از میانگین توزیع قرار دارد و قسمت آبی روشن و آبی تیره به طور توام، در فاصلهٔ دو برابر انحراف معیار از میانگین توزیع قرار دارند. در توزیع طبیعی، اولی برابر با ۶۸٪ سطح زیر نمودار و دومی برابر با ۹۵٪ سطح زیر نمودار است.

قسمت آبی تیره در فاصلهٔ یک برابر انحراف معیار از میانگین توزیع قرار دارد و قسمت آبی روشن و آبی تیره به طور توام، در فاصلهٔ دو برابر انحراف معیار از میانگین توزیع قرار دارند. در توزیع طبیعی، اولی برابر با ۶۸٪ سطح زیر نمودار و دومی برابر با ۹۵٪ سطح زیر نمودار است. ویکی‌پدیا

 

برای مطالعه‌ی بیشتر در مورد این قضیه و همچنین آشنایی بیشتر با مبانی آمار و احتمال می‌تونید سری به منابع زیر بزنید:

  • Feller, W. “The Fundamental Limit Theorems in Probability.” Bull. Amer. Math. Soc. 51, 800-832, 194
  • Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1, 3rd ed. New York: Wiley, p. 229, 1968
  • Spiegel, M. R. Theory and Problems of Probability and Statistics. New York: McGraw-Hill, pp. 112-113, 1992
  • Zabell, S. L. “Alan Turing and the Central Limit Theorem.” Amer. Math. Monthly 102, 483-494, 1995
  • Trotter, H. F. “An Elementary Proof of the Central Limit Theorem.” Arch. Math. 10, 226-234, 1959