

Fractals, Scaling and Renormalization (1)

ABBAS KARIMI

Center For Complex Networks & Social Cognition Shahid Beheshti University (SBU) October, 2018

Sitpor.org

Introduction

"Unfortunately, the world has not been designed for the convenience of mathematicians."

Benoît Mandelbrot

Born: 20 November 1924, Warsaw, Poland

Died: 14 October 2010 (aged 85), Cambridge, Massachusetts, United

States

Image: At a TED conference in 2010.@wikipedia

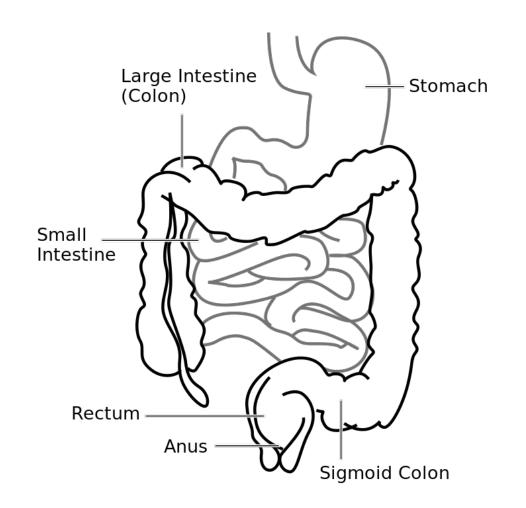
Introduction

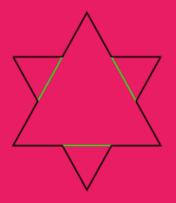
length of the small
intestine:

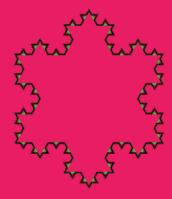
2.75 - 10.49 m!

But, HOW?

Wikipedia







$$s_1 = \frac{\sqrt{3}}{4}$$

$$s_2 = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{4} (\frac{1}{3})^n$$

$$s_3 = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{4} (\frac{1}{3})^2 + \frac{12\sqrt{3}}{4} (\frac{1}{9})^2$$

$$s_4 = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{4}(\frac{1}{3})^2 + \frac{12\sqrt{3}}{4}(\frac{1}{9})^2 + \frac{48\sqrt{3}}{4}(\frac{1}{27})^2$$

.

.

51

$$S = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{4} \left(\left(\frac{1}{3}\right)^2 + 4\left(\frac{1}{9}\right)^2 + 4^2\left(\frac{1}{27}\right)^2 + \cdots \right) = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{4} \left(\frac{4^0}{9^1} + \frac{4^1}{9^2} + \frac{4^2}{9^3} + \cdots \right)$$

so,
$$S_n = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{4} \left(\sum_{i=2}^n \frac{4^{i-2}}{9^{i-1}} \right) = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{16} \left(\sum_{i=2}^n \binom{4}{9}^{i-1} \right)$$

$$S_\infty = \frac{\sqrt{3}}{4} + \frac{3\sqrt{3}}{16} \left(\frac{\frac{4}{9}}{\frac{5}{2}} \right) = \frac{2}{5} \sqrt{3}$$

$$p: 3*1, \ 3*\left(4*\frac{1}{3}\right), \ 3*\left(16*\frac{1}{9}\right), \ ... \ p_n = 3(\frac{4}{3})^n$$
 so if: $n \to \infty$ then $p_n \to \infty$

Self-Similarity

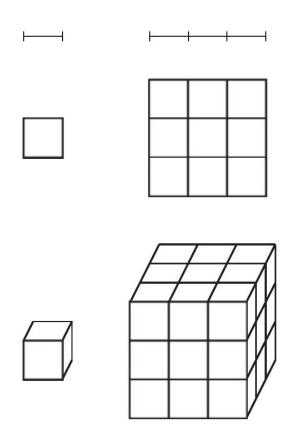
If we walk the coastline then we discover even more fine detail. Structures which exhibit a similar pattern whatever the scale are said to be self-similar.

Self-Similarity

Fractional Dimension!

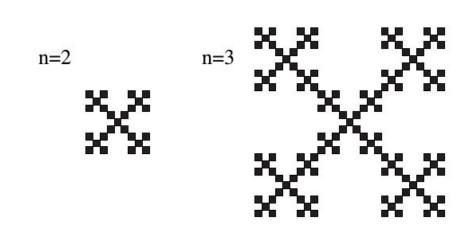
How many little things fit inside a big thing?

Shape	M. Factor	Number of small copies
line	3	3
square	3	9
cube	3	27



Snowflake

D = 1.46 *Seriously?! Why not D = 2 ?!*



$$5=3^D \implies D=\frac{\log 5}{\log 3}=1.46497$$

$$m^{D}=n \implies D=\frac{\log(n)}{\log(m)}=\log_{m}n$$

D(Sierpiński Triangle) > D(Snowflake) 1.58 > 1.46

$$3=2^D \implies D=\frac{\log 3}{\log 2}=1.585$$

Self-Similar Dimension, let's call it ROUGHNESS!

Benoit Mandelbrot: Add to list Fractals and the art of roughness **TED2010** · 17:09 · **Filmed** Feb 2010 29 subtitle languages 2 Download View interactive transcript

https://www.ted.com/talks/benoit mandelbrot fractals the art of roughness

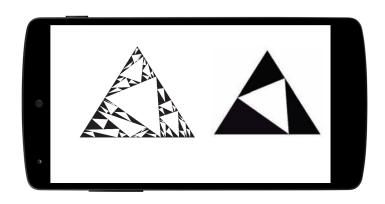
Self-Similarity VS Topological Dimension!

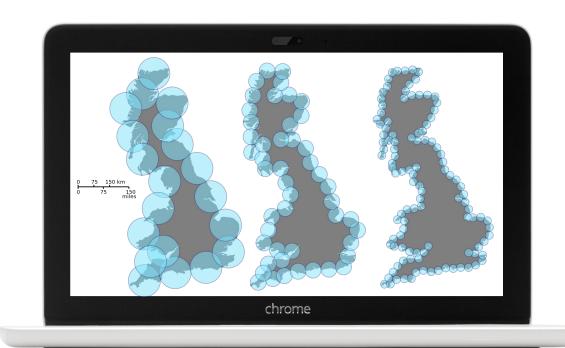
A fractal is a geometrical object whose self-similarity dimension is greater than its topological dimension.

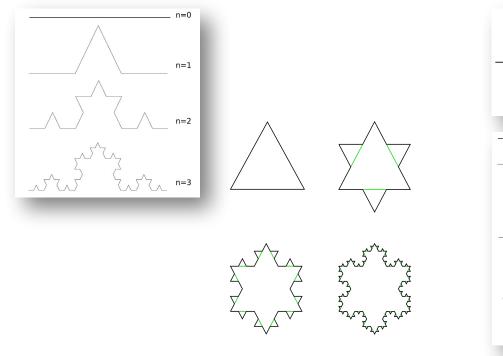
- The Sierpinski triangle has a self-similarity dimension of 1.585 and a topological dimension of 1.
- The Cantor set has a self-similarity dimension of **0.6309** and a topological dimension of **0**!

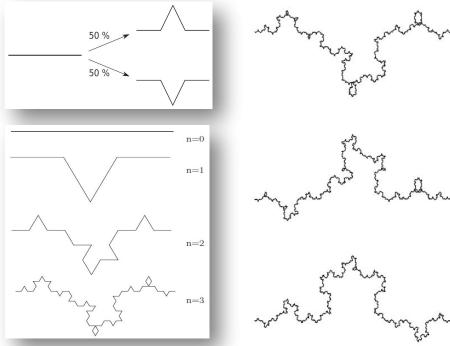
Random Fractals

- 1. Random Koch Curve
- 2. Chaos Game
- 3. Collage Theorem









Koch Curve

A self-similar shape. A small copy of the curve, when magnified, **exactly** resembles the full curve. D=log4/log3. See *Falconer*, 2003, Chapter 15

Random Koch Curve

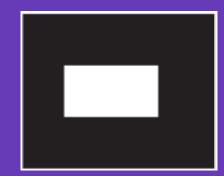
A small copy of the curve, when magnified, closely resembles the full curve, but it is not an exact replica. (D=log4/log3)

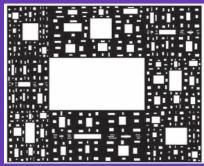
Statistical self-similarity!

Irregular Fractals are not Random!

- We make them by using an asymmetric or irregular generation rule.
- They are produced with a deterministic rule so they are NOT random!
- Nevertheless, the resultant shape has a somewhat random or disordered feel to it!

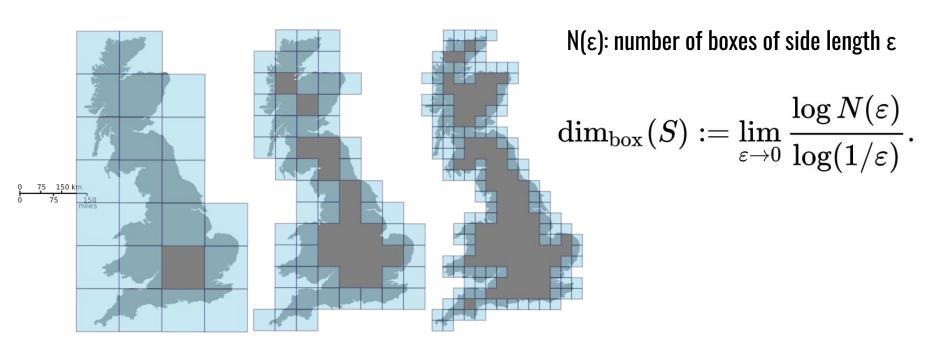
Sierpiński Carpet is not random!





Minkowski-Bouligand (box-counting) Dimension!

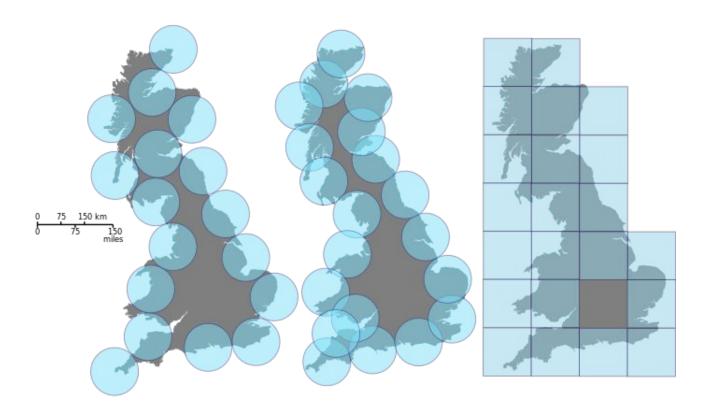
How many little things fit inside a big thing?



Wikipedia

Minkowski-Bouligand Dimension

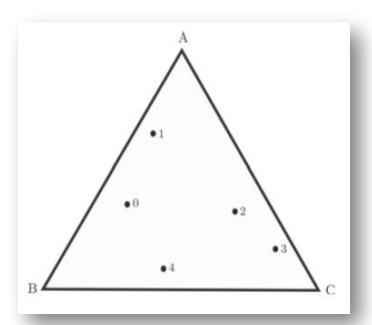
Examples of ball packing, ball covering, and box covering.



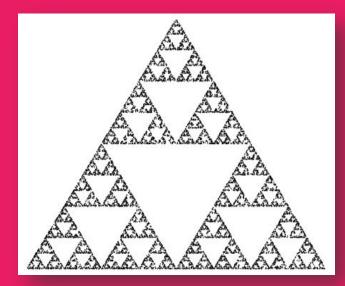
Wikipedia

Chaos Game

This is a stochastic (not deterministic) dynamical system; an element of chance is incorporated in each step!

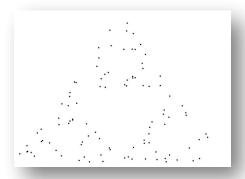


100,000 points

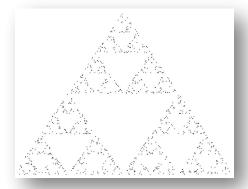


- → The chaos game shows that a random dynamical system can give a deterministic result.
- #emergence_of_order

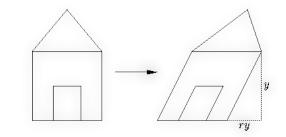
100 points



1000 points



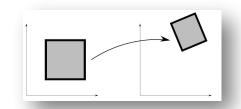
Collage Theorem

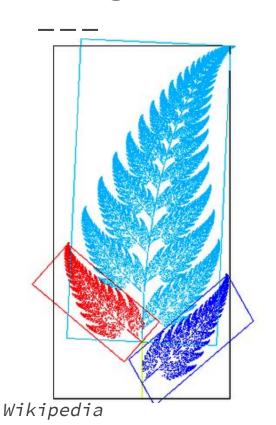


Given essentially any shape (not only fractals), one can make a chaos game that will generate it.

- Since in finding the particular affine transformations needed to reproduce an image, one forms a collage in which the full shape is covered with several smaller shapes. These smaller shapes then define the affine transformations that will generate the full shape.
- Application: Image compression

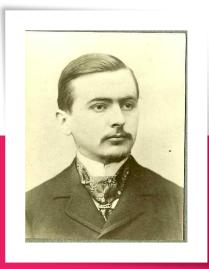
Collage Theorem





An image of a fern-like fractal that exhibits affine self-similarity. Each of the leaves of the fern is related to each other leaf by an affine transformation.

The red leaf can be transformed into both the small dark blue leaf and the large light blue leaf by a combination of reflection, rotation, scaling, and translation.



Julia Set Mandelbrot Set

Julia Set

The julia set for a function is simply the collection of all initial conditions that do not tend to infinity when iterated with that function.

- ❖ 2,4,16, ... diverging
- ♦ -3, 9, 81, ... diverging
- 0.5, 0.25, 0.0625, ..., 0.0 converging
 - ❖ Filled Julia Set = {-1,1}

$$y = x^2$$

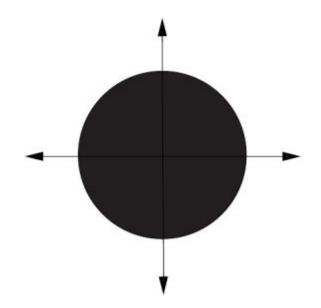
$$x \in [-\infty, \infty]$$

$$x \in [-1, 1]$$

Julia Set, The complex squaring function

$$f(z) = z^2$$

Filled Julia Set is a circle with r = 1

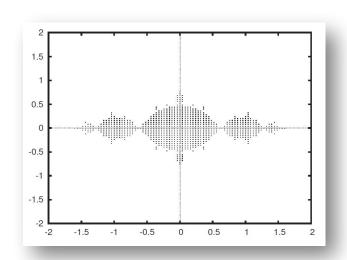


Julia Set, What about this function?

$$f(z) = z^2 - 1$$

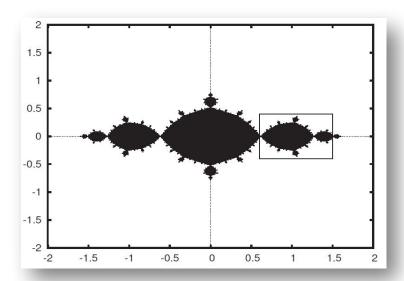
$$0 \to -1 \to 0 \to -1 \to \cdots$$

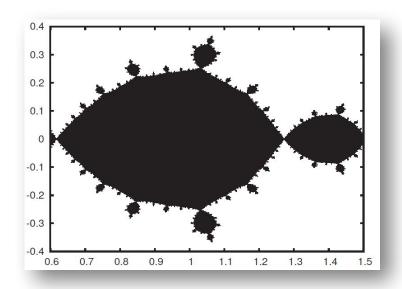
 $i \longrightarrow -2 \longrightarrow 3 \longrightarrow 8 \longrightarrow 63 \longrightarrow \cdots$.



Julia Set, What about this function?

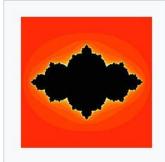
 $f(z) = z^2 - 1$



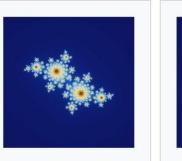


Julian Sets for:

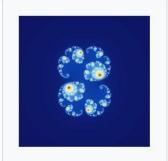
$$f(z) = z^2 + c$$



Filled Julia set for f_c , Julia set for f_c , $c=(\phi-2)+$ $c=1-\phi$ where ϕ is the $(\phi-1)i = -0.4 + 0.6i$



Julia set for f_c, c=0.285+0i



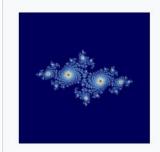
Julia set for f_c, c=0.285+0.01i

Julia set for f_c, c=0.45+0.1428i

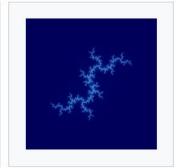
golden ratio

Julia set for fc, Julia set for f_c, c=-0.835-0.2321i

Julia set for f_c, c=-0.8+0.156i



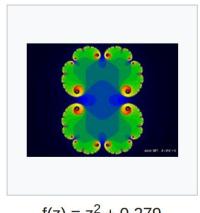
Julia set for fc, c=-0.7269+0.1889i

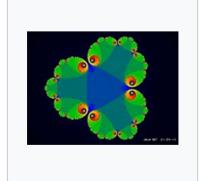


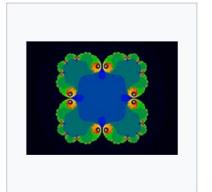
Julia set for f_c, c=-0.8i

c=-0.70176-0.3842i

Other functions?



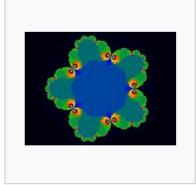


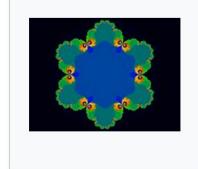


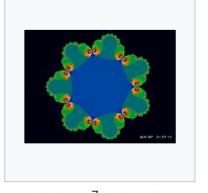
$$f(z) = z^2 + 0.279$$

 $f(z) = z^3 + 0.400$

 $f(z) = z^4 + 0.484$







$$f(z) = z^5 + 0.544$$

$$f(z) = z^6 + 0.590$$

$$f(z) = z^7 + 0.626$$

Mandelbrot Set

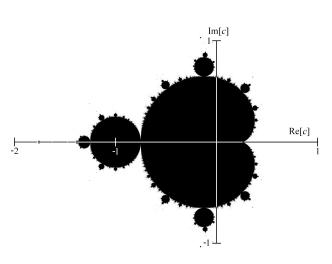
The Mandelbrot set consist of the set of all parameter values c for which the julia set of " $f(z)=z^2+c$ " is connected.

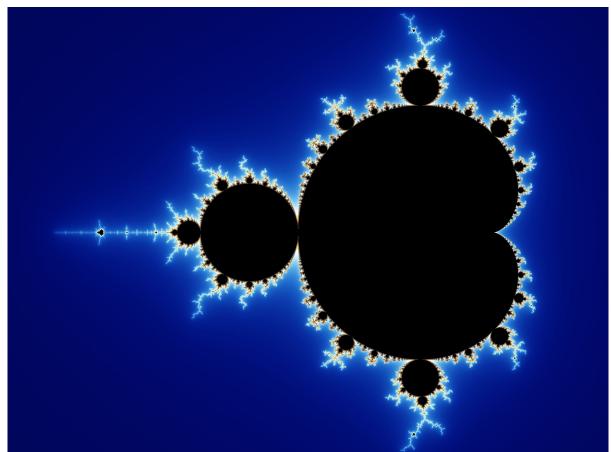
→ Set of complex numbers c for which the function above does not diverge when iterated from z=0, i.e., for which the sequence remains bounded in absolute value:

$$c, c^2+c, (c^2+c)^2+c, ((c^2+c)^2+c)^2+c, (((c^2+c)^2+c)^2+c)^2+c,$$

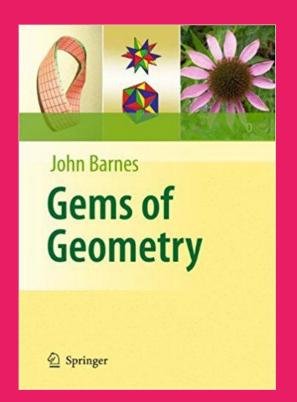
•••

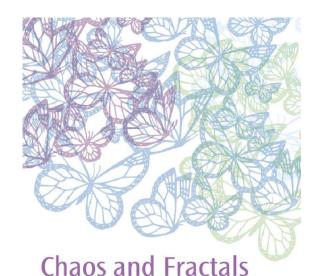
Mandelbrot Set





REFERENCES





An Elementary Introduction

David P. Feldman

OXFORD

<u>Sitpor.org/series</u> + <u>wikipedia.org</u>

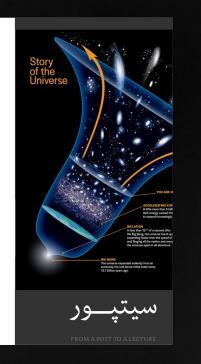
نوشتههای دنبالهدار

۱- فركتالها (برخالها – fractals):

«هندسهی فرکتالی، فقط بخشی از ریاضیات نیست، بلکه موضوعی است که به هرکس کمک میکند تا این دنیا را متفاوت ببیند.» بنوا مندلبرو هندسهی فرکتالی

- قسمت اول) مقدمه و معرفي
- قسمت دوم) ویژگیها و تعاریف
- قسمت سوم) خمهای فضاپرکن و فرکتالهای تصادفی
 - قسمت چهارم) مجموعه ژولیا
 - قسمت ينجم) مجموعه مندلبرو

۲- آموزش آنلاین، معرفی کتاب و دوره:



chrome

Thank You:D

ABBAS KARIMI

Center For Complex Networks & Social Cognition Shahid Beheshti University (SBU) October, 2018

Sitpor.org