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ABSTRACT

Genes communicate with each other through different regulatory effects, which lead to the emergence of
complex structures in cells, and such structures are expected to be different for normal and cancerous
cells. To study breast cancer differences, we have investigated the Gene Regulatory Network (GRN)
of cells as inferred from RNA-sequencing data. The GRN is a signed weighted network corresponding
to the inductive or inhibitory interactions. Here we focus on a particular of motifs in the GRN, the
triangles, which are imbalanced if the number of negative interactions are odd. By studying the stability
of imbalanced triangles in the GRN, we show that the network of cancerous cells has fewer imbalanced
triangles compared to normal. Moreover, in the normal cells, imbalanced triangles are isolated from the
main part of the network, while such motifs are part of the network’s giant component in cancerous cells.
Our result demonstrates that due to genes’ collective behavior the complex structures are different in
cancerous cells from those in normal ones.

Introduction
Cancers are a large family of diseases that involve abnormal cell growth with the potential to invade
or spread to other parts of the body1. From the reductionist perspective, cancer is known as a disease
of the genes. From this perspective, related studies focus on finding particular genes for each type of
cancer and, consequently, diagnosing or curing cancer face formidable challenges. On the other hand,
from the complexity theory perspective, collective behaviors emerged from the interactions of systems
with many interacting units, are not describable solely by knowing the behavior of the system’s building
blocks (genes), and we cannot understand what happens at a higher level of organization by just studying
how each element works at a lower scale. In other words, we need a holistic point of view to study the
collective behavior of the genes.2 The human body contains more than 10 trillion (1013) cells, originating
from a single one. Cells differ from each other, depending on which genes are turned on.3 The process by
which information from a gene is used to synthesize functional gene products (often proteins) is called
gene expression. Today, there are several projects globally, compiling genomic information related to
cancers, and recent advances with sequencing technology reveal the high importance of these projects.
Despite all the advances in technology and analysis in genome sequences, it seems that cancer remains
indomitable to a large extent. While we know some genes play an essential role in specific cancers, we are
often far from controlling, let alone curing them4, 5.

Gene expressions are not independent.6 They communicate with each other through regulatory effects,
in a sense that some genes can up-regulate or down-regulate the expression level of other genes. These
complex interactions between the genes can lead to collective behavior and result in changing the state
of the cell. In this scenario, there is a network of interactions, in which each gene is represented as a

ar
X

iv
:2

01
0.

05
89

7v
1 

 [
q-

bi
o.

M
N

] 
 7

 O
ct

 2
02

0



node, and its regulatory effect on other genes is considered the links connecting it to other nodes. These
links can have zero (no effect), positive (up-regulation), or negative (down-regulation) weight, forming a
weighted signed network. Such networks are called Gene Regulatory Networks (GRN).7–15.

Since the advent of high-throughput measurement technologies in biology in the late 90s, reconstructing
gene regulatory networks’ structure has been a central computational problem in systems biology16.
Despite the efforts, the exact causal relationships between each pair of genes are unknown and thus, we use
the simplification of considering the network as undirected. Furthermore discussion of gene expression
and interactions is highly complex, which is why higher-order interactions are expected. One of the
simplest interactions of a higher than two orders is a third-order called balance theory17.We use Balance
theory as the simplest model that does not consider interactions independent of each other and regards
them as triadic interactions18, 19.

To assess the pairwise interaction network structure, we use a maximum-entropy20 probability model
to explore the properties of the GRN. Such maximum entropy models have been widely used in statistical
physics, e.g., for Ising type interacting models21, 22. Physical systems in thermal equilibrium are described
by the Boltzmann distribution, which has the maximum possible entropy given the mean energy of the
system23, 24.

From Real Data to Gene Interaction Network
The mRNA data(expression level) of 20532 genes in the case of Breast Cancer (BRCA: Breast invasive
carcinoma) has been downloaded from The Cancer Genome Atlas (TCGA) project25, 26. The data contain
114 normal and 764 cancerous samples, and the measurement of the expression levels has been done with
the technique of RNA sequencing (RNA-Seq). We have used the Reads Per Kilobase transcript per Million
reads (RPKM) normalized data. RPKM puts together the ideas of normalizing by sample and by the gene.
When we calculate RPKM, we are normalizing for both the library size (the sum of each column) and the
gene length. In the following we had to reduce the number of genes because it was difficult to handle a
20532∗20532 matrix computationally. For each gene, we have calculated the variance of its expression
level over its samples, and finally we have stored the first 483 genes with the highest variance, which is due
to more different activity patterns these genes show27. Note that there are so-called housekeeping genes
that typically get transcribed continually. These genes are required to maintain basic cellular function
and are expressed in all cells of an organism under normal and pathophysiological conditions28–30. Some
housekeeping genes are expressed at relatively constant rates in most non-pathological situations.

Measuring interactions is difficult within a living cell, but measuring abundances of components
(mRNA levels) is considerably easier. Therefore, from the experimental data we wanted to reconstruct the
gene-gene interactions computationally based on a model, following the practice that collective behaviors
in such systems are described quantitatively by models that capture the observed pairwise correlations
but assume no higher-order interactions31. By assuming a maximum entropy pairwise model, we were
looking for the interaction matrix J, whose every element Ji j is the strength of the net interaction between
gene i and gene j. In other words, the strength and sign of the interaction represent the mutual influence
on each other of a pair of genes’ expression levels. From the maximum entropy probability distribution,
we have constructed the energy function, which in this case is an Ising-like model with long-range Ferro-
as well as antiferromagnetic couplings, which may lead to frustrated triangles. The energy function for
our problem can be written as:

H =−∑
i< j

Ji jSiS j, (1)
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where the expression level of gene i as a continuous real-valued variable (a Gaussian field) is represented
by Si. Using the energy function above, we can write down the Boltzmann equilibrium distribution as:

P({Si}) =
1
Z

exp(−∑
i< j

Ji jSiS j). (2)

Z is the partition function, and we have subsumed temperature into the couplings Ji j without loss of
generality. The interaction matrix, J, is not known, and we wanted to learn/ infer it21 from the experimental
data. We want to infer all the Ji j as the parameters of our model. To this end, we have restricted ourselves
to a probabilistic model with terms up to second order, which we have derived for continuous, real-valued
variables. In other words, our model is constrained to generate the first and the second moments which are
exactly the same as what we find from the experimental data.32 Thus, P must maximize the Gibbs-Shannon
entropy to infer the parameters of the model.

S[P] =−∑
i< j

P({Si}) lnP({Si}). (3)

Using Lagrange multipliers, it can be shown32 that the desired model is a multivariate Gaussian distribution,
twice of its covariance is minus the inverse of the interaction matrix.

P(S;〈S〉;C) =
e−

1
2 (S−〈S〉)

TC−1(S−〈S〉)

(2π)
L
2 det(C)

1
2

. (4)

So, within this approximation, we can write Ji j =−C−1
i j . L is the number of genes based on which we

have built the distribution. The elements of the matrix J are, by definition, the effective pairwise gene
interactions that reproduce the gene profile covariances33, 34 exactly while maximizing the entropy of the
system. The inverse of the covariance matrix, C−1, which is commonly referred to as the precision matrix,
displays information about the partial correlations of variables. In practice, the precision matrix can be
estimated by simply inverting the sample covariance matrix, if a sufficiently large number of samples
are available. In our study, due to the lack of enough samples, the inverse of the covariance matrix has
been obtained by means of the Graphical Lasso (GLasso) algorithm35. GLasso is an algorithm to estimate
the inverse of the covariance matrix from the observations from a multivariate Gaussian distribution. In
statistics and machine learning, lasso (least absolute shrinkage36 and selection operator) is a regression
analysis method that performs both variable selection and regularization in order to enhance the prediction
accuracy and interpretability of the statistical model it produces. G-Lesso sparse the network in such a way
that it does not disrupt the overall properties of the network. In sparsing a matrix, One of the problems is
that the threshold method in the network is severe. In this way, in networks the threshold may eliminate
weak links in favor of solid links. But we know that some links are fragile, and their share in the network is
very high. For example, it connects part of the network to another part, but it can be a strong link between
the network and the node that does not matter to us. The threshold method eliminates the important weak
link that connects the two network parts—in contrast, keeping a strong link connected to the trivial part of
the network. We know that removing a strong link that is only connected to an insignificant node does not
destroy the network properties while removing a weak link that affects the network properties, G-Lesso is
wary of such issues.
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Following are step by step calculations in brief:

• Import Row data from TCGA Database,The mRNA data(expression level) of 20532 genes.

• Dimension reduction, keep genes with the highest variance (483 genes).

• Calculate the covariance matrix of genes (483*483).

• Calculate J, inverse of the covariance matrix by G-Lasso37 approach to make it sparse, with penalti
= 0.09.

• Calculate Energy-Energy matrix.

All of the calculations have been done in Python and MatLab. All codes and results are available upon
request27.

Frustration in Interaction Network
The positive (negative) value of the interactions implies that increasing (or decreasing) a gene’s expression
results in up-regulating (down-regulating) of the other gene(s)’s expression(s), respectively. J is the
generalized adjacency matrix38, representing the presence and weight of a link. Ji j is the strength of the
interaction between gene i and gene j or in network terms, the weight of the link i− j.

Let us now consider the local triangles; Groups with three interacting genes forming a triangle of
interactions in the network. The triangle ∆(i, j,k) is defined as balanced if the sign of the product of its
links is positive; Ji jJ jkJki > 0, otherwise, the triangle is imbalanced or frustrated; Ji jJ jkJki < 0. We define
a triangle to be of type ∆k if it contains k negative links. Thus ∆0 and ∆2 are balanced, while ∆1 and ∆3
are imbalanced39. The statistics of the analogues of these imbalanced triangles have been shown to be
relevant in systems with signed interactions like random magnets40 and social networks41.

The notion of balance allows us to define an "energy landscape" for such networks42, 43. For a triangle
this is:

∆i jk = Ei jk =−Ji jJ jkJki (5)

and by summing over all the Ei jk the energy of the whole network can be obtained44.

Etotal =
1
N

N

∑
i, j,k=1

∆i jk (6)

Note that this energy is different from that of (1) and serves to characterize the triangles, while H was
used to calculate the interactions from the measured expression strengths. Energy counts the number of
triangles and does not indicate where the triangles are. The correlation between triangles shows which
triangle with energy Ek has a common link with which triangle with energy El .

Ckl =
1
N

N

∑
i, j,k=1

∆ki j∆li j (7)

This equation answers the question that a triangle with a preferred energy is adjacent to which triangle?
result (Figure 1-E,F) show that in cancer data, high-energy triangles are connected to the rest while in
normal data high-energy triangles are not connected to each other. Moreover, in a normal cell frustrated
triangles are not part of the main of the network.
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Figure 1. (A-D) Log-log plot of the distributions of triangles vs their absolute energy. All distributions
are fat-tailed. Note the differences in the profile of ∆0 and ∆2 in cancerous and normal case. (E-F). In
cancerous (right) and normal (left) cells triangles with different energies are connected to each other
differently. The energy pattern in the normal case is more localized and assortative.

5/10



Figure 2. A representation of energy-energy matrix and a schematic diagram of how high-energy
frustrated (imbalanced) triangles are distributed in the network of triangles in the normal (right) and
cancerous network (left). Compared to the cancerous cell, the normal cell is at a higher energy level,
resulting in more likely altering the configuration of the triangles. On the other hand, frustrated triangles
(red nods) are more connected to the cancerous triangle network.

Results
We have calculated the distributions of the energies of different types of triangles in both cancerous and
normal data-sets and observed the following results (Figure 1). (i) In all the cases, the energy distributions
of all types of triangles are fat-tailed. (ii) The distributions of imbalanced (frustrated) triangles, ∆1 and ∆3,
do not show noticeable differences between cancerous and normal data. (iii) In the cancerous network ∆0
triangles and normal network ∆2-types are less and the total energy of the cancerous network is lower than
that of normal network: 27,239 and 35,984 units, respectively.

In order to see if the effect comes from structural correlations specific to the differences between the
normal and cancerous data, we have shuffled the links in the networks. This was carried out by swapping
endpoints of randomly selected pairs of links many times, which is a standard procedure to produce degree
preserving random reference networks. The energy difference between the shuffled networks is 280 units
which is one order of magnitude less than in the original case. Moreover, the distribution profiles change
dramatically for the shuffled network.

The next question we have studied was about the distribution of triangles with different energies in
the networks and their relationships. For this purpose, we coarse grain the network such that balanced
and imbalanced triangles are represented as green and red nodes, respectively. Two coarse-grained nodes
are connected if their corresponding triangles have one edge in common. We calculate the energy-energy
mixing pattern45 between the triangles. The plots in Figure 1-(E-F) shows how many triangles with
different energies are connected. Notice that this matrix is rather sparse reflecting that only low number
of the triangles have links in common. In the normal network, frustrated triangles are packed together
and they form a kind of module while in the cancerous network they have a more heterogeneous pattern
of connections and they are mixed with balanced triangles. Moreover, triangles with higher absolute
valued energies are connected to ones with lower absolute valued energies. In both cases, we see triangles
with lower energies are more connected to each other. Triangles in the cancerous network do not tend
to distribute evenly in a particular region of energy-energy space. Another result is that in both of the
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networks so many triangles do not have a link in common.
Having more energy for a cell, in this context, means that there is more tendency toward changing the

states of the triangles. In the case of cancerous network, we have seen that triangles exhibit a lower chance
of being changed. On the other hand, we see frustrated triangles are somehow uniformly distributed in
the cancerous coarse-grained network while they are more localized in the normal coarse-gained case.
These facts are mimicked in the Figure 2. Inspired by the concept of Balance Theory in social science46, 47,
we saw that the interaction network of the normal case has more imbalanced (frustrated) triangles and
more energy as a consequence. This energy has been defined in a social context giving a good clue to
look at the system of genes as a social system. Not only genes cannot live independent of each other,
but they also must pay the cost of living together! Note that changing the expression of a gene can have
drastic consequences. Our analysis reveals the fact that to get a true picture of biology at the cell level, it
is essential to know the connections and their type between the genes.

Conclusion
Cancer has been commonly known as a group of diseases of the genes and there has been a huge effort
to find the effective genes responsible for different cancers. Thanks to such reductionist approaches, we
now know some specific genes for some cancers. Genes, however, are not independently functioning in
the cell and their expressions are strongly correlated with each other. Recently, it has been recognized
that the regulatory effects between the genes can be represented by a gene-gene interaction network
and the structure of this network is essential in understanding the collective phenomena, which play a
role in developing cancer-related studies. Our results contribute to this line of research48, 49. We have
presented a formalism, by which we arrived from the data about gene expressions to an interacting network
model, where the interactions were inferred using the maximum entropy principle. The resulting signed
weighted network50 was analyzed from the balanced and imbalanced triangles perspective. We have found
significant differences between normal and cancerous cell GRN-s: There are more imbalanced triangles
in normal GRN-s than in cancerous ones and the correlations between such triangles are also different
in these two networks.Further investigations are indeed valuable to study when the observed differences
develop and whether our observations can be used for diagnostic purposes.
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