رفتن به نوشته‌ها

برچسب: پدیده‌های بحرانی

چرا مدل آیزینگ اینقدر برای فیریکدونا جذابه؟ چرا اینقدر کاربردیه حتی بیرون فیزیک؟!

مدل آیزینگ، به عنوان معرف‌ترین مدل در فیزیک آماری، یک مدل ساده برای توصیف گذار فاز در مواد مغناطیسی است. این مدل از متغیرهای گسسته (اسپین) به روی یک گراف مشبکه (Lattice) تشکیل شده است.

ویدیو در یوتیوب

ویدیو در اینستاگرام

برای بیشتر عمیق شدن

شبیه‌سازی مدل آیزینگ

فرکتال‌ها، قوانین توانی، توزیع‌های دم‌کلفت و پدیده‌های بحرانی

سرخس‌ها گیاهانی هستند که شکلی هندسی خاصی دارند. اگر قسمتی از آن‌ها را جدا کنید، با کمی دوران و بزرگ‌نمایی می‌توانید قسمت دیگری را بازسازی کنید. این ویژگی هندسی فرکتال‌ها است. در مورد هندسه فرکتالی و کاربرد آن در فیزیک نکات جالبی وجود دارد. مثلا به نوشته‌های زیر سر بزنید:

تصویری از یک سرخس به عنوان موجودی با ساختار فرکتالی – نگاره از عباس ک. ریزی (ارسفیورد – نروژ)

برای آشنایی با هندسه فرکتالی:

مطالب کمی‌ پیشرفته‌تر:

ویدیو در یوتیوب

ویدیو در اینستاگرام

تراوش جهت‌دار در شبکه‌های زمانی

به فیزیک چکه کردن آب از سقف خونه تاحالا فکر کردید؟! آب روی پشت‌بوم به خاطر جاذبه وارد سقف به عنوان یک محیط متخلخل میشه و بعد از طی کردن یک مسیر پر پیچ و خم ممکنه به پایین سقف برسه و در نهایت چکه کنه! این فرایند خیلی شبیه به سازوکار قهوه درست کردنه؛ اونجا آب یا بخار با فشار زیادی از محیطی به اسم پودر قهوه می‌گذره و در نهایت نوشیدنی قهوه ایجاد میشه. به این پدیده «تراوش» گفته میشه. اگر آب از پشت بوم به داخل اتاق نرسه یا وقتی نوشیدنی قهوه از قهوه‌ساز خارج نشه اصطلاحا می‌گیم تراویدن موفقیت‌آمیز نبوده و تراوش انجام نشده. ساز و کار تراوش به عنوان یک مسئله گذارفاز پیوسته، از نظر فیزیک پدیده‌های بحرانی خیلی جالبه. خصوصا وقتی که تراوش جهت‌دار باشه. مثلا اگه آب فقط بتونه از بالا به پایین بره، تراوش فقط در یک جهت خاص انجام میشه.

شبکه برهمکنشی در مدل آیزینگ – نگاره از مجله کوانتا

مدل آیزینگ ساده‌ترین مدلی هست که گذار فاز پیوسته در شرایط تعادل رو نشون میده.

مسئله دسترسی و مدل تراوش – ویدیو از مجله کوانتا

مدل تراوش جهت‌دار ساده‌ترین مدلیه که گذار فاز پیوسته در شرایط دور از تعادل رو نشون میده.

با این که مدل تراوش جهت‌دار (directed percolation) خیلی ساده‌ به نظر می‌رسه و بیشتر از ۶۰ سال از مطرح شدنش می‌گذره، اما این مسئله روی اکثر شبکه‌ها حل تحلیلی نداره. همین‌طور تا امروز شواهد بسیار محدود در شرایط بسیار کنترل شده‌ی آزمایشگاهی برای این پدیده داشتیم. یعنی تا همین چندسال پیش تردید وجود داشت که آیا این مدل فقط یک مسئله انتزاعی ریاضیه یا این‌که واقعا در طبیعت تراوش جهت‌دار رخ می‌ده؟! خلاصه کلی خون دل خورده شده برای قسمت تجربی ماجرا تا این چیزها رو مردم در آزمایشگاه هم ببینند! مثلا اخیرا یک گروه ژاپنی-فرانسوی این پدیده رو در بلورهای مایع (electrohydrodynamic convection of liquid crystal) مشاهده کردن.

ما در مقاله جدیدمون نشون دادیم که اتفاقا این پدیده زیاد در طبیعت رخ می‌ده؛ فَارْجِعِ الْبَصَر! در واقع نشون دادیم که گذار فاز در مسئله دسترسی (reachability) در شبکه‌های زمانی، تحت شرایطی نگاشت میشه به مسئله تراوش جهت‌دار و گذار فاز دسترسی عضو کلاس عمومی تراوش‌جهت‌داره. میکّو جزئیات فنی‌ بیشتری در این رشته توییت نوشته.

https://twitter.com/bolozna/status/1413046032666177538

می‌تونید این مقاله از مجموعه کارهای ما روی پدیده‌های بحرانی در شبکه‌های زمانی رو اینجا ببینید. همکار ما در این پروژه مارتن کارزای از CEU بود و آرش بدیع‌-مدیری زحمت اصلی این پروژه رو کشیده. این کار از جهت‌های مختلف برای من هیجان‌انگیزه: هم فیزیک داره، هم ریاضی و هم شبیه‌سازی‌های بسیار بسیار بزرگ! هم فاله و هم تماشا! از همه مهم‌تر این‌که هر کس که برای اولین بار به این مسئله فکر کنه ممکنه به این نتیجه برسه که خب این مسئله کاملا بدیهی به نظر می‌رسه! شما چیو نشون دادین پس؟! اما اولا اونقدرا که مردم تصور می‌کنن بدیهی نیست (همون طور که بحث کردیم در مقاله) و از اون مهم‌تر بالاخره بعد از مدت‌ها حدس و گمان باید تکلیف این مسئله روشن می‌شد و گروهی نشون میدادن که وضعیت آگاهی ما از این مسئله در شرایط و تنظیمات مختلف چیه.

2107.015101

پدیده‌های بحرانی و علم شبکه

این ویدیو در مورد کار پژوهشی من یعنی پدیده‌های بحرانی و شبکه‌های پیچیده است. اینجا میگم که چی شد که به این موضوع علاقه‌مند شدم و الان مشغول چه کاری هستم:

منابعی برای یادگیری

پدیده‌های بحرانی ۱۵۰ سال پس از چارلز دلاتور

پیش‌تر نوشته‌ای تخصصی‌تر در مورد گذار فاز و پدیده‌های بحرانی نوشته بودم. این نوشته که ترجمه‌ای از یک مقاله است، بیشتر جنبه تاریخی دارد و برای مخاطب علاقه‌مند آشنا با پدیده‌های بحرانی می‌تواند جالب باشد!

پدیده‌های بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، مفهوم و تاریخ اولیهٔ کشف او را بررسی کرده‌ایم و سپس با طرح مختصر تاریخ پدیده‌های بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال می‌کنیم.


[arXiv:0905.1886 [physics.hist-ph

پدیده های بحرانی که امروزه یکی از مهمترین روش ها در بررسی گذار فازها در سیستم های پیچیده، فیزیک ذرات بنیادی و بسیاری دیگر از شاخه های علم فیزیک است به مجموعه‌ای از اتفاقات که در نقاط بحرانی رخ می‌دهند گفته می‌شود. پدیده های بحرانی اولین بار در بررسی گذار فازهای مواد دیده شدند. ساده ترین گذار فاز را می توان در تبخیر آب مایع و یا یخ زدن آب و گذار از فاز مایع به جامد و برعکس مشاهده کرد. در مورد آب گرمای ویژه و چگالی آب از متغیرهای قابل بررسی هستند که برای هر کدام می توان یک نمای بحرانی هم پیدا کرد و با استفاده از نظریه مقیاس و گروه های بازبهنجارش و یا نظریه ی میدان میانگین این نماهای بحرانی استخراج می‌شوند و برای هر پدیده یک کلاس جهان شمولی یافت می‌شود.

پدیده‌های بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، در مقاله ی زیر به قلم برتراند برکه، مالته هنکل و رالف کنا، مفهوم و تاریخ اولیه‌ی کشف او را بررسی کرده‌ایم و سپس با طرح مختصر تاریخ پدیده‌های بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال می‌کنیم.

paper-1

پیشنهادهایی برای دانشجویان تحصیلات تکمیلی سیستم‌های پیچیده

تجربه من از دوران کارشناسی ارشد سیستم‌های پیچیده در دانشگاه شهید بهشتی چیزهای مختلفی بهم یاد داد. شاید بعضی از این تجربه‌ها به کار شما هم بیاد اگر که به تازگی دوران کارشناسی ارشد یا دکتری خودتون رو در زمینه سیستم‌های پیچیده در یکی از مراکز آموزش عالی شروع کرده باشید.

تا جایی که می‌تونید با سواد بشید.

در هر دانشگاهی، یک سری درس ارائه میشه که شما موظف هستید که بخشی از اون‌ها رو بگذرونید. به نظرم چندان در برابر عناوین اون درس‌ها مقاومت نکنید. این‌که من قراره سیستم‌پیچیده بخونم پس نباید کوانتوم پیشرفته بگذرونیم یا درس ماده چگال پاس کنم یا نظریه میدان به من چه اصلا، حرف‌هایی هست که زیاد شنیده میشه و به نظر من همه‌شون نگاه‌های اشتباهی رو معرفی می‌کنند. تا جایی که میشه سعی کنید از این فرصت‌ها برای یادگیری چیزهای مختلف استفاده کنید. خوبه که آدم یک‌بار برای همیشه خیلی عمیق مکانیک کوانتومی رو یادبگیره و بدونه فیزیک ماده چگال سراغ چه چیزه‌هایی میره. اصلا اشکالی نداره که یک بار با نظریه میدان روبه‌رو بشید؛ اگه الان روبه‌رو نشید شاید دیگه هیچ موقع این فرصت رو پیدا نکنید که این مطالب رو با حوصله یادبگیرید. حواستون باشه سواد آدم‌ها با کتاب‌خوندن و سر کلاس رفتن و تمرین حل کردن به دست می‌آد. وقت زیادی بذارید در ترم‌های اول دوره‌تون برای این‌که باسواد بشید. اگر فکر می‌کنید که استادتون خوب درس نمیده یا به هر دلیلی از کلاسی راضی نیستید سعی کنید از اینترنت استفاده کنید.

مستقل از حرف‌های بالا، یه سری چیزها رو باید خوب بدونید:

برنامه‌نویسی و شبیه‌سازی رو جدی بگیرید.

احتمال زیاد در دوره لیسانس هیچ موقع شما درست حسابی کد نزدید. اما از الان به بعد نه تنها باید زیاد کد بزنید بلکه باید «درست» هم کد بزنید؛ کد شما باید بهینه و خوانا باشه! لطفا به جای غر زدن و بازگو کردن این حقیقت که ای بابا ما قبلا کلاس برنامه‌نویسی نداشتیم و این جور حرفا بچسبید به زندگی علمی‌تون و تلاش کنید که از فرصت‌های پیش اومده برای بهتر شدن استفاده کنید تا بد و بیراه گفتن به زمانه! پیشنهاد می‌کنم با پایتون شروع کنید و بعدا سراغ زبان‌های دیگه برید. گویا زبان‌ علمی آینده،‌ ژولیا است! کورس پایتون برای همه و کورس پایتون برای پژوهش برای شروع خوبه. سعی کنید این مدت جوری کد بزنید که بعد از فارغ‌التحصیلی اگه خواستید از دانشگاه فاصله بگیرید، توی بازار دیتا کار گیرتون بیاد!

عمیق بشید.

بالاخره شما موضوعی خواهید داشت و مسئله‌ای برای پژوهش. تا جایی که می‌تونید در مورد اون حوزه اطلاعات کسب کنید. مطالب پیرامونش رو یادبگیرید، چهره‌های شاخص اون حوزه رو بشناسید،‌کنفرانس‌های مربوط در سراسر دنیا رو دنبال کنید و مراقب مسیر تحول موضوع پژوهشتون باشید. لزومی نداره شما وفادار باشید به جریان‌های اصلی، ولی همیشه جریان‌های اصلی ارزش خودشون رو دارن. مقاله‌های مروری کلیدی رو پیدا کنید. زمانی که مقاله‌ای می‌خونید، سعی کنید گزاره‌ها رو دونه به دونه بفهمید. روابط رو اثبات کنید و شبیه‌سازی‌ها رو انجام بدین خودتون. هیچ موقع خودتون رو گول نزنید!

دانشجوی خوب کارشناسی ارشد بعد از تموم شدن دوره‌ش می‌دونه که کجا باید دنبال موقعیت دکتری باشه. اگه به جای این‌که حرفه‌ای عمل کرده باشین، سر خودتون رو شیره مالیده باشید اون موقع سرتون حسابی بی‌کلاه می‌مونه. اگه هم دانشجوی دکتری در این وضعیت باشه که دیگه وای به حالش!

تماشاچی نباشید!

مثل عمده دانشجوها بی‌تفاوت نباشید! فعال باشید، سوال بپرسید، خودتون و بقیه رو به چالش بکشید. جو گیر نباشید ولی در کنفرانس‌های مختلف شرکت کنید. سعی کنید توی جلسات هفتگی فعالانه شرکت کنید. ژورنال کلاب راه بندازین. با بچه‌هایی که سرشون به تنشون می‌ارزه جمع بشین و هفتگی مقالات مهم رو بخونید. در موردشون بحث کنید، حرف بزنید و تلاش جدی داشته باشید که خودتون رو جزوی از جامعه جهانی بدونید!

این جزئیات هم مهمه:

  • یه سری چیزها هم هست که باید بهشون توجه کنید. مثلا انتظار از شما اینه که دیگه بتونید خوب انگلیسی حرف بزنید و خوب بنویسید. برای همین به فکر باشید! راه‌های مختلفی هم هست، سرچ کنید.
  • نوشتن مهمه. گاهی باید به استاد راهنماتون گزارش بدین، گاهی باید مقاله بنویسید و در نهایت پایان‌نامه خواهید داشت. جوری بنویسید که مردم احساس خوبی از نوشته شما پیدا کنند.
  • یاری ساراماکی نکته‌های جالبی در مورد این چیزها داره، وب‌سایتش رو ببینید. در مورد ارائه دادن هم سعی کنید حرفه‌ای باشید؛ هم از نظر ظاهر و هم از نظر محتوا. این نوشته رو بخونید.
  • تری تائو یک مجموعه نوشته خوب در مورد شروع تحصیلات تکمیلی داره که پیشنهاد می‌کنم بهشون نگاه کنید حتما.
  • قبل از تموم شدن درستون، به دنبال کار باشید.
  • و اینکه حواستون باشه که یک‌سری از کارها رو انجام ندین!

یادگیری «سیستم‌های پیچیده» رو از کجا و چه‌طور آغاز کنیم؟!

خیلی وقته که از من پرسیده میشه که اگر بخوایم یادگیری سیستم‌های پیچیده رو شروع کنیم باید چیکار کنیم؟! آیا میشه بیرون از دانشگاه این کار رو انجام داد؟ یا اگر من رشته‌م مثلا کیهان‌شناسی، آمار یا ریاضی هست برام مقدوره که یادبگیرم؟ خب جواب اینه: چرا که نه! اما اینکه یک راه خیلی خاص وجود داشته باشه، راستش وجود نداره. در حقیقت آدم‌های مختلفی به این سوال طی سال‌های گذشته جواب‌های متنوعی دادن؛ مثلا  مارک نیومن یک‌بار در مورد موضوعات مطرح و منابع موجود در Complex Systems: A Survey نوشته. با این حال سعی می‌کنم طرحی برای شروع یادگیری سیستم‌های پیچیده در ادامه ترسیم کنم. از هرگونه نظر، انتقاد یا پیشنهاد از صمیم قلب استقبال می‌کنم، به‌ویژه از طرف متخصصان. راستی  قبل‌تر نوشته‌ای با عنوان «چگونه یک‌ فیزیک‌دان نظری خوب شویم؟» از خِراردوس توفت، نوبلیست، ترجمه کرده بودم.

اخیرا کتابی منتشر شده به اسم «مقدمه‌ای بر نظریه سیستم‌های پیچیده» که کتاب بسیار خوبی برای شروع سیستم‌های پیچیده به‌طور حرفه‌ایه!

کتاب مقدمه‌ای بر نظریه سیستم‌های پیچیده

پیش‌فرض این نوشته اینه که خواننده به حساب دیفرانسیل و انتگرال، معادلات دیفرانسیل و فیزیک پایه مسلط هست و علاقه شدیدی به ورود به حوزه بین‌رشته‌ای داره! اصلی‌ترین پیش‌نیاز برای یادگیری سیستم‌های پیچیده شهامت و حوصله کافی برای ورود به دنیایی تازه و هیجان‌انگیزه! اگر به دنبال کتابی هستین که حس کلی از «سیستم‌های پیچیده» به شما بده نگاه کنید به کتاب «سیری در نظریه پیچیدگی» نوشته ملانی میچل با ترجمه رضا امیر رحیمی.  همین‌طور کورس مقدماتی در Complexity Explorer وجود داره برای این که یک آشنایی کلی از سیستم‌های پیچیده پیدا کنید.

لیستی که در ادامه اومده، بسته به هر موضوع، از ابتدایی به پیشرفته مرتب شده و تقریبا سعی کردم ترتیب معنی‌داری برقرار کنم. به این معنی که شما می‌تونید به‌ترتیب موضوعات مطرح شده یادگیری اون‌ها رو شروع کنید و بسته به زمانی که دارین توی هر کدوم عمیق و عمیق‌تر بشین!

۱) جبر خطی و ماتریس‌ها

برای شروع نیاز به مفاهیم‌ و تکنیک‌های جبرخطی دارین. باید بتونید با ماتریس‌ها خوب کار کنید.

  1. کورس جبر خطی Vector and Matrix Algebra by Anthony D. Rhodes
  2. ویدیوهای Essence of linear algebra
  3. کورس و کتاب جبرخطی Gilbert Strang

این کتاب با نگاهی جدید به مکانیک کلاسیک، به موضوعات مورد نیاز برای سیستم‌های پیچیده می‌پردازد.

۲) مکانیک کلاسیک

بخش زیادی از سیستم‌های پیچیده توسط فیزیک‌دانان توسعه داده شده، پس باید با ادبیات ابتدایی فیزیک آشنا بشید!

  1. کورس مکانیک کلاسیک لنرد ساسکیند
  2. کتاب Introduction to Modern Dynamics – Chaos, Networks, Space and Time – David D. Nolte

۳) آمار، احتمال و فرایندهای تصادفی

ایده‌های اصلی آمار و احتمال رو باید بدونید. یعنی هرکسی که در دنیای امروز زندگی می‌‌کنه باید بدونه!

  1. کتاب An Introduction to Random Vibrations, Spectral & Wavelet Analysis by D. E. Newland
  2. کتاب Probability Theory: The Logic of Science by E. T. Jaynes
  3. جزوه فرایندهای تصادفی دکتر کریمی‌پور

۴) فرکتال‌ها و مفاهیم مقیاسی

  1. مقدمه‌ای بر هندسه فرکتالی: ویدیو
  2. کتاب Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies by Geoffrey West
  3. کورس Fractals and Scaling by David Feldman
  4. این ویدیو رو ببینید:

۵) فیزیک آماری و پدیده‌های بحرانی

مکانیک آماری رو خیلی خوب باید بدونید! از ایده‌های ابتدایی تا مباحث پیشرفته. مدل آیزینگ رو خیلی جدی بگیرین!

  1. کورس مکانیک آماری لنرد ساسکیند
  2. کورس و کتاب فیزیک آماری ذرات، مهران کاردر
  3. کتاب Statistical Mechanics Entropy, Order Parameters, and Complexity by James P. Sethna
  4. کورس کوتاه  Introduction to Renormalization by Simon DeDeo
  5. کتاب Lectures On Phase Transitions And The Renormalization Group by Nigel Goldenfeld
  6. کتاب David Tong: Lectures on Kinetic Theory

    کتاب دینامیک غیرخطی و آشوب استیون استروگتز به همراه ویدیوهای کلاس درسش یکی از بهترین منابع یادگیری دینامیک غیرخطی است.

۶) دینامیک غیرخطی و آشوب

  1. کورس Introduction to Dynamical Systems and Chaos by David Feldman
  2. کورس و کتاب Nonlinear Dynamics and Chaos by Steven H. Strogatz
  3. کورس Nonlinear Dynamics: Mathematical and Computational Approaches by Liz Bradley

۷) شبکه‌ها (علم شبکه)

  1. ویدیو «ظهور علم شبکه»
  2. مقاله مروری The shortest path to complex networks by S. N. Dorogovtsev and J. F. F. Mendes
  3. این ۴ ویدیو رو ببینند.
  4. کتاب علم شبکه باراباشی
  5. کتاب Networks: An Introduction by Mark Newman
  6. این ویدیو رو ببینید:

۸) روش‌ها و تکنیک‌های محاسباتی و شبیه‌سازی

  1. کورس پایتون برای همه
  2. کورس پایتون برای پژوهش
  3. کتاب Monte Carlo Simulation in Statistical Physics: An Introduction by Kurt Binder, Dieter W. Heermann
  4. کتاب Complex Network Analysis in Python by Dmitry Zinoviev
  5. کورس Introduction to Agent-Based Modeling by William Rand

۹)  نظریه اطلاعات و محاسبه

Self-contained, precise. Numerous examples and exercises make it a valuable teaching book
Builds a bridge between physics of glasses and computer science problems

  1. کورس Introduction to Computation Theory by Josh Grochow
  2. مقاله مروری A Mini-Introduction To Information Theory by Edward Witten
  3. کتاب Information, Physics, and Computation by Marc Mézard and Andrea Montanari

۱۰) نظریه بازی‌‌ها

  1. کورس Game Theory I – Static Games by Justin Grana
  2. کورس Game Theory II- Dynamic Games by Justin Grana
  3. کتاب Strategy: An Introduction to Game Theory by Joel Watson

۱۱) یادگیری ماشین

  1. کورس Matrix Methods in Data Analysis, Signal Processing, and Machine Learning – Gilbert Strang
  2. کورس Fundamentals of Machine Learning by Brendan Tracey and Artemy Kolchinsky
  3. مقاله مروری A high-bias, low-variance introduction to Machine Learning for physicists
  4. ویدیو Bayesian Inference by Peter Green

به طور کلی، دوره‌های آموزشی Complexity Explorer رو دنبال کنید. موسسه سن‌تافه (سانتافه!)  یک کورس مقدماتی روی پیچیدگی داره. همین‌طور پیشنهاد می‌کنم عضو کانال Complex Systems Studies در تلگرام بشین. فراموش نکنید که اینترنت پره از منابع خوب برای یادگیری ولی چیزی که کمه، همت! در آخر دیدن این ویدیو رو با زیرنویس فارسی پیشنهاد می‌کنم: