رفتن به نوشته‌ها

برچسب: سیستم‌های پیچیده

#شرح_پیچیدگی

در توییتر متخصصان حوزه پیچیدگی با هشتگ #ComplexityExplained در مورد مفهوم پیچیدگی توییت کردند و ماحصل توییت‌ها تبدیل به دفترچه‌ای شد در #شرح_پیچیدگی. دفترچه‌ای برای توضیح مفهوم پیچیدگی بر اساس آرا صاحب‌نظران این حوزه!

شما می‌توانید سایت اصلی این پروژه را با رفتن به این نشانی ببینید:
complexityexplained.github.io

این اثر با مجوز زیر منتشر شده است:
CC BY-NC-ND 4.0

این شما و این نسخه فارسی این دفترچه :

ComplexityExplainedFarsi

«مقدمه‌ای بر بازبهنجارش» هفته چهارم: مدل آیزینگ

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته چهارم: مدل آیزینگ

مدل آیزینگ، به عنوان معرف‌ترین مدل در فیزیک آماری، یک مدل ساده برای توصیف گذار فاز در مواد مغناطیسی است. این مدل از متغیرهای گسسته (اسپین) به روی یک گراف مشبکه (Lattice) تشکیل شده است. در این قسمت از مجموعه مقدمه‌ای بر بازبهنجارش، نخست مدل آیزینگ را معرفی می‌کنم و سپس به سراغ درشت‌-دانه‌بندی شبکه‌ اسپینی می‌روم. چالش‌های پیش‌رو را مطرح می‌کنم و سرانجام به پدیدارگی جملات مرتبه‌-بالاتر و نقاط ثابت جریان بازبهنجارش می‌پردازم.


ویدیوها

۱) مرور جلسات گذشته و معرفی مدل آیزینگ

۲) درشت-دانه بندی شبکه اسپینی

۳) یافتن نقاط ثابت


تمرین‌ها

به زودی

برای مطالعه بیشتر

برای بیشتر عمیق شدن

شبیه‌سازی مدل آیزینگ


اسلایدها

بازبهنجارش-آیزینگ1

«مقدمه‌ای بر بازبهنجارش» هفته سوم: اتوماتای سلولی

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

ایده بازبهنجارش در مورد مطالعه نظریه‌ها است هنگامی که از مقیاسی به مقیاس دیگر می‌روند.

هفته سوم: اتوماتای سلولی

یک اتوماتای سلولی شامل یک شبکه منظم از سلول‌های خاموش و روشن است. تحول این سلول‌ها توسط قواعد ثابتی که فقط وابسته به وضعیت قبلی آن سلول و همسایگانش است مشخص می‌شود. در این جلسه ابتدا اتوماتای سلولی را معرفی می‌کنم و به مفاهیمی چون «کامل بودن تورینگ» و «نمودارهای جابه‌جاشوند»  می‌پردازم. سپس سراغ درشت-دانه‌بندی اتوماتای سلولی و مقاله ۲۰۰۴ و ۲۰۰۵ گلدنفلد می‌روم و در نهایت در مورد شبکه‌‌های بازبهنجارش بحث خواهم کرد.


ویدیوها

۱) معرفی اتوماتای سلولی

۲) درشت-دانه بندی اتوماتای سلولی

۳) شبکه‌های بازبهنجارش


تمرین‌ها

به زودی

برای مطالعه بیشتر


اسلایدها

بازبهنجارش-اتوماتای-سلولی5

پیشنهادهایی برای دانشجویان تحصیلات تکمیلی سیستم‌های پیچیده

تجربه من از دوران کارشناسی ارشد سیستم‌های پیچیده در دانشگاه شهید بهشتی چیزهای مختلفی بهم یاد داد. شاید بعضی از این تجربه‌ها به کار شما هم بیاد اگر که به تازگی دوران کارشناسی ارشد یا دکتری خودتون رو در زمینه سیستم‌های پیچیده در یکی از مراکز آموزش عالی شروع کرده باشید.

تا جایی که می‌تونید با سواد بشید.

در هر دانشگاهی، یک سری درس ارائه میشه که شما موظف هستید که بخشی از اون‌ها رو بگذرونید. به نظرم چندان در برابر عناوین اون درس‌ها مقاومت نکنید. این‌که من قراره سیستم‌پیچیده بخونم پس نباید کوانتوم پیشرفته بگذرونیم یا درس ماده چگال پاس کنم یا نظریه میدان به من چه اصلا، حرف‌هایی هست که زیاد شنیده میشه و به نظر من همه‌شون نگاه‌های اشتباهی رو معرفی می‌کنند. تا جایی که میشه سعی کنید از این فرصت‌ها برای یادگیری چیزهای مختلف استفاده کنید. خوبه که آدم یک‌بار برای همیشه خیلی عمیق مکانیک کوانتومی رو یادبگیره و بدونه فیزیک ماده چگال سراغ چه چیزه‌هایی میره. اصلا اشکالی نداره که یک بار با نظریه میدان روبه‌رو بشید؛ اگه الان روبه‌رو نشید شاید دیگه هیچ موقع این فرصت رو پیدا نکنید که این مطالب رو با حوصله یادبگیرید. حواستون باشه سواد آدم‌ها با کتاب‌خوندن و سر کلاس رفتن و تمرین حل کردن به دست می‌آد. وقت زیادی بذارید در ترم‌های اول دوره‌تون برای این‌که باسواد بشید. اگر فکر می‌کنید که استادتون خوب درس نمیده یا به هر دلیلی از کلاسی راضی نیستید سعی کنید از اینترنت استفاده کنید.

مستقل از حرف‌های بالا، یه سری چیزها رو باید خوب بدونید:

برنامه‌نویسی و شبیه‌سازی رو جدی بگیرید.

احتمال زیاد در دوره لیسانس هیچ موقع شما درست حسابی کد نزدید. اما از الان به بعد نه تنها باید زیاد کد بزنید بلکه باید «درست» هم کد بزنید؛ کد شما باید بهینه و خوانا باشه! لطفا به جای غر زدن و بازگو کردن این حقیقت که ای بابا ما قبلا کلاس برنامه‌نویسی نداشتیم و این جور حرفا بچسبید به زندگی علمی‌تون و تلاش کنید که از فرصت‌های پیش اومده برای بهتر شدن استفاده کنید تا بد و بیراه گفتن به زمانه! پیشنهاد می‌کنم با پایتون شروع کنید و بعدا سراغ زبان‌های دیگه برید. گویا زبان‌ علمی آینده،‌ ژولیا است! کورس پایتون برای همه و کورس پایتون برای پژوهش برای شروع خوبه. سعی کنید این مدت جوری کد بزنید که بعد از فارغ‌التحصیلی اگه خواستید از دانشگاه فاصله بگیرید، توی بازار دیتا کار گیرتون بیاد!

عمیق بشید.

بالاخره شما موضوعی خواهید داشت و مسئله‌ای برای پژوهش. تا جایی که می‌تونید در مورد اون حوزه اطلاعات کسب کنید. مطالب پیرامونش رو یادبگیرید، چهره‌های شاخص اون حوزه رو بشناسید،‌کنفرانس‌های مربوط در سراسر دنیا رو دنبال کنید و مراقب مسیر تحول موضوع پژوهشتون باشید. لزومی نداره شما وفادار باشید به جریان‌های اصلی، ولی همیشه جریان‌های اصلی ارزش خودشون رو دارن. مقاله‌های مروری کلیدی رو پیدا کنید. زمانی که مقاله‌ی می‌خونید، سعی کنید گزاره‌ها رو دونه به دونه بفهمید. روابط رو اثبات کنید و شبیه‌سازی‌ها رو انجام بدین خودتون. هیچ موقع خودتون رو گول نزنید!

دانشجوی خوب کارشناسی ارشد بعد از تموم شدن دوره‌ش می‌دونه که کجا باید دنبال موقعیت دکتری باشه. اگه به جای این‌که حرفه‌ای عمل کرده باشین، سر خودتون رو شیره مالیده باشید اون موقع سرتون حسابی بی‌کلاه می‌مونه. اگه هم دانشجوی دکتری در این وضعیت باشه که دیگه وای به حالش!

تماشاچی نباشید!

مثل عمده دانشجوها بی‌تفاوت نباشید! فعال باشید، سوال بپرسید، خودتون و بقیه رو به چالش بکشید. جو گیر نباشید ولی در کنفرانس‌های مختلف شرکت کنید. سعی کنید توی جلسات هفتگی فعالانه شرکت کنید. ژورنال کلاب راه بندازین. با بچه‌هایی که سرشون به تنشون می‌ارزه جمع بشین و هفتگی مقالات مهم رو بخونید. در موردشون بحث کنید، حرف بزنید و تلاش جدی داشته باشید که خودتون رو جزوی از جامعه جهانی بدونید!

این جزئیات هم مهمه:

  • یه سری چیزها هم هست که باید بهشون توجه کنید. مثلا انتظار از شما اینه که دیگه بتونید خوب انگلیسی حرف بزنید و خوب بنویسید. برای همین به فکر باشید! راه‌های مختلفی هم هست، سرچ کنید.
  • نوشتن مهمه. گاهی باید به استاد راهنماتون گزارش بدین، گاهی باید مقاله بنویسید و در نهایت پایان‌نامه خواهید داشت. جوری بنویسید که مردم احساس خوبی از نوشته شما پیدا کنند.
  • یاری ساراماکی نکته‌های جالبی در مورد این چیزها داره، وب‌سایتش رو ببینید. در مورد ارائه دادن هم سعی کنید حرفه‌ای باشید؛ هم از نظر ظاهر و هم از نظر محتوا. این نوشته رو بخونید.
  • تری تائو یک مجموعه نوشته خوب در مورد شروع تحصیلات تکمیلی داره که پیشنهاد می‌کنم بهشون نگاه کنید حتما.
  • قبل از تموم شدن درستون، به دنبال کار باشید.
  • و اینکه حواستون باشه که یک‌سری از کارها رو انجام ندین!

«مقدمه‌ای بر بازبهنجارش» هفته اول

دوره «مقدمه‌ای بر بازبهنجارش»

قصد من ارائه یک معرفی مدرن از بازبهنجارش از افق سیستم‌های پیچیده‌ است. با نظریه اطلاعات و پردازش تصویر آغاز می‌کنم و به سراغ مفاهیم بنیادی چون پدیدارگی، درشت-دانه‌بندی و نظریه مؤثر در نظریه پیچیدگی خواهم رفت. آنچه برای این مجموعه نیاز دارید شهامت آشنایی با ایده‌های جدید و البته کمی نظریه احتمال، حسابان و جبر خطی است. برای تمرین‌های پیشنهادی هم خوب است که کمی پایتون و متمتیکا بدانید.

با تشکر از Simon Dedeo، موسسه سانتافه و بهار بلوک آذری.

هفته اول: مقدمه

یک تصویر جِی‌پِگ (JPEG) چه ربطی به اقتصاد یا گرانش کوانتومی دارد؟ برای پاسخ به این پرسش باید به این نکته توجه کنیم که هر سه این‌ها در مورد این هستند که چه می‌شود وقتی توصیف‌هایمان از دنیا را ساده‌سازی کنیم!؟ JPEG با دور ریختن ساختار ریز، یک تصویر را به نحوی فشرده می‌کند که با یک نگاه گذرا جزئیات دور ریخته شده قابل شناسایی نباشد. اقتصاددانان هم با چشم‌پوشی از جزئیات روان‌شناسی هر فرد، در مورد رفتار انسان‌ها نظریه‌پردازی می‌کنند. در این میان، یادآوری کنیم که حتی سطح‌بالاترین آزمایش‌های ما در فیزیک نمی‌توانند به ما بنیادی‌ترین عناصر سازنده ماده را نشان دهند و نظریه‌هایمان برای تطابق با آزمایش‌ها ناگزیر به این هستند که برخی از جزئیات در مقیاس‌های بسیار ریز را محو کنند.

ایده بازبهنجارش در مورد همین چیزها است؛
مطالعه نظریه‌ها هنگامی که از مقیاسی به مقیاس دیگر می‌روند.


ویدیوها

هفته اول

۱) اقتصاد و نظریه موثر

۲) دانه‌-درشت‌بندی یک تصویر

۳) آنتروپی شانون


تمرین‌ها

به زودی

برای مطالعه بیشتر


اسلایدها

بازبهنجارش-مقدمه1

نگاهی به کتاب «فرمول: قوانین عمومی موفقیت» نوشته باراباشی

آلبرت لازلو باراباشی، یک دانشمند شبکه معروفه که اخیرا پروژه‌ای به اسم «علم موفقیت» در دپارتمان «علم شبکه» دانشگاه نورث‌ایسترن شروع کرده. منظور از علم موفقیت، بررسی افراد، شرکت‌ها، کسب‌وکارها و … به صورت کمی برای رسیدن به تحلیل‌های داده‌محور از موفقیت اون‌هاست. خلاصه که کارشون استفاده از روش علمی برای مطالعه میزان موفقیت افراد یا شرکت‌ها در موضوعات مختلفه. باراباشی تجربیات پژوهشی پروژه علم موفقیت رو در کتاب عامه‌پسندی به اسم «The Formula: The Universal Laws of Success» منتشر کرده. این نوشته کوتاه، نظر من در مورد این کتابه.

اطلاعات بیشتر در formula.barabasi.com

با تیزر تبلیغاتی خود باراباشی شروع کنیم:

کتاب در مورد چیه؟

این کتاب بر اساس مجموعه‌ای از پژوهش‌های گروه باراباشی در مورد موفقیته و ابتدای کتاب هم موفقیت رو به عنوان یک امر اجتماعی در نظر می‌گیره. همین‌طور که از فهرست کتاب مشخصه، در ادامه باراباشی سراغ ۵ قانون کلی در مورد موفقیت میره که هر کدومشون مستند بر تعداد زیادی پژوهشه که میشه بهشون رجوع کرد. توی این کتاب در مورد موفقیت افراد در ورزش، علم، هنر و … صحبت میشه. این کتاب توسط نشر نوین ترجمه شده.

این کتاب چه چیزی نیست؟!

«فرمول» باراباشی نه قرار است کتاب انگیزشی باشد و نه قرار است به شما امید الکی بدهد! کتاب باراباشی یک گزارش داده‌محور علمی است!

تفاوت عمده این کتاب با عمده کتاب‌هایی که در مورد موفقیت تا حالا نوشته شده اینه که این کتاب یک گزارش داده‌محور هست! منظورم اینه که شما ممکنه زندگی‌نامه افراد موفق مثل استیوز جابز یا محمد علی‌ کلی رو بخونید و چون اون‌ها آدمای موفقی هستند دچار این خطا بشین که پس من هم اگر کارهایی که جابز کرد رو بکنم حتما یک مدیر موفق در دنیای استارتاپ‌ها میشم یا اگه مثل کلی تمرین کنم حتما تبدیل میشم به قهرمان بوکس دنیا. از طرف دیگه کتاب‌هایی که در مورد موفقیت نوشته میشن معمولا بر اساس نمونه‌های خاص از افراد یا شرکت‌های موفق هستند. اغلب این کتاب‌ها به نمونه‌هایی اشاره می‌کنند که مستقل از کم (ناکافی) بودن تعدادشون برای یک بررسی آماری، هیچ گزارشی هم از افرادی که موفق نشدند تاحالا ارائه نمی‌کنند. به عنوان مثال، ممکنه در کتابی بعد از یک بحث کوتاه و اشاره به چند شرکت موفق این ایده تجویز بشه که فلان استراتژی شما رو به پیروزی می‌رسونه بدون این‌که بررسی بشه که این استراتژی تا حالا چند شرکت دیگه رو به خاک سیاه نشونده! هر ادعایی که در این کتاب شده بر اساس مجموعه‌ای از پژوهش‌های منتشر شده در مجلاتیه که به عنوان مجلات علمی شناخته‌شده‌ن و از فرآیند داوری همتا (peer review) عبور کردن! به همین خاطر به این نتایج میشه تکیه کرد!

علی بندری در پادکست بی‌پلاس، خلاصه این کتاب رو خیلی شنیدنی تعریف کرده:

این کتاب برای چه کسانی مناسبه؟!

اگر دنبال کتابی می‌گردین که آدرنالین خونتون رو بالا ببره یا بهتون هیجان بده، قطعا کتاب خوبی نیست! این کتاب شرح مجموعه‌ای از پژوهش‌های علمیه که برای مردم به زبان قابل فهم منتشر شده. این کتاب یک کتاب انگیزشی نیست!

  • اگه دنبال این هستید که با واقعیت‌ها کنار بیاین و دنیا رو همون شکلی که کار می‌کنه بپذیرید قطعا کتاب خوبیه.
  • اگر حالتون از کتاب‌های زرد دنیای موفقیت بهم می‌خوره چون می‌فهمید که می‌خوان سرتون کلاه بذارن تا با فروش این کتاب‌ها خودشون پول‌دار بشن، این کتاب رو بخونید!
  • اگر فکر می‌کنید که شانس وجود نداره یا اینکه زندگی کلا شانسی هست، این کتاب بهتون کمک می‌کنه که دید درستی از مفهوم شانس داشته باشین.
  • اگر یک دانشجو هستید و براتون مهمه که آینده کار حرفه‌ایتون به چه چیزهایی بستگی داره، حتما این کتاب رو بخونید.
  • اگر اصحاب هنر و رسانه هستید، اگر دنبال راه‌اندازی یک کسب‌وکار نوپا هستید قطعا این کتاب ایده‌های خوبی بهتون میده.
  • اگر مشاور، معلم با مدیر مدرسه هستید و قصد پاک کردن ذهن بچه‌های مردم از باورهای غلطی که از طریق نسل‌های گذشته، همکارهای خودتون و شبکه‌های اجتماعی بهشون رسیده رو دارید، این کتاب فوق‌العاده‌ایه!

پس کتاب رو تقریبا به همه پیشنهاد می‌کنید؟!

بله! به نظر من کتاب «فرمول: قوانین عمومی موفقیت» نوشته باراباشی کتابیه که خوندنش دست‌کم برای یک‌ بار پیشنهاد بدی نیست! ویدیو تدتاک باراباشی رو ببینید:

و حرف آخر برای سیستم‌پیچیده‌ای‌ها!

شکی نیست که کتاب حاوی اطلاعات ارزشمندی هست که خوبه حتما عموم جامعه اونا رو بدونند. برای همین اگر این کتاب به فارسی ترجمه بشه، من حتما نسخه‌های زیادی از این کتاب رو به دوستان و اعضای خونواده‌م هدیه خواهم داد. همین‌طور به دانشجوهای تازه وارد به دانشگاه یا گروهمون.

اما اگر شما با ادبیات علم شبکه آشنا باشید، بهتون توصیه می‌کنم که به جای دنبال کردن این کتاب، مراجعی که کتاب بهش اشاره می‌کنه رو مطالعه کنید. این کار چندتا خوبی داره؛ اول این‌که در وقتتون صرفه‌جویی میشه و دوم این‌که با این دست از پژوهش‌ها آشنا می‌شید. این کار تمرین خوبیه که ببینید چه‌طور میشه «موفقیت به عنوان یک مفهوم اجتماعی» رو کمّی کرد و با عدد و رقم و نمودار در موردش حرف زد. از طرف دیگه این کتاب جوری نوشته شده که خودش گواهی باشه بر ادعاهایی که درش هست! وقتی کتابی یک مدل علمی برای موفقیت میده باید تا جایی که قوانین موفقیت اجازه میدن، موفق بشه! به همین‌ خاطر روایتگری کتاب به شکلیه که یک‌سری یافته علمی نهایتا تبدیل به یک کتاب‌ عامه‌پسند بشه که با برچسب «پرفروش‌ترین کتاب سال» در موردش بشه تبلیغ کرد! کسایی که باراباشی رو میشناسن منظور منو به‌خوبی درک می‌کنند 😉

خلاصه قبل از هر حرف اضافه بیشتری می‌تونید این ویدیو رو ببینید و اطلاعات خوبی از این کتاب پیدا کنید:

ویدیو ۲۵امین گردهمایی انجمن علمی ژرفا با موضوع سیستم‌های پیچیده

۲۵امین گردهمایی انجمن علمی ژرفا با موضوع سیستم‌های پیچیده با همکاری انجمن‌های علمی فیزیک، همبند، شناسا از دانشگاه صنعتی شریف و مرکز شبکه‌های پیچیده و علم دادهٔ اجتماعی دانشگاه شهید بهشتی در تاریخ ۲۴ام اردیبهشت ماه سال ۱۳۹۸ برگزار شد.

💰 اقتصاد و فیزیک سیستم‌های پیچیده – دکتر سامان مقیمی

🧠 مغز از پیچیده تا بغرنج – دکتر عبدالحسین عباسیان

🧬 پیچیدگی زیستی: در جستجوی تصویری واقع‌بینانه از ژنوتیپ و شایستگی – دکتر عطا کالیراد

میز گفت‌وگو درباره‌ی سیستم‌های پیچیده