رفتن به نوشته‌ها

برچسب: نیلز بور

جهان‌های موازی چه هستند و چه نیستند؟!

جهان‌های موازی چه هستند؟

عبارت «جها‌ن‌های موازی» از جمله عبارات و مفهوم‌های پرتکرار در داستان‌ها، فیلم‌ها و سریال‌های علمی-تخیلی است که امروزه به همین دلیل به گوش بیشتر افراد جامعه آشناست. از سوی دیگر، استفاده از این عبارت (به خصوص در زبان فارسی) همواره با ابهام‌های فراوانی همراه بوده است که کج‌فهمی‌های زیادی را در ذهن مخاطب غیرمتخصص ايجاد کرده است. برای بر طرف نمودن این ابهام‌ها و اصلاح کج‌فهمی‌ها، در گام اول بايد بر تفاوت دو مفهوم مستقل که متاسفانه در زبان فارسی برای اشاره به هر دو آن‌ها معمولا از عبارت «جها‌ن‌های موازی» استفاده می‌شود، تاکید کنیم: «جهان‌های موازی» که ترجمه عبارت انگلیسی «Parallel Universes» است در زبان انگلیسی کاربرد بسیار محدودی در دایره واژگان تخصصی علم فیزیک دارد و بیشترین استفاده از این عبارت مربوط به داستان‌های‌ علمی-تخیلی است؛ در صورت استفاده از این عبارت در مقالات علمی، با توجه به متن، اشاره به یکی از دو مفهوم مستقل «تفسیر دنیاهای چندگانه»، ترجمه عبارت many-worlds interpretation، و یا مفهوم «چند‌جهان»، ترجمه عبارت multiverse، است. هر چند استفاده از این عبارت برای اشاره به یکی از شاخه‌‌های «درخت تاریخچه‌ها» در تفسیر دنیاهای چندگانه مرسوم‌تر است تا استفاده از آن برای اشاره به یکی از حباب‌ها در فرضیه چند‌جهان. در ادامه این متن، با جزئيات بيشتر به هر کدام از این دو مفهوم خواهیم پرداخت.

تصور روی جلد کتاب داستانی مصور «Flash of Two Worlds» که برای اولین بار مفهوم «جهان‌های موازی» را وارد دنیای مجموعه داستان‌های مصور «Flash» کرد.

در صورت استفاده از عبارت «جهانهای موازی» در مقالات علمی، با توجه به متن، اشاره به یکی از دو مفهوم مستقل «تفسیر دنیاهای چندگانه» و یا فرضیه «چندجهان» است.

تفسیر دنیا‌های چندگانه

تفسیر دنیا‌های چندگانه یا many-worlds interpretation یکی از تفسیر‌های مکانیک کوانتومی‌ است که در سال ۱۹۵۷ و توسط هیوْ اِوِرِت برای حل «مشکل اندازه‌گیری» در مکانیک کوانتومی پیشنهاد داده شد؛ هرچند نام «تفسیر دنیاهای چندگانه» توسط برایس دویت، که در دهه‌های ۶۰ و ۷۰ میلادی نقش اصلی را در ترویج این ایده به عده داشت، برای این تفسیر انتخاب شد. اما شاید این سوال برای‌تان ایجاد شده باشد که «چرا مکانیک کوانتومی به یک تفسیر نیاز دارد؟» و اینکه تفاوت «تفسیر» با «نظریه» و یا «فرضیه» در چیست؟ برای پاسخ به سوال اول باید «اصل اندازه‌گیری» و «تقليل تابع موج» را در مکانیک کوانتومی با دقت بیشتری مورد بررسی قرار دهیم: بر اساس نظریه کوانتومی، تمامی اطلاعات یک سیستم در «حالت کوانتومی» آن سیستم ذخیره شده است که به دلایل تاریخی به آن «تابع موج» نیز گفته می‌شود. همچنین، تحول زمانی حالت کوانتومی یک سیستم توسط معادله شرودینگر توصیف می‌شود که یک معادله دیفرانسیل خطی است. احتمالا این توصیف که مکانیک کوانتومی نظریه‌ای ذاتا آماری است برای خواننده این متن آشنا باشد اما، آنچه که معمولا در توصیف‌های متفاوت از مکانیک کوانتومی کم‌تر بر آن تاکید می‌شود این نکته است که تحول زمانی تابع موج یک سیستم کوانتومی فرآیندی تعینی است (به این معنی که با دانستن حالت اولیه سیستم، معادله شرودینگر حالت کوانتومی سیستم را در تمامی زمان‌های آینده به طور دقیق معین می‌کند— این نتیجه مستقیم خطی بودن معادله شرودینگر است) و ذات آماری نظریه کوانتومی تنها در نتیجه انجام فرآیند اندازه‌گیری است.

بر اثر اندازه‌گیری یک مشاهده‌پذیر، مکانیک کوانتومی تنها احتمالات مشاهده شدن هر کدام از نتایج محتمل را پیش‌بینی کرده و مطابق «اصل اندازه‌گیری» حالت کوانتومی سیستم پس از اندازه‌گیری را به صورت آنی با یکی از این نتایج محتمل جایگزین می‌کند (در صورتی که حالت کوانتومی سیستم پیش از اندازه‌گیری می‌توانسته برهم‌نهی از تمامی این نتایج محتمل باشد)؛ به این جایگزینی حالت کوانتومی پیش از اندازه‌گیری با یکی از حالات محتمل به صورت آنی، «تقلیل تابع موج» یا «جهش کوانتومی» گفته می‌شود. به عبارت دیگر، برخلاف تحول زمانی حالت کوانتومی با استفاده از معادله شرودینگر که فرآیندی یکانی است (به این معنی که مجموع احتمالات در طی این تحول دست نخورده باقی می‌ماند) پدیده اندازه گیری و تقلیل تابع موج فرآیندی غیر یکانی است! درست به دلیل همین تفاوت ذاتی تحول زمانی با پدیده اندازه‌گیری در مکانیک کوانتومی، این سوال ایجاد می‌شود که چه فرآیندهایی را باید یکانی و چه فرآیندهایی را باید به صورت غیر یکانی در نظر گرفت؟ اما، همان‌طور که از توصیف ما از اصل اندازه‌گیری مشخص است، از پدیده اندازه‌گیری تعریف دقیقی ارائه نشده است و به همین دلیل مکانیک کوانتومی نیازمند «تفسیر»ای از آنچه به آن «اندازه‌گیری» گفته می‌شود است.

در تفسیر اولیه‌ای که از این اصل توسط نیلز بور ارائه شد، و امروزه به تفسیر کپنهاگی مشهور است، فیزیک در مقیاس‌های روزمره توسط مکانیک کلاسیکی توصیف می‌شود و مکانیک کوانتومی تنها مقیاس‌های کوچک را توصیف می‌کند. همچنین، در این تفسیر پدیده اندازه‌گیری توسط یک «دستگاه اندازه‌گیری» بزرگ مقیاس توصیف می‌شود که از قوانین مکانیک کلاسیکی تبعیت می‌کند. اما، این تفسیر با فلسفه تقلیل‌گرایانه نظریه‌های علمی در تناقض است و به صورت خاص این سوال را ایجاد می‌کند که فیزیک در کدام مقیاس‌ها توسط مکانیک کوانتومی توصیف می‌شود و در کدام مقیاس‌ها توسط مکانیک کلاسیکی؟ همچنین مشخص نیست که گذار از دنیای کوانتومی به کلاسیکی چگونه رخ می‌دهد و مقیاسی که در آن این گذار صورت می‌گیرد از نظر فیزیکی چه ویژگی خاصی دارد؟ اِروین شرودینگر، که معادله معروف شرودینگر را برای توصیف تحول زمانی یک سیستم کوانتومی پیشنهاد کرده بود، از جمله معروف‌ترین منتقدين این تفسیر از مکانیک کوانتومی بود. شرودینگر در نامه‌ای به بور (که در کتاب جز و کل نوشته‌ی ورنر هایزنبرگ نقل شده‌ است) نوشته است:

طراحی مدادی دون کیشوت
اروین شرودینگر

«بور، تو حتما متوجه هستی که کل این ایده‌ جهش‌های کوانتومی قطعا به [نتایج] بی‌معنی منجر می‌شود… اگر ما همچنان مجبور به تحمل کردن این جهش‌های کوانتومی لعنتی باشیم، من از اینکه هرگز نقشی در نظریه کوانتومی داشته‌ام متاسفم.»

-کتاب جز و کل نوشته‌ی ورنر هایزنبرگ

به منظور بر طرف کردن مشکلات ذکر شده، هیو اورت ایده «حالت نسبی» خود را در زمانی که دوره دکتری فیزیک را در دانشگاه پرینستون و زیر نظر جان ویلر، فیزیکدان مشهور آمریکایی، سپری می‌کرد مطرح نمود. این تفسیر بعدها و توسط برایس دویت به نام «تفسیر دنیا‌های چندگانه» مشهور شد و مطابق آن تلاش می‌شود تا فرآیند اندازه‌گیری نیز درست مانند تحول زمانی توسط یک فرآیند یکانی توصیف شود که تمامی احتمالات را حفظ می‌کند: در این تفسیر، تقلیل تابع موج اتفاق نمی‌افتد و بر اثر هر اندازه‌گیری تاریخچه‌های جدیدی (که به آن‌ها جهان‌های موازی هم گفته می‌شود) شکل می‌گیرند که در هر کدام از آن‌ها یکی از نتایج محتمل انداز‌ه‌گیری مشاهده شده است. برای مثال، تحول زمانی و اندازه‌گیری اسپین یک الکترون را در نظر بگیرید: تحول زمانی می‌تواند حالت کوانتومی این الکترون را در برهم‌نهی از اسپین بالا و پایین آماده کند؛ سپس، در صورت اندازه‌گیری این مشاهد‌ه‌پذیر، مطابق تفسیر دنیا‌های چندگانه، تاریخچه‌های جداگانه‌ای به وجود می‌آیند که در یکی از آن‌ها اسپین الکترون بالا مشاهده شده است و در دیگری اسپین پایین اندازه‌گیری شده است.

درخت تاریخچه‌ها: با هر بار اندازه‌گیری اسپین الکترون، تاریخچه‌های جدیدی به وجود می‌آیند که در هر کدام از آن‌ها یکی از نتایج محتمل، در این مثال اسپین بالا یا پایین، مشاهده شده است؛ این تاریخچه‌ها (یا جهان‌های موازی) هر کدام در نتیجه اندازه‌گیری‌های بعدی می‌توانند به تاریخچه‌های مجزا تقسیم شوند. همچنین، هیچ برهمکنشی بین این تاریخچه‌ها وجود ندارد و این تفسیر از مکانیک کوانتومی منجر به پیش‌بینی قابل مشاهده نمی‌شود.

همچنین، در شباهت با تفسیر کپنهاگی، احتمال قرار گرفتن در هر کدام از این تاریخچه‌ها با قاعده‌ بورن پیش‌بینی می‌شود. شایان ذکر است که در این تصویر تاریخچه‌ها (یا جهان‌های موازی) هیچ برهمکنشی با هم نداشته و پس از شکل‌گیری هر کدام به صورت یکانی و توسط معادله شرودینگر تحول پیدا می‌کنند. در این صورت، پس از گذشت زمانی از اندازه‌گیری اول، اسپین الکترون می‌تواند دوباره در برهم‌نهی از اسپین‌های بالا و پایین قرار گیرد و با تکرار فرآیند اندازه‌گیری اسپین این الکترون می‌توان هر کدام از تاریخچه‌های قبلی را به تاریخچه‌های جدیدی تقسیم نمود: تاریخچه‌هایی که در آن نتیجه اندازه‌گیری اول و دوم به ترتیب {بالا، بالا}؛ {بالا، پایین}؛ {پایین، بالا}؛ {پایین، پایین} بوده است. به این ترتیب، مطابق شکل بالا، درختی از تاریخچه‌ها شکل می‌گیرد که هر کدام از شاخه‌های آن یک واقعیت مجزا (یک تاریخچه یا دنیا موازی) را توصیف می‌کند.

حال که با تفسیر دنیا‌های چندگانه آشنا شدیم، می‌توانیم به سوال دوم که در ابتدا این بخش مطرح شد پاسخ دهیم: آنچه که یک «تفسیر» را از یک «فرضیه» و یا «نظریه» مجزا می‌کند، وجود داشتن و یا نداشتن پیش‌بینی‌های قابل مشاهده است! از آنجا که مطابق تفسیر دنیا‌های چندگانه، دیگر تاریخچه‌ها (یا به عبارتی جهان‌های موازی) هیچ برهم‌کنشی با هم نداشته و هیچ‌ اثر مشاهده پذیری از خود بر دیگر تاریخچه‌ها باقی نمی‌گذارند، هیچ پیش‌بینی قابل مشاهده‌ای که درستی و یا نادرستی این تفسیر را مشخص نماید در دسترس نیست. هرچند، به تازگی فرضیه‌ای مشابه با این تفسیر توسط فرانک ویلچک، برنده نوبل فیزیک، و جردن کاتلر مطرح شده‌ است که به آن «تاریخچه‌های درهمتنیده» گفته می‌شود و قادر به ارائه پیش‌بینی‌های قابل آزمایش است (آزمایش‌های پیشنهاد شده هنوز به انجام نرسیده‌اند و در نتیجه درستی و یا نادرستی این ایده همچنان مشخص نیست). همچنین، باید اشاره نمود که با وجود تفسیر‌های متفاوت از مسئله اندازه‌گیری، این مسئله کماکان جز مسائل باز و حل نشده به حساب می‌آید و تا به امروز توافقی در انتخاب تفسیر‌ درست از مفهوم «اندازه‌گیری» در بین فیزیکدان‌ها وجود ندارد! با این حال، درست به خاطر همین سختی ارائه پیش‌بینی‌های قابل آزمایش برای حل این مسئله، تنها بخش کوچکی از فیزیکدان‌ها به صورت جدی بر روی حل این مشکل کار می‌کنند (هر چند با اهمیت یافتن مضوعاتی از جمله نظریه اطلاعات کوانتومی، آشوب کوانتومی و گرانش/کیهان‌شناسی کوانتومی تعداد افرادی که به صورت غیر مستقیم بر روی حل این مشکل کار می‌کنند افزایش یافته است).

فرضیه چند‌جهان

«فرضیه چند‌جهانی» یا «Multiverse Hypothesis» یکی از نتایج محتمل نظریه «تورم کیهانی»است که به منظور حل کردن مشکلاتی در کیهان‌شناسی (که از آن‌ها با نام‌های مشکل افق و مشکل تختی یاد می‌شود) ارائه شده است. اندازه‌گیری‌های انجام شده و همچنین مشاهدات مبتنی بر تابش زمینه کیهانی نشان می‌دهند که انحنای کیهان امروزی ما بسیار کوچک بوده (هندسه فضا-زمان و نه صرفا هندسه برش‌های فضایی، بسیار به هندسه تخت نزدیک است) و همچنین حالت آن در زمان واجفتیدگی که در آن فوتون‌های تابش زمینه کیهانی توانسته‌اند از برهم‌کنش مداوم با الکترون‌ها و هسته‌ها گریخته و بدون مانع به حرکت خود ادامه دهند (این زمان حدود ۳۷۸ هزار سال پس از مهبانگ است که در مقیاس کیهان‌شناختی زمان بسیار کوتاهی محسوب می‌شود و به همین دلیل این پرتو‌ها اطلاعات زیادی را از کیهان اولیه در اختیار ما قرار می‌دهند) بسیار همگن و یکنواخت بوده است. پیش از مطرح شدن نظریه تورم کیهانی، به نظر می‌رسید که هر دو این مشاهدات نیازمند یک «تنظیم ظریف» در پارامترها هستند زیرا تغییرات جزئی در چگالی ماده و انرژی کیهان اولیه می‌توانست انحنای کیهان امروزی را به شدت تغییر داده و آن را از تخت بودن دور کنند؛ همچنین، همگنی و یکنواختی مشاهده شده در تابش زمینه کیهانی به ما نشان می‌دهد که نواحی از فضا-زمان که با یکدیگر در ارتباط علّی نبوده‌اند به تعادل گرمایی رسیده‌اند.

«نظریه تورم کیهانی» که مطابق آن کیهان اولیه در نخستین کسرهای ثانیه پس از مهبانگ وارد یک دوره کوتاه انبساط بسیاربسیار سریع به نام تورم کیهانی شد می‌تواند سازوکاری را برای توجیح هر دو این مشکل‌ها بدون نیاز به تنظیم ظریف پارامتر‌ها ارائه دهد: این دوره کوتاه انبساط بسیار سریع می‌تواند چگالی ماده و انرژی در عالم اولیه را به مقدار بحرانی آن (که برای تخت بودن کیهان به آن نیاز است) نزدیک کرده و همچنین توجیح نماید که نواحی که در زمان واجفتیدگی در ارتباط علّی با یکدیگر نبوده‌اند، پیش از آغاز تورم با یکدیگر ارتباط علّی داشته و به همین دلیل به تعادل دمایی رسیده‌اند. در شکل امروزی آن این نظریه توسط یک میدان کوانتومی اسکالری (موجودی ریاضی که مطابق قوانین مکانیک کوانتومی تحول یافته و به هر نقطه از فضا-زمان یک عدد نسبت می‌دهد که این عدد با تغییر دستگاه مختصات، از جمله چرخاندن محور‌ها و جا‌به‌جا کردن مبدا، ثابت است. می‌توانید به تابعی که در هر لحظه به نقاط مختلف یک اتاق دمای آن را نسبت می‌دهد، به چشم یک میدان کلاسیکی اسکالری نگاه کنید) با نام «میدان تورم» یا «Inflaton» توصیف می‌شود که تابع پتانسیل آن دارای ویژگی‌های خاصی است. در نظریه تورمی «غلتش کند» یا «Slow-roll Inflation»، تابع پتانسیل میدان تورم دارای ناحیه‌ای نسبتا تخت بوده که فاز تورمی را توصیف می‌کند و میدان تورم پس از اتمام این فاز، با قرار گرفتن و نوسان در اطراف کمینه پتانسیل (که می‌تواند کمینه موضعی یا کمینه سرتاسری باشد) وارد فاز بازگرمایش می‌شود.

شکل تقریبی پتانسیل میدان تورم در در نظریه تورمی غلتش کند. تابع پتانسیل میدان تورم دارای ناحیه‌ای نسبتا تخت بوده که فاز تورمی را توصیف می‌کند و میدان تورم پس از اتمام این فاز، با قرار گرفتن و نوسان در اطراف کمینه پتانسیل وارد فاز بازگرمایش می‌شود. پتانسیل ميدان تورم می‌تواند کمینه‌های موضعی زیادی داشته باشد که در این صورت به این کمینه‌ها خلا کاذب یا خلا شبه‌پایدار گفته می‌شود و میدان کوانتومی تورم می‌تواند با استفاده از تونل‌زنی کوانتومی از این کمینه‌ها خارج شده و باقی کمینه‌ها را در فضای پیکربندی کاوش کند.

در صورتی که این کمینه پتانسیل تنها یک کمینه موضعی باشد (شکل رو به رو)، میدان تورم می‌تواند طی فرآیند تونل‌زنی کوانتومی، که در ادامه در مورد آن بیشتر توضیح خواهیم داد، از سد پتانسیل (بیشینه موضعی پتانسیل که دو کمینه را از هم جدا کرده است) عبور کرده و پس از طی دوباره فاز‌ تورم غلتش کند به نوسان در اطراف کمینه سرتاسری (و یا در حالت کلی‌تر کمینه موضعی دیگر) بپردازد. از آنجا که در نظریه میدان‌های کوانتومی از کمینه‌های پتانسیل به عنوان حالت خلا یاد می‌شود، به این کمینه‌های موضعی حالت خلا کاذب یا خلا شبه‌پایدار و به کمینه‌های سرتاسری خلا حقیقی یا خلا پایدار نیز گفته می‌شود.

شکل تقریبی پتانسیل مناسب برای توصیف تورم ابدی ناشی از واپاشی خلا کاذب. در این تصویر میدان تورم با استفاده از تونل‌زنی کوانتومی به خارج از ناحیه خلا کاذب راه یافته و پس از طی کردن فاز تورمی غلتش کند، وارد فاز باز‌گرمایش و نوسان در اطراف خلا حقیقی می‌‌شود.

در طی این فرآیند تونل‌زنی از خلا کاذب به خلا حقیقی (یا در حالت کلی‌تر از خلا کاذب ۱ به خلا کاذب ۲)، حباب‌هایی از خلا جدید (برای مثال خلا حقیقی) در پس‌زمینه خلا قدیمی (مثلا خلا کاذب در شکل بالا) شکل می‌گیرد که پس از تشکیل شدن با سرعتی نزدیک به سرعت نور گسترش پیدا می‌کنند. درون هر کدام از این حباب‌ها از خلا‌های مختلف، پس از طی شدن مرحله تورم، مرحله بازگرمایش و تشکیل ساختار‌های کیهانی رخ می‌دهد و در نتيجه در درون هر کدام از این حباب‌ها، جهان جدیدی (با ثابت‌های فیزیکی متفاوت) تشکیل می‌شود. در صورتی که نرخ تولید این حباب‌ها از مقدار بحرانی آن کمتر باشد، تورم هرگز متوقف نخواهد شد و در این صورت آنچه به آن «تورم ابدی» گفته می‌شود رخ خواهد داد: حباب‌هایی از جهان‌های متفاوت (که در موارد بسیار معدودی به آن‌ها جهان‌های موازی گفته می‌شود) در پس‌زمینه خلا کاذب اولیه تشکیل خواهد شد که هرگز موفق به پوشاندن کل فضای پر شده از خلا اولیه نخواهند شد و به مجموع آن‌ها «چندجهان» یا Multiverse گفته می‌شود. این پدیده تشکیل حباب، نوعی از یک گذار فاز مرتبه اول است که نمونه کلاسیکی آن را می‌توان با آزمایشی جالب حتی در منزل نیز مشاهده نمود! به همین منظور، پیش از پرداختن به تونل‌زنی کوانتومی و توضیح بیشتر فرآیند تشکیل و گسترش حباب‌ها، کمی درباره پدیده‌های ابرسرمایش یا ابرگرمایش و ارتباط آن‌ها با تشکیل حباب‌ها در کیهان‌شناسی توضیح خواهیم داد.

تجسم هنری از تورم ابدی و چندجهان. براساس این فرضیه، حباب‌هایی از خلا حقیقی در خلا کاذب اولیه به‌وجود می‌آیند که تا ابد بدون پر کردن فضای اولیه به رشد خود ادامه می‌دهند. مجموعه حباب‌های تشکیل‌شده (که در هر کدام از آن‌ها جهان جدیدی به وجود آمده است) در درون خلا کاذب اولیه، چند جهان را تشکیل می‌دهند.

برای توصيف پدیده‌های ابرسرمایش و یا ابرگرمایش، ظرفی از آب مقطر در فاز مایع را در نظر بگیرید. همان‌طور که مطمئنا خواننده این متن با آن آشناست، این ظرف آب در فشار ۱ جو در دمای صفر درجه سانتی‌گراد یخ بسته و در دمای صد درجه سانتی‌گراد بخار می‌شود. با این حال، در صورتی که آب درون ظرف خالص باشد و در طی مدت سرمایش و یا گرم کردن ضربه و یا تکان ناگهانی به ظرف آب وارد نشود، آب مقطر می‌تواند در دمای زیر صفر درجه و یا بالای صد درجه سانتی‌گراد در فاز مایع باقی بماند! در این حالت، با وارد کردن ضربه‌ای به ظرف آب می‌توان تشکیل شدن حباب‌هایی از فاز جامد (یخ) و یا گاز (بخار) را در درون ظرف مشاهده نمود که به سرعت رشد کرده و در زمان کوتاهی کل مایع درون ظرف را به فاز جدید (بخار یا یخ) می‌برند (شکل و ویدیو زیر را ببینید)!

مراحل مختلف پدیده ابرسرمایش از لحظه وارد شدن ضربه و شکل گرفتن حباب‌هایی از یخ تا گسترش و برخورد این حباب‌ها و گذار فاز کامل مایع درون ظرف به فاز جامد را نشان می‌دهد.
پدیده ابرسرمایش که در آن تشکیل شدن حباب‌هایی از یخ و گسترش آن‌ها در درون ظرف به وضوح مشخص است.

همان‌طور که از توضیح ما در بند قبلی مشخص است، این پدیده بسیار شبیه گذار فاز کوانتومی است که چند‌جهان را تشکیل می‌دهد! در واقع پتانسیل موثر بین ملکول‌ها در رژیم ابرسرمایش/ابرگرمایش درست شبیه فرم کلی پتانسیل میدان تورم در رژیم تورم ابدی‌ است (تصویر بالا سمت چپ در صفحه قبل): در این حالت، کمینه موضعی پتانسیل توصیف کننده فاز مایع و کمینه سرتاسری آن توصیف کننده فاز جامد/گاز است. از آنجا که این دو فاز متفاوت توسط یک سد پتانسیل (بیشینه موضعی) از هم جدا شده‌اند، در شرایطی ذکر شده (خالص بودن مایع و عدم وارد شدن ضربه به ظرف) ملکول‌های آب انرژی کافی را برای گذر کردن از این سد پتانسیل نداشته و در نتيجه در کمینه موضعی انرژی (فاز مایع) باقی می‌مانند. در صورت وارد شدن ضربه‌ای کوچک به این سیستم، بخشی از مایع انرژی لازم برای بالا رفتن از قله پتانسیل و قرار گرفتن در کمینه سرتاسری را پیدا می‌کند؛ در این فرآیند، به اندازه تفاوت انرژی بین دو کمینه مختلف انرژی آزاد خواهد شد که می‌تواند باقی بخش‌های مایع را نیز از سد پتانسیل عبور داده و به فاز جدید ببرد. نتیجه این فرآیند، تشکیل و گسترش حباب‌هایی از فاز جدید (جامد و یا گاز) در درون فاز قدیمی (مایع) است.

همان‌طور که پیش از این نیز اشاره کردیم، فرآیند تشکیل حباب‌ها در کیهان‌شناسی را نیز می‌توان با سازوکاری تقریبا مشابه فهمید. برای این منظور ابتدا توضیح کوتاهی در مورد پدیده تونل‌زنی کوانتومی ارائه خواهیم داد: پدیده تونل‌زنی کوانتومی (که پدیده‌ای ذاتا کوانتومی و بدون معادل کلاسیکی است) نتیجه مستقیم ذات دوگانه (موجی-ذره‌ای) سیستم‌های کوانتومی است. ما در مکانیک کلاسیکی با این موضوع آشنا هستیم که بر خلاف ذرات (مثلا یک توپ را در نظر بگیرید)، موج‌ها (مانند امواج الکترومغناطیسی) می‌توانند به میزانی که به طول موج آن‌ها و همچنین پهنا و ارتفاع قله پتانسیل وابسته است، از سد‌های پتانسیل، مانند یک دیوار، عبور کنند (درست به همین دلیل است که توپ و نور مرئی، حداقل به میزانی که برای ما قابل اندازه‌گیری باشد، از دیوار عبور نمی‌کنند اما رادیو و تلویزیون شما در درون خانه همچنان کار می‌کنند!). از آنجا که ذرات کوانتومی در واقع بسته‌های موجی هستند که طول موج آن‌ها با رابطه دوبروی داده می‌شود، انتظار می‌رود که با گذر زمانی به قدر کافی، سیستم‌های کوانتومی نیز بتوانند بدون نیاز به انرژی اضافه (مانند ضربه زدن که برای عبور دادن مایع از سد پتانسیل در مثال ابرسرمایش و ابرگرمایش به آن نیاز بود) از سد‌های پتانسیل عبور کرده و در طرف دیگر آن ظاهر شوند؛ به این پدیده «تونل‌زنی کوانتومی» گفته می‌شود (شکل زیر را ببینید). پدیده تونل‌زنی کوانتومی علاوه بر مکانیک کوانتومی غیر نسبیتی در نظریه میدان‌هایی کوانتومی (در پس‌زمینه‌های تخت و یا منحنى) نیز اتفاق می‌افتد و در آن یک میدان کوانتومی می‌تواند بدون داشتن انرژی کافی برای عبور کلاسیکی از سد پتانسیل، به طرف دیگر آن تونل بزند!

تونل‌زنی کوانتومی از ناحيه خلا کاذب (FV) به ناحيه خلا حقیقی (TV) را نشان می‌دهد.

حال آماده‌ایم تا چگونگی تشکیل چند‌جهان و رشد حباب‌ها در فرضیه تورم ابدی را بهتر درک کنیم: در قسمتی از فضای پر شده از خلا کاذب اولیه (مانند فاز مایع در مثال کلاسیکی ابرسرمایش/ابرگرمایش)، حبابی از خلا جدید بر اثر پدیده تونل‌زنی کوانتومی شکل می‌گیرد (درست مانند حباب‌های یخ/گاز که در مثال ابرسرمایش/ابرگرمایش بر اثر تزریق انرژی به سیستم از طریق وارد کردن ضربه ایجاد می‌شدند)؛ این حباب‌ها پس از شکل‌گیری به سرعت در پس‌زمینه خلا کاذب اولیه رشد می‌کنند. بر خلاف آنچه در مثال ابرسرمایش/ابرگرمایش برای آب در یک ظرف با ابعاد ثابت دیدیم، کیهان پر شده از خلا کاذب اولیه خود در حال انبساط شتاب‌دار است (به دلیل انرژی خلا غیر صفر) و بنابراین، بسته به نرخ تولید این حباب‌ها و سرعت رشد آن‌ها ممكن است این حباب‌های خلا جدید هرگز نتوانند خلا کاذب اولیه را به طور کامل پر کنند. به این رژیم از نظریه تورم کیهانی، «تورم ابدی با واپاشی خلا کاذب» یا (False Vacuum Eternal Inflation) گفته می‌شود. در این حالت، به مجموعه این حباب‌ها چند‌جهان گفته ‌شده و در موارد بسیار محدودی به هر کدام از این حباب‌ها یک جهان‌ موازی نیز گفته می‌شود (هر چند استفاده از این واژه در مقالات علمی انگلیسی زبان برای اشاره به این حباب‌ها بسیار غیر متعارف است).

در آخر بايد بر این نکته تاکید کنیم که هر کدام از حباب‌ها در فرضیه چند‌جهان ناحیه‌هایی از فضا-زمان هستند که بعضی ثابت‌های فیزیکی (مانند ثابت کیهان‌شناسی) در آن‌ها با یکدیگر تفاوت می‌کند. همچنین، تا زمانی که این حباب‌ها با یکدیگر برخورد نکنند، که در رژیم تورم ابدی احتمال آن تقریبا برابر با صفر است، هیچ‌گونه ارتباط علّی بین این حباب‌ها وجود نداشته و سفر کردن بین‌ آن‌ها ممکن نخواهد بود (در صورتی که دو حباب با یکدیگر برخورد کنند، مطمئنا امکانی برای بقای حیات در هیچکدام از آن‌ها باقی نخواهد ماند که بخواهند به جهان دیگر سفر کنند). با این حال بر این نکته تاکید می‌کنیم که اگرچه امکان مشاهده و اندازه‌گیری مستقیم وجود دیگر حباب‌ها امکان‌پذیر نیست، اما این فرضیه اثرات قابل مشاهده غیر مستقیمی را پیش‌بینی می‌کند که ممکن است در آینده امکان تایید (محدود) و یا رد این فرضیه را فراهم کنند! به صورت خاص، رژیم تورم ابدی با واپاشی خلا کاذب تنها با انحنای فضایی (نه فضا-زمانی) منفی سازگار بوده و در صورت مشاهده انحنای فضایی مثبت و یا صفر می‌توانیم درستی این فرضیه را منتفی بدانیم (هر چند مشاهده شدن انحنای فضایی منفی الزاما به معنی تایید این فرضیه نخواهد بود!).

جهان‌هایی موازی چه نیستند؟

حال که در بخش قبلی این متن با تعریف «تفسیر جهان‌های چندگانه» از مکانیک کوانتومی و فرضیه «چندجهان» در کیهان‌شناسی آشنا شدیم، می‌توانیم به برخی باور‌های غلط در ارتباط با این دو مفهوم و استفاده از عبارت «جهان‌های موازی» برای هر دو آن‌ها اشاره کنیم: شاید فراگیرترین باور غلط در ارتباط با هر دو این مفاهيم، امکان برقرار کردن رابطه علّی با «جهان‌های موازی» است! همان‌طور که در انتهای بخش قبل و در مورد فرضیه چند‌جهان به آن اشاره کردیم، با اینکه این جهان‌های موازی (در واقع حباب‌ها) مکان‌های متفاوتی در فضا-زمان هستند، امکان سفر کردن بین این حباب‌ها وجود نداشته و هیچ ارتباط علّی نیز بین آن‌ها برقرار نمی‌باشد. در مورد تفسیر جهان‌های چندگانه این باور غلط حتی مشکل‌زا تر نیز هست زیرا همان‌طور که اشاره کردیم جهان‌های موازی توصیف شده در این تفسیر، تاریخچه‌های متفاوتی از جهان خود ما هستند و مکان‌های متفاوتی را در فضا-زمان توصیف نمی‌کنند! بنابراین، امکان سفر کردن بین آن‌ها نیز منتفی (و بی‌معنی) است.

همچنین، از آنجا که در فیلم‌ها، سریال‌ها و داستان‌های علمی تخیلی برای اشاره به هر دو مفهوم توضیح داده شده از عبارت «جهان‌های موازی» استفاده می‌شود، بسیاری از ویژگی‌های این دو مفهوم متفاوت در ادبيات علمی‌-تخیلی با هم ترکیب شده و ملقمه‌ای را ساخته است که به هیچ کدام از این دو مفهوم علمی شبیه نمی‌باشد! برای مثال، معمولا «جهان‌های موازی» در ادبیات علمی-تخیلی به صورت مکان‌هایی تصور می‌شوند (در شباهت با چندجهان) که تاریخچه آن‌ها بسیار شبیه به دنیا ما بوده و تنها تفاوت‌های کوچکی با آن دارد (احتمالا این نگاه از برداشتی نادقیق از تفسیر جها‌ن‌های چندگانه نشات گرفته است). بنابراین، همان‌طور که در ابتدای این متن نیز به آن اشاره کردیم، تمیز دادن ویژگی‌های متفاوت این دو مفهوم مجزا در بر طرف کردن کج‌فهمی‌های ایجاد شده نقش مهمی را بازی می‌کند.

در نهايت، همان‌گونه که در بخش قبلی به تفصيل شرح داده شد، به ذات متفاوت این دو مفهوم (یکی تفسیر و دیگری فرضیه) اشاره کرده و بر عدم وجود شواهد تجربی (تا به امروز) برای پذیرش یا رد هر دو این مفاهيم تاکید می‌کنیم! هرچند، امکان تایید یا رد فرضیه چند‌جهان (و حتی به صورت کلی‌تر نظریه تورم کیهانی) و یا فرضیه «تاریخچه‌های درهمتنیده»، که ایده‌هایی مشابه با تفسیر جهان‌ها چندگانه را مطرح می‌کند، در آینده وجود داشته و هنوز باید برای مطالعه همخوانی پیش‌بین‌های این دو فرضیه با مشاهدات منتظر ماند!

راهی که آمدیم؛ مروری کوتاه بر دستاوردها و چالش‌های فیزیک نظری

در گوشه‌ای از جهان هستی

در قلب توده‌ بزرگی از ماده‌ی تاریک، در نقطه‌ای از کهکشان مارپیچی بزرگمان، بر روی سیاره‌ی خارق‌العاده‌ای که به دور خورشید با شکوهمان می‌چرخد، در ادامه‌ی زنجیره‌ای که هنوز تنها اثری از حیات زنده در کیهانمان است، ما نیز شروع به زندگی کردیم. به عنوان گونه‌ای با قدرت تفکر، همیشه به دنبال زبانی برای برقراری ارتباط با محیط اطرافمان بوده و هستیم. گاه با هدف رفع نیاز، گاه برای رفع حس کنجکاوی سیری ناپذیرمان و حتی گاهی در اثر ترس! اما هدف هرچه بود و هرچه هست، امروز درجای عجیبی از تاریخ علم ایستاده‌ایم و با غرور به جهانی نگاه می‌کنیم که نه آن‌طور که ما دلمان می‌خواهد، بلکه آن گونه که واقعا هست، در برابر ما ایستاده است.

شما اینجا هستید!

ما همیشه می‌خواستیم با طبیعتمان سخن بگوییم، و در طول تاریخ، فیزیک راهی بود که برای این هدف انتخاب کردیم. فیزیک زبان مشترک ما و طبیعت شد. ما مشاهده می‌کردیم، بعدها یاد گرفتیم ثبت کنیم، بر پایه‌ی مشاهداتمان فرضیه سازی کردیم و جلو رفتیم. زمینمان را تخت تصور میکردیم، هر کدام از سیارات و ستاره ها را خدایی می‌پنداشتیم که باید نیایش کنیم، وگرنه بر ما عذاب می‌فرستند. در ذهنمان خدایان ناشناخته‌ای ساختیم که شب و روز را پدید می‌آوردند. خدایانی که غروب خورشید را می‌خوردند و صبح باز او را به دنیا می‌آوردند. خدایانی که صبح از شرق برمی‌خاستند، در طول روز در آسمان سیر می‌کردند و غروب مانند پیرمردان در بستر می‌مردند. رعد و برق، خشم خدایان بود و زلزله خشم مادرمان زمین.

فرضیه ساختیم، خیالبافی کردیم و جلو آمدیم. سفر کردیم، اختراع کردیم، تا آنجا که زمین و آسمان را هر روز بهتر و بهتر شناختیم. فرضیاتمان به مرور حقیقیتر میشدند، از محیطمان به زیباترین وجه استفاده می‌کردیم، ویژگیهایش را میدانستیم، دارو می‌ساختیم، ظروف زیبا، وسایل نقلیه، ساختمان‌های باشکوه ، اما هنوز پیوند عمیقی برقرار نبود. با طبیعتمان به زیبایی زندگی میکردیم اما زبانش را نمیدانستیم. همیشه نگاهمان به آسمان هم معطوف بود. آسمان پر رمز و راز را می‌دیدیم. ستارگانی را که هر شبمان را زیبا می‌ساختند، در صورت‌های فلکی دسته بندی کردیم. علم اخترشناسی را به جود آوردیم و هر شب آسمان را رصد میکردیم. همه چیز را میدیدیم، اما هنوز علت‌ها ناشناخته بود.

نظریه  زمین‌مرکزی بطلمیوس

بطلمیوس که بین سالهای ۹۰ تا ۱۶۸ میلادی زندگی میکرد، معتقد بود زمین در مرکز جهان قرار دارد، و ماه و خورشید و سایر سیارات، به دور آن میچرخند. در این نظریه، سیارات مداری نداشتند و انگار بر روی صفحه‌ای شیشه‌ای به نام فلک چسبیده بودند و فلک به دور زمین در گردش بود. او معتقد بود که ۸ یا ۹ فلک وجود دارد و بر روی فلک آخر، ستاره‌ها چسبیده‌اند.

یک نقاشی قدیمی برآمده از طرز تفکر بطلمیوسی (زمین‌مرکزی) – نگاره از ویکی‌پدیا

پس از این فلک، که به آن فلک الافلاک می‌گفتند، خداوند و فرشتگان زندگی میکردند. این نظریه که به آن زمین مرکزی میگویند شاید یکی از نخستین نظریات جامع و منسجم ما درباره ی کیهانمان بود. این باور نزد ما پذیرفته شده بود. ما در مرکز جهان هستی، بر روی سیاره‌ی زیبایمان نشسته بودیم و همه به دور ما می‌گشتند. کلیسا نیز این فرضیه را بشدت تبلیغ می‌کرد. خیالی خوش و پرغرور اما ناپایدار. تا بالاخره در تاریخمان گالیله پیدا شد. او بود که گفت نه تنها ما مرکز جهان نیستیم، بلکه ما و چند سیاره‌ی دیگر همه و همه به دور خورشید زیبایمان میگردیم. او نگاه ما را به طبیعت و به ویژه علم مکانیک دگرگون کرد، و در یک کلام، او نخستین پیوند میان طبیعت و ریاضیات را در قلب علم حرکت شناسی نشان داد. وقتی به او فکر می‌کنم، و به جهانی که پیش از او می‌شناختیم، تصمیم و کار بزرگش بسیار ترسناک به نظرم میرسد. تصور کنید در خانه‌ای نشسته‌ایم، دیوارهایش را با رنگ‌های بسیار زیبا نقاشی کرده‌ایم و تصور می‌کنیم تمام حقیقت، هرآن چیزی است که در نقاشی‌هایمان کشیده‌ایم. ناگهان مردی از راه می‌رسد، دیوارها را خراب می‌کند،نقاشی‌ها را می‌سوزاند، ما را وسط تاریکی بی‌انتهایی رهایمان می‌کند و تنها مشعلی به دستمان می‌دهد. او نم‌یداند نتیجه‌ی جستجویمان چه خواهد بود، اما باور دارد حقیقت بسیار زیباتر و موثرتر از تمام نقاشیهایمان بر در و دیوار خانهمان است. او به درستی و زیبایی حقیقت باور دارد. ما این مشعل را گرفتیم و جلو آمدیم.

نیوتون و ادامه‌ی راه

مفهوم گرانش را فهمیدیم. حرکت سیارات را توجیه کردیم. مهندسی نوینی بر پایه‌ی معادلاتش بنا کردیم. علم مهندسی هر روز زندگی را ساده‌تر میکرد. اما سوالات ما پایانی نداشت. مطالعه بر روی نور از زمان نیوتون جدی‌تر دنبال می‌شد. تلسکوپ گالیله که یکی از دستاوردهایش کشف چند قمر از اقمار مشتری بود، به وسیله‌ی نیوتون اصلاح شد و کار رصد آسمان را اندکی بهبود بخشید. همچنین مطالعه‌ی ما بر روی الکتریسته و مغناطیس روز به روز بیشتر می‌شد و کسانی ماند لنز، فارادی، آمپر و دیگران ماهیت بار الکتریکی را معرفی کردند. سرانجام دوران طلایی فیزیک فرا رسید. در اواخر قرن نوزدهم، تامسون مدل اتمی‌اش را ارائه کرد. رادرفورد اولین بار مفهوم هسته را معرفی کرد. پروتون‌ها و نوترون‌ها شناخته شدند و سرانجام مدل سیاره‌ای توسط نیلز بور ارائه شد. مدلی که اگر درست بود بنابر نظریه‌ی الکترومغناطیس، به ناپایداری اتمها و نابودی اتم منجر میشد. در این زمان بشر به آزمایش‌هایی دست می‌زد که یکی پس از دیگری ناتوانی فیزیک نیوتونی را در توضیح مسائلی روشن‌تر می‌ساخت. اینطور به نظر میرسید که باز راهمان را گم کردهایم.

اما نه!

ما میدانستیم ماشینهایمان، هواپیماها و تمام علم ساختمان، بر پایه‌ی فیزیک نیوتونی دقیق و زیبا کار می‌کنند و جلو می‌روند. اینجا بود که به اصل بسیار زیبای همخوانی رسیدیم. اصلی که سنگ بنا و شرط اساسی تمام نظریاتمان شد:

اگر نظریه ی جامعی ارائه می‌شود، این نظریه باید در شرایط خاصی که مکانیک نیوتونی برقرار است، معادلات نیوتون را بدست دهد.

برای مثال، اگر به دنبال نظریه‌ی جامعی هستیم که قلب اتم را نیز برایمان توضیح دهد، چنانچه در معادلاتمان باز از اتم به اجسام عادی و سرعت‌های معمولی رسیدیم، باز معادلات باید همان معادلات نیوتون شوند. و این اصل چراغ راهمان شد. تابش جسم سیاه، اثر فوتوالکتریک، اثر کامپتون و … هر یک بیش از پیش ما را به سمت نظریه‌ی شگفت‌انگیز کوانتوم سوق داد.

دوگانگی موج و ذره یکی از مفاهیم عجیب مکانیک کوانتومی- نگاره از ویکی‌پدیا

با مکانیک نیوتونی و درک ماهیت موجی-ذره‌ای در ابعاد کوانتومی، هایزنبرگ ، شرودینگر و دیراک زبانی ساختند بسیار مدرن که ما را به اعماق ماده راه داد. در اوایل قرن بیستم بود که اینیشتین با تئوری زیبای نسبیت خاصش از راه رسید. نظریه‌ای که در پاسخ به مسئله‌ی یکسان بودن سرعت نور نسبت به هر ناظر لخت با هر سرعتی نوشته شده بود. این نظریه نشان داد که در سرعت‌های بالا،  زمان هم از نگاه ناظرهای مختلف متفاوت است و به این صورت، مفاهیم قدیمی فضا و زمان به هم گره خوردند و مفهومی بنیادیتر به نام فضا-زمان شکل گرفت. اما زیبایی بی‌نظیر معادلات نسبیت خاص درآن بود که اگر سرعت متحرک نسبت به سرعت نور کم میبود -مثلا در حد سرعت حرکت ما و وسایل نقلیه‌مان- معادلات باز به همان معادلات آشنای نیوتون میرسید. پس ظاهرا ما همه چیز را می‌دانستیم. در قلب ماده مکانیک کوانتوم جواب سوالاتمان را می‌داد. برایمان هسته و اتم را توضیح داد. اتم شکافتیم. انرژی گرفتیم و با توحشی که هنوز در وجودمان تمامی ندارد بمب ساختیم. در سرعتهای بالا، معادلات نسبیت حلال مشکلاتمان شد و هنگامی که سرعت کم میشد و ابعاد ماده به ابعاد معمولی میرسید، معادلات نیوتون زندگی روزمره‌مان را پاسخگو بود.

نیروی گرانشی چه؟

آیا گرانش همانگونه که نیوتون تصور کرده بود، شکلی از نیرو بود؟ و این باز آلبرت اینیشتین بزرگ پس از حدودا یک دهه از ارائه‌ی نسبیت خاص، نسبیت عام را مطرح کرد و از گرانش نه به عنوان یک نیرو که به عنوان اثری هندسی نام برد. در واقه آنچه به عنوان نیروی گرانشی می‌شناسیم چیزی نیست جز خمیدگی فضا-زمان در اثر وجود ماده. از دل این تئوری ، سیاهچاله‌ها، کرمچاله‌ها و امواج گرانشی سربرآوردند. ترکیب این نظریه با شواهد رصدی مبنی بر انبساط کیهان، معادلات فریدمان در توصیف کیهان را بدست داد. این معادلات ما را به بیگ بنگ رساندند. جایی که احتمالا آغاز فضا-زمان و در نتیجه کیهان زیبای ماست. سرانجام با اضافه کردن نظریه‌ی تورم و همچنین کشف اثرات ماده‌ی تاریک و انرژِی تاریک، به مدل استاندارد کیهانشناسی رسیدیم. مدلی که کیهانی را شرح می‌دهد که از مه‌بانگ آغاز کرده، ناگهان تورم یافته و سپس ذرات در آن شکل گرفته‌اند. ذرات ماده و ضد ماده و همچنین چیزی به نام ماده‌ی تاریک که البته هنوز هویتش را نمی‌دانیم. ماده بر ضد ماده غلبه کرده و همین موجب شکل‌گیری کهکشان‌های زیبا، سیارات و ستاره‌ها شده است. ماده‌ معمولی که میشناسیم که تنها ۵ درصد از کل جهان را تشکیل داده است. این ماده شامل کوارک‌ها که تشکیل دهنده‌ی نوترون و پروتون‌اند، نوترینوها، آنتی نوترینوها و ذرات دیگر است که همه و همه در مدل استاندارد ذرات بنیادی به زیبایی کنار هم نشسته‌اند.

تاریخچه انبساط جهان

پس از موفقیت‌های مکانیک کوانتومی، مثل هر نظریه‌ی دیگری، معایبش هم آشکار شد و یکی از آن عیب‌ها، ناتوانی مکانیک کوانتومی در حل مسائلی بود که طی آنها ذره خلق میشد. این موارد ما را به سمت نظریه‌ی میدان‌های کوانتومی سوق داد، که ریچارد فاینمن آن را پایه ریزی کرد و رسما دید ما به جهان زیر اتمی تکامل زیبایی یافت. در سالهای اخیر با پیشرفت‌های چشم‌گیر تکنولوژی و علوم مهندسی، بالاخره وجود ذره‌ی هیگز تایید شد. تابش زمینه‌ی کیهانی هر روز مطالعه می‌شود. سال گذشته پیشبینی صد ساله‌ی آلبرت اینیشتین تحقق یافت و امواج گرانشی آشکار شدند. پس این طور به نظر میرسد که هر روز بیشتر از روز قبل با طبیعتمان به زبان مشترکی میرسیم. هر روز بیش از قبل زیبایی ریاضیاتمان، و نظریاتی که می‌نویسیم آشکار می‌شود.

پرسش‌های پیش‌رو

اما هنوز علامت سوال‌های بزرگی در پیش است. ماده‌ی تاریک واقعا چیست؟ انرژی تاریک چیست؟ این دو روی هم رفته ۹۵ درصد از جهان ما را تشکیل می‌دهند و هنوز برایمان ناشناخته‌اند. نظریات جدیدمان تا چه اندازه کارآمدند؟ تئوری ریسمان، نظریه‌ی ابرتقارن، گرانش تعمیم یافته، کیهان شناسی مدرن و … . هر روز بیش از قبل پیشرفت می‌کنیم و به کشف حقیقت نزدیک می‌شویم.‌ اما واضح است که در پی اینچنین تلاشی به قدمت عمر ما بر روی این کره‌ی خاکی، سوالات زیادی حل نشده باقی مانده‌اند و این چالش بزرگی پیش روی زیباترین وجه ریاضیات، یعنی فیزیک نظریست.

مدتی پیش کتابی میخواندم به نام «درباره‌ی معنی زندگی» از ویل دورانت.

اوبث اشاره می کرد که تلاش ما برای یافتن حقیقت، در واقع تمام اعتماد به نفسمان را از بین برد . چرا که زمانی ما مرکز جهان بودیم و همه چیز معطوف به ما بود. اما دانشمندان نشان دادند که ما گونه‌ای ناتوان در گوشه‌ای از این جهانیم و روزی تنها خورشیدی که میشناسیم نابودمان خواهد کرد و مولکول‌های ما تجزیه خواهد شد و آن روز پایان ماست. این جمله و نگاهش اگرچه از دید یک فیلسوف جالب و قابل تامل است، اما من قویا معتقدم حقیقت، بسیار زیباتر از امنیت ساختگی به وسیله‌ی توهم است. حقیقت هرچه هست، به ذات خود زیباست و این زیبایی دوچندان میشود وقتی به زبان ریاضی بیان میگردد. این جادوی فیزیک است.

همانگونه که زمانی فاینمن گفت:

«شاعران گفته‌اند که علم زیبایی ستاره ها را ضایع میکند، چون که آنها را صرفا کره‌هایی از اتم‌ها و مولکول‌های گاز می‌دانند. اما من هم میتوانم ستاره‌ها را در آسمان شب کویر ببینم و شکوه و زیبایی‌شان را حس کنم. می‌توانم این چرخ فلک را با چشم بزرگ تلسکوپ پالومار تماشا کنم و ببینم که ستاره ها دارند از هم‌دیگر، از نقطه ی آغازی که شاید  زمانی سرچشمه‌ی همگی‌شان بوده است دور می‌شوند. جست‌وجو برای فهمیدن این چیزها گمان نمی‌کنم لطمه‌ای به رمز و راز زیبایی این چرخ فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمی‌زنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد چه شعر ها که برایش نمی‌سرایند اما اگر در قالب کره‌ی عظیم چرخانی از متان و آمونیاک باشد سکوت اختیار میکنند؟»

اگر شما هم به دنبال زیبایی‌های جهان بی‌نظیرمان هستید، به دنیای ریاضیات خوش آمدید.