رفتن به نوشته‌ها

برچسب: طیف جذبی

انتقال به سرخ به زبان آدمیزاد

توی این پست میخوام مقداری درمورد مفهوم «انتقال به سرخ» و انواعش توضیح بدم. انتقال به سرخ یا «Redshift» مفهومیه که به کمک اون تونستیم دریچه‌ای از کهکشان‌ راه شیری خودمون به باغ وحشی از کهکشان‌ها و ساختارهای بزرگ مقیاس کیهانی باز کنیم. به کمک این پدیده، از حدود صد سال پیش، متوجه شدیم که کیهان، فقط محدود به کهکشان راه شیری نیست و بیش از پیش به اصل کوپرنیکی معتقد شدیم.

دیدن ویدیو در یوتیوب

انتقال به سرخ یعنی چی؟

حتما دقت کردید وقتی یه ماشین یا موتوری با سرعت از جلوتون رد میشه، صداش تغییر میکنه؛ همین‌طور که نزدیک‌تر میشه صداش زیرتر و وقتی عبور می‌کنه و دور میشه صداش کمی بم‌تر میشه. کمی اگر دقیق‌تر صحبت کنیم این اتفاق، به ترتیب، به معنی طول موج‌های کوتاه‌تر و بلندتر هست. به این پدیده، اثر داپلر میگن. خب حالا چرا این اتفاق میفته؟(دقت کنید که راننده اتومبیل تغییری توی صدا احساس نمی‌کنه!) احتمالا این وسط یا اتفاقی برای صوتی که به ما می‌رسه میفته یا اینکه برای خود ما! خداروشکر مشکل از ما و سیستم شنواییمون نیست که بگیم دچار کج‌شنوایی شدیم! داستان به اینجا برمی‌گرده که منبع تولید موج صوتی نسبت به ما در حال حرکت هست؛ بنابراین همین‌طور که اتومبیل از ما دورتر میشه، هر قله(دره) متوالی، از جایی دورتر از ما، نسبت به موج قبلی منتشر میشه و یه خرده زمان بیشتری می‌بره تا به ما برسه. با فرض این‌که سرعت موج صوتی ثابت هست، پس فاصله بین قله‌ها (دره‌ها) هم باید بیشتر باشه؛ یعنی طول موج بیشتر میشه (معادل فرکانس کمتر). وقتی که منبع صوت درحال نزدیک شدن هست، دقیقا عکس این اتفاق میفته و طول موج برای «ما» که ناظر هستیم تغییر می‌کنه و کوتاه‌تر میشه.

توجه کنید که این‌جا مسأله، انتخاب چارچوب مرجع هست. یعنی اگه ما که وایستادیم هم مثلا درحال شیپور زدن باشیم(به دلایلی نامعلوم! ؛)) اتومبیل در حال عبور، همین تغییر در فرکانس رو حس می‌کنه. بنابراین اثر داپلر به‌دلیل حرکت نسبی بین منبع صوت و ناظر اتفاق میفته.

اثر داپلر

در ۱۸۴۲ میلادی، جناب آقای داپلر برای اولین‌ بار این توجیه فیزیکی رو برای این پدیده ارائه داد و ادعا کرد که این پدیده برای هر نوع موجی درسته و مشخصا پیشنهاد داد که رنگ‌های مختلف ستاره‌ها، به‌خاطر حرکتی هستش که نسبت به ما دارن (البته خیلی زود معلوم شد که رنگ ستاره‌ها، فقط به دمای سطحی‌ اون‌ها بستگی داره و نه حرکتشون نسبت به زمین). شش سال بعد، جناب فیزو به این نکته اشاره کرد که جابه‌جایی که در خطوط طیفی ستاره‌ها مشاهده میشه، به‌‌دلیل اثر داپلر هست. به همین خاطر بعضی مواقع به این اثر، «اثر داپلر-فیزو» هم میگن. برای این‌که بحث رو ادامه بدیم، اجازه بدید اول توی یه قسمت پرانتزطوری، مختصرا درمورد طیف‌ها صحبت کنیم تا موضوع روشن بشه.

منظور از طیف یه ستاره چیه؟  

چگونگی شکل‌گیری انواع طیف‌ها (طیف پیوسته، جذبی و گسیلی)

اگه یه منشور رو جلوی نور خورشید بگیرید، رنگین کمانی در طول موج‌های مرئی تشکیل میشه که بهش طیف پیوسته میگن. حالا فرض کنید که گاز سردی از ماده خاصی رو بر سر راه این نور قرار بدید. وقتی نور به اتم‌های گاز سرد برخورد می‌کنه، توی بعضی از طول موج‌های خاص که تابعی از اختلاف انرژی بین تراز‌های الکترون‌های برانگیخته شده هست، جذب میشه. بنابراین توی طیف جدید، چند خط تیره در طول‌ موج‌های مختلف وجود داره. به این طیف، «طیف جذبی» میگن. این‌بار فرض کنید که این گاز رو داغش بکنیم. دقیقا توی طول موج‌هایی که توی حالت قبل جذب اتفاق افتاده بود، این‌بار گسیل نور داریم؛ توی این حالت، وقتی الکترون‌های برانگیخته از ترازهای انرژی بالاتر به تراز‌های انرژی پایین‌تر گذار می‌کنن، نوری گسیل میشه که طول موجش، متناسب با اختلاف انرژی تراز ابتدایی و انتهایی هست. این بار طیف، فقط شامل چند خط روشن در طول موج‌های مختلف هست و بهش «طیف گسیلی» میگن. نکته‌ای که وجود داره اینه که عناصر مختلف دقیقا توی طول موج‌های مشخصی جذب یا گسیل دارن. به‌عبارت دیگه هر عنصر، طیف منحصر به فرد خودش رو داره. بنابراین با دیدن طیف یه ستاره، میشه فهمید که چه عناصری در جوّش وجود دارن.

همون‌طور که اشاره شد، طیف عناصر مختلف دارای خطوط طیفی در طول موج‌های مشخصی هستن. وقتی که ستاره‌ای نسبت به ما در حال حرکت باشه، خطوط طیفی که مربوط به عناصر مختلف شناخته شده هست کمی جابجا میشن؛ اگه ستاره در حال دور شدن از ما باشه، خطوط طیفی به سمت طول موج‌های بلندتر (انتقال به سرخ) و اگه در حال نزدیک شدن باشه، به سمت طول موج‌های کوتاه‌تر جابجا میشن(انتقال به آبی).

جدول تناوبی طیف‌ها

انواع انتقال به سرخ

ما سه نوع انتقال به سرخ برای نور داریم: داپلر نسبیتی، کیهانی و گرانشی. اساس همه‌شون همون انتخاب چارچوب مرجع و تأخیر (تسریع) زمانی بین قله‌های متوالی موج هست که منجر به انتقال به سرخ(آبی) خطوط طیفی میشه. اما منشأ اون میتونه علت‌های مختلفی داشته باشه.

داپلر نسبیتی

تا این‌جا توضیحاتی که در مورد انتقال به سرخ دادیم مربوط به این نوع هست. یعنی سرعت نسبی منبع نور و ناظر باعث این اثر میشه. هر چی این سرعت نسبت به ناظر بیشتر باشه، مقدار انتقال به سرخ و جابجایی در طیف بیشتره. از روی مقدار جابه‌جایی خطوط طیفی میشه سرعت منبع نور رو بدست آورد. وستو اسلیفر در ۱۹۱۲ میلادی، سرعت چندتا از سحابی‌ها رو با این روش اندازه گرفت و دید که سرعتشون خیلی بیشتر از اجرام معمولی دیگه‌ هستش که قبلا رصد کرده بودن. هرچند تا اون زمان، فرضیاتی مطرح شده بودن که احتمالا کهکشان‌های دیگه ای بیرون از کهکشان راه شیری وجود دارن، اما شاهدی برای این موضوع وجود نداشت. چند سال بعد ادوین هابل، فاصله این سحابی‌ها رو اندازه گرفت و متوجه شد که این‌ها در واقع کهکشان‌هایی بیرون از کهکشان راه شیری هستن. (الآن می‌دونیم که حدود ۱۰۰ میلیارد کهکشان دیگه توی کیهانمون وجود داره، تقریبا اندازه تعداد ستاره‌های داخل کهکشان خودمون!) بنابراین این اثر، ابزار قدرتمندی رو در اختیارمون قرار میده که ما باهاش می‌تونیم سرعت اجرام سماوی رو اندازه بگیریم.

انتقال به سرخ کیهانی

انبساط عالم باعث دور‌شدن کهکشان‌ها از همدیگه و درنتیجه انتقال به‌سرخ در مقیاس‌های مکانی بزرگ میشن

سال ۱۹۲۹، هابل نمودار سرعت بر حسب فاصله رو برای تعدادی از کهکشان‌ها رسم کرد و نتیجه گرفت که هرچقدر اونا دورتر هستن با سرعت بیشتری درحال دور شدن از ما هستن (قانون هابل) و این یعنی جهان در حال انبساطه. این کشف، تأییدی بود برای حلی که چند سال قبل‌تر، از معادلات میدان انیشتین به‌دست اومده بود که الآن معروف به معادلات فریدمان هست. پس بنابراین چون جهان درحال انبساطه یا به بیان بهتر، فضا-زمان داره منبسط میشه، کهکشان‌ها نسبت به ما در حال حرکتند و چون همه‌شون دارن از ما دور میشن بنابراین در خطوط طیفیشون انتقال به سرخ مشاهده میشه. منشأ این انتقال به سرخ انبساط کیهانه. به‌همین‌خاطر به اون انتقال به سرخ کیهانی گفته میشه.

اما از کجا تشخیص بدیم که جابجایی طیفی به‌خاطر انبساط کیهان هست یا حرکت مشخصه خود منبع نور؟ خب نکته‌ای که وجود داره اینه که انبساط کیهانی رو توی فواصل نزدیک نمیشه دید. عملا انتقال به سرخ از حدود فاصله چندین هزار سال نوری به بعد قابل ملاحظه هست. برای ستاره‌ای که داخل کهکشانی با این فاصله قرار داره، قسمتی از انتقال به سرخش مربوط به حرکت موضعی خودش هست (اثر داپلر نسبیتی) و قسمتیش هم مربوط به انبساط فضا-زمان (انتقال به سرخ کیهانی). اما از اونجایی که سازوکار این دو تا با هم متفاوت هست، میشه انتقال به سرخ کیهانی رو از مدل کیهان‌شناسی که درنظر گرفتیم بدست بیاریم و از قسمت مربوط به حرکت مشخصه ستاره تفکیک کنیم.

از اون‌جایی‌ که کیهان‌شناس‌ها با فواصل خیلی زیاد سروکار دارن، کهکشان‌ها رو عملا یک نقطه در نظر می‌گیرن (بدون اعتنا به اتفاقاتی که داخل کهکشان‌ها داره میفته و ستاره‌ها و سیارات و احتمالا موجوداتی که دارن اون‌جا زندگی می‌کنن!) و به‌جای استفاده از واحدهایی مثل سال نوری یا پارسک برای گفتن فاصله‌ها، معمولا از انتقال به سرخ(رِد شیفت) استفاده میکنن. انتقال به سرخ‌های بزرگ‌تر، یعنی فواصل دورتر از نظر مکانی و هم از نظر زمانی! چون نور اجرام دورتر، بیشتر طول میکشه تا به ما برسه. پس هر چی فواصل دورتری رو توی عالم رصد بکنیم، درواقع داریم خاطرات قدیمی‌تری از عالم رو مرور می‌کنیم؛ قدیمی‌ترین تصویر عالم، مربوط به تابش زمینه کیهانی، با رِدشیفت ۱۰۸۹ هست.   

انتقال به سرخ گرانشی

گرانش می‌تونه باعث تأخیر زمانی و درنتیجه اثر انتقال به سرخ گرانشی بشه

طبق نظریه نسبیت عام انیشتین، ماده یا انرژی میتونه فضا-زمان اطرافش رو خمیده کنه و از این طریق گرانش کنه. نوری که از داخل یه چاه پتانسیل گرانشی، مثلا از سطح یه ستاره، به‌سمت بیرون در حال حرکته، با تأخیر زمانی همراهه. درنتیجه توی طیفش انتقال به سرخ دیده میشه. هرچقدر گرانش اون جسم بیشتر باشه، این انتقال بیشتر هست. مثلا در اطراف ستاره‌های نوترونی و سیاه‌چاله‌ها که بسیار پرجرم هستن، این اثر رو میشه دید.

خلاصه اینکه انتقال به سرخ مفهوم بسیار مهم و کاربردی برای فهم ما از عالم پیرامونمون هست. راستی انتقال به سرخ یه کاربرد دیگه‌ای هم داره. از اون توی دوربینای کنترل سرعت هم استفاده میشه که احتمالا خاطرات خوبی باهاش دارید! :)) جا داره این پست رو با یادی از همه‌ گذشتگان راه علم به پایان ببریم. روحشان شاد!