رفتن به نوشته‌ها

برچسب: برف دانه کخ

فرکتال‌ها| قسمت دوم، ویژگی‌ها و تعاریف

«به مفهوم فرکتال ها باید همان جوری نگریست که یک زیست شناس به مفهوم زندگی می نگرد.»

کنث فالکونر (ریاضی دان)

توی پست قبلی مقدمهٔ کوتاهی دربارهٔ فرکتال‌ها و اینکه هندسهٔ توصیف گر طبیعت یک هندسهٔ فرکتالی هست یک توضیحاتی دادم. صرف نظر از فرکتال‌های ساختگی (فرکتال‌هایی که ریاضیدان‌ها معمولاً می‌سازند مثل برف‌دانه کخ) به هر طرف که نگاه کنید می‌تونید یک فرکتال طبیعی رو مشاهده کنید. سر سفره «کلم ترشی (یا بروکلی)»، کنار ساحل «خطوط ساحلی»، «برگ درخت»، «شش‌ها (ریه)»، «رعد و برق» و … خب این فرکتال‌ها چه ویژگی دارند؟ فرکتال‌ها ۳تا ویژگی خاص دارند که بهشون اشاره می‌کنم:

۱) فرکتال ها خودمتشابه هستند!

یک گل‌کلم یا کلم بروکلی رو در نظر بگیرید؛ اگه با یک چاقوی تیز، یکی از گلچه‌های گل کلم رو ببرید و جداگانه بهش نگاه کنید؛ چیزی که به نظر می‌رسه یک گل کلم کامله، اما کوچکتر! اگه باز برش بدید، دوباره، دوباره، دوباره، …، شما گل‌کلم‌های کوچکتری بدست می آرید. به تجربه دیده شده که بعضی از اشکال این خاصیت عجیب رو دارند، یعنی هر قسمت از شکل مثل کل شکله با این تفاوت که اندازه کوچکتری داره. به این خاصیت خود متشابهی میگند. توی برف‌دانه کخ هم اگر قسمتی از شکل روجدا کنید می‌بینید که دقیقاً مثل کل شکله و این تشابه هیچ وقت قطع نمیشه و همین‌طور ادامه داره! ممکنه که شما بگید یک خط راست هم اگر تکه‌تکه بشه باز هم شکل قسمت اول رو داره پس فرکتاله! اولا اشتباه نکنید یک ویژگی شرط لازمه نه کافی! در ثانی معمولاً منظور ما از خود متشابه بودن، خود متشابه بودن در یک الگوی غیرعادی و غیربدیهیه!

کلم بروکلی، موجودی با ساختار فرکتالی
کلم بروکلی، موجودی با ساختار فرکتالی – نمونه یک موجود  خودمتشابه 🙂

 

۲) فرکتال ها دارای بعد غیرصحیح هستند!

همیشه ما با ابعاد صحیح روبه رو بودیم! مثلاً میگیم خط موجودی ۱بعدی، مربع یک شکل ۲ بعدی و مکعب یک شکل ۳بعدیه (ابعاد اقلیدوسی، همه هندسه ای که ما اول یادمی‌گیریم اقلیدوسی هست)! حتی فضا-زمان در نسبیت ۴ بعدیه و نه مثلاً ۳/۴۵ بعدی! همین‌طور نظریه‌هایی مثل ریسمان هم که فراتر از ۳ بعد رفته‌اند هنوز تعداد بعد توجیه کننده‌شون صحیحه مثلاً ۱۱ نه ۱۱/۲۴! ممکنه بپرسید این غیرصحیح بودن بعد فرکتال‌ها دیگه چه صیغه آیه! پس اجازه بدید که «بعد» رو تعریف کنیم. به این شکل نگاه کنید: dمطابق شکل، فرض کنید که از یک قطعه شکل سمت چپ میخوایم شکل بزرگتر (با بزرگنمایی ۳ برابر) رو درست کنیم؛ برای این کار به چند قطعهٔ هم اندازه با شکل سمت چپ نیاز داریم؟ برای خط معلومه، اگه همون خط قبلی سه برابر بشه (طولش) شکل جدید حاصل میشه، پس به ۳قطعه هم‌اندازه نیاز داریم. برای مربع هم مثل خط می‌مونه با این تفاوت که هم طولش ۳ برابر میشه و هم عرضش (به شکل نگاه کنید) پس ما به ۹ قطعهٔ هم‌اندازه نیاز داریم؛ و وقتی هم که مکعب میشه، بزرگنمایی هم برای طول و هم برای عرض و هم برای ارتفاع اتفاق افتاده و این دفعه به ۲۷ مکعب نیاز داریم. (به شکل نگاه کنید!) خب این عددهای به دست اومده رو دوباره نگاه کنیم.  من توی یک جدول می‌نویسمشون؛

فکر کنم رابطه ای که بین این اعداد هست رو فهمیدید: ۳ و  ۹ و ۲۷! یک رابطه که یک تصاعد هندسی هست رسما:

تعداد قطعه هم‌اندازه برای ساخت شکل جدید = بزرگنمایی به توان بعد شکل

از روی این رابطه با استفاده از لگاریتم گیری از طرفین میشه بعد را بدست اورد، یعنی «بعد» میشه:

بعد = لگاریتم تعداد قطعه هم‌اندازه برای ساخت شکل جدید تقسیم بر لگاریتم بزرگنمایی 

اگر n تعداد قطعات و m بزرگنمایی باشه:

daum_equation_1405194334641ما در حقیقت یک تعریف از بعد ارائه کردیم. بعد خودمتشابهی! خب با این تعریف بریم سراغ محاسبه‌ی ابعاد فرکتال ها؛  فرض کنید یک برف‌دانه به این شکل میسازیم که مثل شکل قبل از یک مربع با (با بزرگنمایی ۳) یک مربع بزرگتر که شامل ۹ مربع هم اندازه با مربع اولیه هست به وجود میاد.

snowحالا مربع‌های کوچیک بالایی، چپی، راستی و پایینی مربع کوچیک مرکز رو مطابق شکل حذف می‌کنیم. اگر همین روند رو ادامه بدیم یک برف دانه ساخته می‌شه! (n روی شکل منظور مرحلهٔ ساخت شکله با n تعداد قطعات کوچکتر اشتباه نگیرید!)

daum_equation_1405194713785بعد این برفدانه همین جور که می‌بینید یک عدد بین ۱ و ۲ هست! و اینجاست که دیگه بعد، یک عدد صحیح به دست نمیاد. مندلبرو اسم این بعد رو «ناهمواری» میذاشت که تعریف جالب‌تریه مخصوصاً برای اجسامی که دارای برآمدگی هم باشند! چیزی که الان مطرح میشه اینه: معنی این ۱/۴۶۴۹۷ چیه؟ ما میدونیم که یک موجود دو بعدی یعنی اینکه توی صفحه جا میشه و یک موجود یک بعدی یعنی یک خط! پس این عدد بین ۱ و ۲ یعنی چی؟! این به همون ماجرا برمیگرده که وقتی ساختن این شکل رو تا بینهایت ادامه بدیم با یک شکل پر از لبه رو به رو میشیم. در ضمن یادآوری کنم که این فقط یک عدد هست! هر چند مفهوم قشنگی پشتش هست ولی یک عدده که ناهمواری شکل رو مطرح میکنه! به هر حال کاری که ریاضیدان‌ها بکنند قرار نیست واقعاً واقعی باشه 🙂

یک نکتهٔ دیگه اینکه هیچ وقت مطرح نمی‌شه که «اندازهٔ یک فرکتال» یا «متوسط اندازه یک فرکتال» چقدره بلکه همیشه ما با همین عدد که بعد غیرصحیح یا ناهمواری فرکتال هست کار می‌کنیم! شما امروز میتونید یه عدد به عنوان ناهمواری به کامپیوتر بدید و اون در کسری از ثانیه یک شکلی با اون ناهمواری رو براتون تولید کنه یا یک شکل دلخواه رو با اون ناهمواری بازتولید کنه! به همین سادگی! تقریباً هندسه فرکتالی پیشرفت زیادی کرد چون سر و کله کامپیوتر پیدا شد. در مورد این توی قسمت آخر بیشتر توضیح میدم!

خب بریم سراغ یه مثال دیگه؛ مثلث سیرپینسکی فرض کنید یک مثلث (متساوی الاضلاع برای قشنگی بیشتر!) داریم. وسط هر ضلعش رو مشخص میکنیم و بهم وصلشون میکنیم تا ۴ تا مثلث جدیدتر ساخته بشه. مثلث وسط رو دور می‌ریزیم. این کارو تا ابد انجام میدم. الان ما یک فرکتال داریم که بعدش ۱/۵۸ هست:
daum_equation_1405196329871
این عدد بیشتر از عدد قبل هست، فکر کنم شکل خودش نشون میده که ناهمواری مثلث سیرپینسکی از برف دانه ای که ساختیم بیشتره!

شیوه ایجاد مثلث سیرپینسکی
شیوه ایجاد مثلث سیرپینسکی

 

۳) بعد خود متشابهی فرکتال‌ها از بعد توپولوژیک اونها بیشتره!

این که بعد توپولوژیک دقیقا چیه، چیزیه که از حوصله‌ی این پست خارجه! شاید جداگونه در موردش بنویسم ولی فعلا به عنوان آشنایی، همین جوری که ما بعد خود متشابهی رو به صورت تقسیم دوتا لگاریتم تعریف کردیم میشه یه جور دیگه با ادبیات و شاید بهتره بگم ریاضیات مناسب‌تری بعد رو تعریف کرد و اون موقع یک سری عدد جدید به دست میاریم. این اعداد در مورد فرکتال‌ها جوریه که با مقدار خودمتشابهی شون فرق دارند و کمتر از اونها هستند مثلا بعد توپولوژیکی مثلث سیرپینسکی ۱ و بعد خودمتشابهیش (همین جوری که حساب کردیم) ۱/۵۸۵ هست که ۱/۵۸۵ > ۱!

خب جمع بندی کنیم؛ فرکتال ها دارای سه ویژيگی: ۱) خودمتشابهی ۲) دارای بعدخودمتشابهی غیرصحیح و ۳) بعدتوپولوژیکی کمتر از بعد خودمتشابهی هستند! پیشنهاد میکنم ویدیو زیر رو حتما ببینید؛ سخنرانی مندلبرو (پدر هندسه فرکتالی) در تد هست. درست چندماه بعد از این سخنرانی، مندلبرو، پیرمرد مهربان دنیای فرکتال ها به خاطر سرطان لوزالمعده ای که داشت از دنیا رفت. روحش قرین آرامش باد!

فرکتال‌ها| قسمت اول، مقدمه

220px-Arabic_script-04.svgقصد دارم تا توی ۵ تا پست در مورد فرکتال‌ها (برخال ها – fractals) بنویسم. این پست رو اختصاص میدم به یک مقدمه و معرفی در مورد این موضوع:

همه ی ما با شکل هایی مثل دایره، مثلث، مربع، خط راست، چندضلعی ها و … آشنا هستیم، اشکال اقلدیسی که ساده ترین هندسه موجود (هندسه اقلدیسی) رو میسازند و ما به کمک اونها میتونیم یک تقسیم بندی برای اشکال محیط دور و برمون داشته باشیم. ولی حقیقت اینه که طبیعتی که ما اون رو توصیف میکنیم اصلا شکل اقلیدوسی نداره! به عبارت دیگه شکل هایی که توی دنیای واقعی هستند اقلیدوسی نیستند! به قول بنوآ مندلبرو، پدر هندسه فرکتالی:

«ابرها کره نیستند، کوها ها مخروط نیستند،‌ خطوط ساحلی دایره نیستند، پوست درخت صاف نیست و همین طور نور روی خط راست حرکت نمی کند!»

در حقیقت هندسه ای که دنیای اطراف ما رو توصیف میکنه یک هندسه پیچیده تری هست به نام هندسه برخالی یا هندسه فرکتالی. اجازه بدید موضوع رو با یک مسئله اندازه گیری ادامه بدم؛ فرض کنید به عنوان یک گردشگر وارد اصفهان -نصف جهان – شدید و میخواهید که فاصله ی بین پل خواجو تا سی و سه پل رو کنار زاینده رود قدم بزنید. از یکی از بومی های اونجا می پرسید که فاصله ی این پل تا اون پل چقدره و احتمالا جوابی حول و حوش ۲ کیلومتر میشنوید که برای یه قدم زدن، مناسب به نظر میرسه. خب این ۲ کیلومتری که جواب شماست چه جوری اندازه گیری شده؟ قریب به یقین مثل اندازه گیری فاصله دوتا شهر بوده. ولی اگه شما بخواهید دقیق این فاصله رو اندازه گیری کنید، یعنی از روی خطوط ساحلی این کارو انجام بدین بسته به این که واحد اندازه گیریتون چی باشه (چه اندازه ای باشه) جواب های مختلفی به دست میارید. فرض کنید با چند تا خط کش با طول های ۱۰۰، ۵۰ و ۱۰ سانتی متری این کارو میخواهید انجام بدین. چون خطوط ساحلی خم های کج و معوجی هستند، هر چقدر خط کش شما کوچیک تر باشه، خط کش شما نزدیک تر به شکستگی ها میشه و شما دقیق تر اندازه گیری میکنید. نکته اینجاست که با کوچیک و کوچیک تر شدن خط کش (واحد اندازه گیری) عدد به دست اومده بزرگ و بزرگتر میشه. بنابراین دقیق ترین اندازه گیری وقتی هست که طول خط کش به صفر میل کنه و مجموع واحدهای اندازه گیری شما (که حالا تبدیل به نقطه شدند) کاملا بر خطوط ساحلی منطبق بشه. ولی خب یه مشکلی هست و اون اینه که در این صورت عدد شما به بینهایت میل میکنه که خوشایند نیست! یعنی شما باید یک مسیر بینهایت طولانی رو قدم بزنید! نه نگران نباشید، چیزی که شما می پیمایید اون خطوط ساحلی نیست! شما موقع قدم زدن یک سری خط راست بهم پیوسته رو می پیمایید که همون ۲ کیلومتر میشه (خدا رو شکر کنید که دقیقا از روی خطوط ساحلی نمیتونید حرکت کنید . و گرنه هیچ وقت نمی رسیدین!) خب شاید این یکمی برای شما عجیب باشه که در یه جای محدود یه خم با طول بینهایت پیدا شده. خب راستش این مفهوم عجیب،‌ مفهوم هندسه فرکتال ها رو داره میگه!

برای روشن شدن قضیه بذارید یه مثال با شهود ریاضی بیشتری بزنم؛

برف دانه کخ
برف دانه کخ

برفدانه ی کخ! یک مثلث (برای راحتی فعلا متساوی الاضلاع) به ضلع یک رو در نظر بگیرید. خب محیط این مثلث (جمع جبری اندازه ی اضلاع) هست ۳ و مساحت این مثلث طبق رابطه ای که برای مثلث های متساوی الاضلاع وجود داره هست رادیکال ۳ تقسیم بر ۴ ضرب در مربع طول یکی از اضلاع. حالا اگر ما توی هر مرحله این بلا

رو سر مثلث بیاریم که هر ضلعش رو مطابق شکل به سه قسمت تقسیم کنیم، قسمت وسطش رو دور بریزیم و دو قسمت هم طول با اون رو بالا بیاریم

اون موقع محاسبات پایین نشون میده (امیدوارم واضح باشه)‌ که بعد از n مرحله محیط و مساحت به چه عددی میل میکنه:

برای محیط:

محیط برای مساحت:

مساحت

این نشون میده که این شکل که از ابتدایی ترین فرکتال ها هست دارای مساحت محدود ولی محیط نامحدود (بی نهایت) هست. که همون ماجرای اندازه گیری طول خطوط ساحلی از پل خواجو تا سی و سه پل هست.  فکر کنم برای مقدمه کافی باشه!