Examples of ball packing, ball covering, and box covering. @wikipedia

«هندسه‌ی فرکتالی، فقط بخشی از ریاضیات نیست، بلکه موضوعی است که به هرکس کمک می‌کند تا این دنیا را متفاوت ببیند.»  بنوا مندلبرو – پدر هندسه‌ی فرکتالی

خیلی وقت پیش در مورد فرکتال‌ها نوشتم که شما می‌تونید اونا رو بخونید: 

این هفته، در مورد هندسه فرکتالی یک سخنرانی در دانشگاه شهید بهشتی داشتم با موضوع «مقدمه‌ای بر هندسه فرکتالی» می‌تونید ویدیوی این سخنرانی رو ببینید. همین‌طور اسلاید‌ها و فایل صوتی:

 

 

پیچیدگی چیست؟!

حدود۳۳۰ سال پیش، نیوتون با انتشار شاهکار خود، اصول ریاضی فلسفه طبیعی، نگاهی جدید نسبت به بررسی طبیعت  را معرفی کرد. نگاه نیوتون به علم به کمک نظریه الکترومغناطیس که توسط مکسول جمع بندی و در نهایت توسط آلبرت اینشتین کامل شد، شالوده فیزیک‌کلاسیک را بنا نهاد. انقلاب بعدی علم، توسط مکانیک کوانتومی رخ‌داد. ‌آن‌چه که مکانیک کوانتومی در قرن ۲۰ میلادی نشانه گرفت، مسئله موضعیت در فیزیک کلاسیک و نگاه احتمالاتی به طبیعت بود. نگاهی که سرانجام منجر به پارادایمی جدید در علم، به عنوان فیزیک مدرن شد. با این وجود، علی‌رغم پیشرفت‌های خارق‌العاده در فیزیک و سایر علوم، کماکان در توجیه بسیاری از پدیده‌ها وا مانده‌ایم. پدیده‌هایی که همیشه اطرافمان حاضر بوده‌اند ولی هیچ‌موقع قادر به توجیه رفتار آن‌ها نبوده‌ایم. بنابراین، می‌توان به این فکر کرد که شاید در نگاه ما به طبیعت و مسائل علمی، نقصی وجود داشته باشد. به‌ دیگر سخن، بعید نیست که مجددا نیاز به بازنگری در نگاهمان به طبیعت (تغییر پارادایم) داشته باشیم؛ عده‌ی زیادی معتقدند آن‌چه که در قرن ۲۱ام نیاز است، نگاهی جدید به مبانی علم است؛ نگاه پیچیدگی!

سردمداران فیزیک مدرن – پنجمین کنفرانس سُلوی (۱۹۲۷).

گاهی گفته می‌شود که ایده پیچیدگی، بخشی از چهارچوب اتحاد بخشی برای علم و انقلابی در فهم ما از سیستم‌هایی مانند مغز انسان یا اقتصاد جهانی است که رفتار آن‌ها به‌سختی قابل پیش‌بینی و کنترل است. به همین خاطر، سوالی مطرح می‌شود؛ آیا چیزی به عنوان «علم پیچیدگی» وجود دارد یا اینکه پیچیدگی متناظر با هر شاخه‌ای از علم، دارای شیوه خاص خود است و مردم در رشته‌های مختلف مشغول سر و کله زدن با سیستم‌های پیچیده زمینه کاری خود هستند؟! به عبارت دیگر، آیا یک پدیده طبیعی مجرد به اسم پیچیدگی، به عنوان بخشی از یک نظریه خاص علمی در سیستم‌های متنوع فیزیکی (شامل موجودات زنده)  وجود دارد یا اینکه ممکن است سیستم‌های پیچده گوناگونی بدون هیچ وجه مشترک وجود داشته باشند؟! بنابراین، مهم‌ترین سوالی که در زمینه پیچیدگی می‌توانیم بپرسیم این است که، به‌ راستی پیچیدگی چیست؟ و در صورت وجود پاسخ مناسب به این پرسش، به دنبال این باشیم که آیا برای تمام علوم یک نوع پیچیدگی وجود دارد یا اینکه پیچیدگی وابسته به حوزه مورد مطالعه است!

در مورد تعریف پیچیدگی، هنوز اتفاق نظری بین متخصصان یک رشته خاص، مانند فیزیک، وجود ندارد، چه برسد به تعاریفی که در رشته‌های متنوع مطرح می‌شود. این تعاریف در ادامه نقد و بررسی می‌شوند. با این وجود، مشترکات زیادی در بین تعاریف موجود وجود دارد که برای شروع بحث، مرور آن‌ها خالی از لطف نیست:

  • برای ما، پیچیدگی به معنای وجود ساختار به همراه تغییرات است. (۱)
  • از یک جهت، سیستم‌پیچیده، سیستمی است که تحول آن شدیدا به شرایط اولیه و یا اختلال‌های کوچک حساس است. سیستمی شامل تعداد زیادی قسمتِ مستقلِ درحالِ برهمکنش با یکدیگر که می‌تواند مسیرهای مختلفی برای تحولش را بپیماید. توصیف تحلیلی چنین سیستمی قاعتدا نیاز به معادلات دیفرانسیل غیرخطی دارد. از جهت دیگر، می‌توانیم نگاهی غیررسمی داشته باشیم، به این معنا که اگر بخواهیم قضاوتی داشته باشیم، سیستم «بغرنج (complicated) » است و قابلیت اینکه دقیقا به طور تحلیلی یا نوع دیگری توصیف شود  وجود نداشته باشد.(۲)
  • به طور کلی، صفت «پیچیده»، سیستم و یا مولفه‌ای را توصیف می‌کند که فهم یا تغییر طراحی و/یا عملکرد آن دشوار باشد. پیچدگی توسط عواملی چون تعداد مولفه‌های سازنده و روابط غیربدیهی بین‌ آن‌ها، تعداد و روابط غیربدیهی شاخه‌های شرطی، میزان تودرتو بودن و نوع ساختمان داده است. (۳)
  • نظریه پیچیدگی بیان می‌کند که جمعیت زیادی از اجزا، می‌توانند به سمت توده‌ها خودسازماندهی کنند و منجر به ایجاد الگو، ذخیره اطلاعات و مشارکت در تصمیم‌گیری جمعی شوند. (۴)
  • پیچیدگی در الگوهای طبیعی نمایانگر دو مشخصه کلیدی است؛ الگوهای طبیعی حاصل از پردازش‌های غیرخطی، آن‌هایی که ویژگی‌های محیطی که در آن عمل می‌کنند یا شدیدا جفت‌شده‌اند  را اصلاح می‌کنند و الگوهای طبیعی که در سیستم‌هایی شکل می‌گیرند که یا باز هستند یا توسط تبادل انرژی، تکانه، ماده یا اطلاعات توسط مرزها از تعادل خارج شده‌اند. (۵)
  • یک سیستم پیچیده، دقیقا سیستمی است که برهم‌کنش‌های چندگانه‌ای بین عناصر متفاوت آن وجود دارد. (۶)
  • سیستم‌های پیچیده، سیستم‌هایی با تعداد اعضای بالایی هستند که نسبت به الگوهایی که اعضای آن می‌سازند، سازگار می‌شوند یا واکنش نشان می‌دهند. (۷)
  • در سال‌های اخیر، جامعه علمی، عبارت کلیدی «سیستم‌ پیچیده‌»  را برای توصیف پدیده‌ها، ساختار، تجمع‌ها، موجودات زنده و مسائلی که چنین موضوع مشترکی دارند را مطرح کرده است: ۱) آن‌ها ذاتا بغرنج و تودرتو هستند. ۲) آن‌ها به ندرت کاملا تعینی هستند. ۳) مدل‌های ریاضی این گونه سیستم‌ها معمولا پیچیده و شامل رفتار غیرخطی، بدوضع (ill-posed) یا آشوبناک هستند. ۴) این سیستم‌ها متمایل به بروز رفتارهای غیرمنتظره (رفتارهاری ظهوریافته) هستند. (۸)
  • پیچیدگی زمانی آغاز می‌شود که علیت نقض می‌شود! (۹)

شمایی از موضوعات مطرح در سیستم‌های پیچیده – نگاره از ویکی‌پدیا

در مورد تعاریف فوق ابهاماتی وجود دارد؛ در (۱) باید ساختار و تغییرات را به درستی و دقت معنا کنیم. در (۲) باید به دنبال تلفیق سیستم‌های پیچده و مفاهیمی چون غیرخطی، آشوب‌ناک و بس‌ذره‌ای بودن باشیم و به درستی مشخص کنیم که آیا این‌ ویژگی‌ها شرط لازم / کافی برای یک سیستم پیچیده هستند یا نه. (۳) و (۴) مفاهیم محاسباتی و موضوعاتی از علم کامپیوتر را مطرح می‌کند که به خودی‌خود مسائل چالش‌برانگیزی هستند! (۵) ایده مرکزی غیرخطی بودن را مطرح می‌کند؛ در ادامه می‌بینیم با این که تعداد زیادی از سیستم‌های پیچیده از ویژگی غیرخطی بودن تبعیت می‌کنند، با این وجود غیرخطی بودن نه شرط لازم و نه شرط کافی برای پیچیدگی است. در مورد (۶) و (۷) نیز باید تاکید کنیم که بس‌ذره‌ای بودن و شامل اعضا/عناصر/مولفه/افراد زیادی بودن نیز شرط کافی برای پیچیدگی نیست.  در ادامه خواهیم دید، تعریف (۸) که ایده‌ی برآمدگی (ظهوریافتگی یا Emergence) را مطرح می‌کند می‌تواند مفهومی بسیار گیج‌کننده باشد برای اینکه به کمک آن بتوانیم سیستم‌های پیچیده را تمیز و تشخیص دهیم. در مورد تعریف (۹) باید بحث زیادی کنیم چرا که افراد زیادی در برابر نقص علیت ناراحت خواهند شد! به همین دلیل است که گاهی درک سیستم‌های پیچیده برای مردم دشوار است.

بنابراین با توجه به ابهامات تعاریف افراد مختلف در حوزه‌های گوناگون علم، بهتر از است که مفاهیم وابسته به پیچدگی را بررسی کنیم.

Continue reading

ferrimagnetism_-_magnetic_moment_as_a_function_of_temperature

بالاتر از دمای بحرانی (نقطه کوری)، ماده دیگر مغناطیسی نیست.

یه گذار روزمره مثل تغییر فاز آب رو در نظر بگیرید. گاز و مایع به واقع شبیه هم هستن! هر دو از نظر ما بی نظم هستن! حالا یکی یه کم بیشتر یکی یه کم کمتر. اما هیچ کدوم جامد منظم نیستن که همه سرجاشون نشسته باشن. 
مثال دیگه مواد مغناطیسی است. اینا توشون کلی ذره دارن که هر کدوم یک جهتی داره برای خودش- به زبان فنی اسپین. حالا دما خیلی زیاد باشه ماده‌مون که مغناطیسی نیست! یعنی مثلن آهن مذاب در دمای بالا براش سخته منظم باشه، به هم ریخته است. پس اون جهت‌ها همه تصادفی اند و بالطبع متوسط‌شون صفر و ماده مغناطیسی نیست! اما اگر دما پائین بیاد اوضاع عوض میشه، اینا می‌تونن یه جهت خاص رو بگیرن. به این میگن شکست خود به خودی تقارن

مردم با همین میخ و چکش سراغ هر تغییر فازی می‌رفتن و سربلند بیرون می‌اومدن. اما یهو آقای فون‌کیلیتزینگ یه چیز جالب دید: اگر یه مشت الکترون رو به دوبُعد محدود کنید، و بَعد میدان مغناطیسی روشن کنی (این همون روشی است که باهاش فهمیدن حامل بار، بارش منفی است) رسانندگی (همون جریان به ولتاژ با یک مشت ضریب) بهت یک سری عدد میده:۱ و۲ و۳ و … بعدتر عددهای کسری عجیب اما خاصی هم پیدا شدن. اما این طور نیست که شما بگی ۱۷.۳۰۸ بعد ما بهت بگیم آهان، میدان فلان رسانندگی اینه که تو می خوای! اعداد طبیعی یا کسری خاص! هرکی به هرکی نیست!

چند خم بسته با Winding Numberهای متفاوت.

چند خم بسته با Winding Numberهای متفاوت.

خب مردم هی دست به دهان بودن که چه طور میشه وسط این همه خطای آزمایش و کثیفی نمونه و غیره این اعداد این قدر خاص باشن؟! چرا این همه چیز پیوسته عوض میشه اما اینا نه؟!!

خب بالطبع اول سعی کردن که همون میخ و چکش رو استفاده کنن. اما این درب بسته بود. اما جناب تاولز و همکاراش نشون دادن که میشه اون اعداد رو محاسبه کرد. اینکه اون اعداد واقعن در اون مساله که بالا گفتم (اثر کوانتومی هال ) از کجا و چطور به دست میاد، رو کاریش نداریم، اما میشه یه مثال ساده زد؛ یک خم بسته‌ی دلخواه روی صفحه بکشید. بعد ببینید این خم چند بار مبدا رو دور زده؟! فرض کنید حالا یه میله ی بزرگ دارید و این خم شما در واقع یک ریسمان است. شما اون عدد (winding number) ریسمان رو مگر با بُریدن ریسمان نمی تونید تغییر بدید.

از سوی دیگه اون عدد همیشه یک عدد طبیعی است: ۰ و ۱ و غیره. حالا در اون دنیا این ریسمان چیز عجیب غریب تری است!

فازهای مختلف ماده - نگاره از nobelprize.org/

فازهای مختلف ماده – نگاره از nobelprize.org

ولی خب کلیت داستان همین است. یعنی یک عددی هست که اتفاقن در برخی موارد همین تعداد دور زدن‌های یک خم بسته حول مبدا است و جز با بُریدن نمیشه تغییرش داد. این بُریدن‌ها در واقع در دنیای جدید به معنای همون گذار فاز هستن، انگار که مایع می‌شد جامد! اینجا هم وقتی ریسمان مربوطه بُریده شد و دوباره بسته شد عدد می‌تونه تغییر کنه! به زبان فنی‌تر در واقع این عدد تا زمانی که سیستم گاف انرژی داشته باشه نمی‌تونه تغییر کنه، و اگر گاف بسته و دوباره باز بشه(مثلن با تغییر یک کمیت مثل میدان مغناطیسی) عدد مورد نظر ما می‌تونه عوض بشه. به خاطر این خواص خیلی سفت و سختش هست که بهش میگن توپولوژیک!پس مساله ی اول حل شد 🙂 تاولز تونست با همکاراش نشون بده که اون اعداد از کجا میان. البته بگم اعداد کسری هنوز حل نشده هستن! خب این حالتهای ماده و این تغییر اعداد، این تغییر نظم(!!!) با یک سری عدد توصیف میشه و توپولوژی!

حالا یک چییز دیگه: همون اسپین‌ها رو در نظر بگیرید. حالا فرض کنید دو بُعد داریم. میشه حالتی رو تصور کرد که همه‌ی اسپین‌هایی که دورمبدا هستن به سمت خارج هستن! عین خطوط میدان یک بار الکتریکی! اصلن همین مثال خوبه! شما می گید ئه!! همه به سمت بیرون هستن پس باید یه چیزی اونجا باشه! حالا اینجا نمی گیم بار، میگیم گردابه! و به جای مقدار بار همون winding number  . آقای تاولز و کاسترلیتز نشون دادن که در دو بُعد جز اون حالت بی نظم که همه می دونستن باید اونجا باشه میشه حالاتی داشت که مثلن دو تا گردابه داشته باشه! پس دوباره سرو کله ی این اعداد طبیعی و توپولوژی و فازها پیدا شدن! این بار شما می‌تونید چند تا گردابه‌ داشته باشید، مضاف بر اون هرگردابه یک عددبرای خودش داره که شبیه به همون بار است! این گردابه‌ها و این نوع تغییر فاز در ابرشاره‌ی هلیوم دیده شد!

گذار فاز تپولوژیک

گذار فاز تپولوژیک – نگاره از nobelprize.org

اما جناب هالدین! اون گاز الکترونی و میدان مغناطیسی رو که بالا گفتم در نظر بگیرید! اونا مثلن یه ویژگی خیلی جالب که دارن این است که جریان الکتریکی از روی لبه‌ها حرکت میکنه! و خب رسانندگی ش هم اون اعداد خاص رو میده! 
تا مدت ها مردم فکر می کردن که خب میدان مغناطیسی قوی خیلی مهمه!اما هالدین در یکی از کارهاش یک مدل تئوری ساخت که بدون شار مغناطیسی خالص همون خواص رو داشت! این مدل دو سال پیش در آزمایشگاه realize شد! پس همه فهمیدن چیزای مهمتری تا میدان مغناطیسی هست!  در واقع این بنیان کاری است که در سال ۲۰۰۶،  Kane  و Mele روی گرافین کردن و عایق‌های توپولوژیک رو باز کردن. این‌ها موادی هستند که علی‌رغم اینکه نارسانا هستند، یعین در حجم‌شون گاف هست و رسانش نمی‌تونیم داشته باشیم، روی مرز‌هاشون می‌تونن رسانش داشته باشن! برای همین است که میگن عایق توپولوژیک! عایق trivial میشه همون عایق معمولی، نه تو حجم و نه تو سطح رسانش نداره! اما توپولوژیک‌ها روی سطح رسانش دارن!

اما هالدین کارهایی رو هم روی مدل‌های اسپینی کرده که تاثیر گذاشت روی چیزی که الآن بهش میگن symmetry protected topological phase. هالدین مدل‌هایی رو نگاه کرد که مردم پیش از او هم بررسی کرده بودن! همه فکر می‌کردن این مدل‌های اسپینی Gapless هستن، یعنی با کمی انرژی می‌تونید توش برانگیختگی درست کنید! این در واقع برای اسپین ۱/۲ نشون داده بودن و فکر می کردن برای اسپین‌های بالاتر هم درسته! اما هالدین نشون داد که برای اسپین‌های صحیح مثل ۱ باید دقت کرد و چیزهای دیگه‌ای هم هست که باعث میشن سیستم گاف انرژی داشته باشه! این سیستم‌ها و این خواص هم توپولوژیک هستن و به این راحتی از بین نمی‌رن اما همون‌طور که از اسم‌شون برمیاد یک تقارنی رو لازم دارن، مثلن دوران! یعنی اون خواص توپولوژیک هستند مادامی که شما اون تقارن رو حفظ کنی!

گذار کاسترلیتز تاولز رو تو کتاب کاردر خوب توضیح داده. اینا هم یه سری مقاله در مورد کارهای توپولوژیک و اثر هال:

اینجا هم خوب توضیح داده شده.

این ویدیو رو ببینید: