در سال ۱۹۲۹ ادوین هابل، با کشف جنجالی که انجام داد، درک بشر از جهان پیرامونش را دست‌خوش تغییراتی اساسی کرد. در قرن نوزدهم میلادی، اخترشناسان اجرام سماوی را بسته به این‌که به نظر، شبیه نقطه می‌رسند یا لکه‌ای محو و یا در حال حرکت هستند یا ساکن، به چهار دسته تقسیم و نام‌گذاری می‌کردند:

متحرک ساکن
لکه‌ی محو دنبالهدار سحابی
نقطه‌‌ای سیاره ستاره

در آن زمان تصوری از کهکشان‌های دیگر نبود و همه‌ی جهان قابل مشاهده، محدود به کهکشان راه شیری می‌شد. در این دسته‌بندی، کهکشان‌های امروزی نیز جزو سحابی‌ها به‌شمار آمده‌اند.

در سال ۱۹۱۲ میلادی، وِستو اسلیفر که در پی کشف مواد تشکیل دهنده‌ی چندی از درخشان‌ترین سحابی‌های مارپیچی به‌وسیله‌ی طیف‌سنجی بود، متوجه انتقال در طیف این اجرام شد. این انتقال مربوط به اثر دوپلر بوده و بدین معنی است که جسم مورد نظر نسبت به ناظر در حال حرکت است. اگر این انتقال به سمت طول موج‌های بلندتر باشد، به آن «انتقال به سرخ» گفته می‌شود و جسم در حال دور شدن است. بالعکس، اگر انتقال طیف به سمت طول موج‌های کوتاه‌تر باشد، «انتقال به آبی» گفته می‌شود و جسم در حال نزدیک شدن به ناظر است. از میزان این جابجایی میتوان به سرعت جسم پی برد. اسلیفر با محاسبه‌ی سرعت این سحابی‌های مارپیچی دریافت که آنها با سرعتی بسیار بیشتر از سرعت ستارگانی که قبلا اندازه‌گیری شده بود در حال حرکت بوده و اغلب آنها، در حال دور شدن از ما هستند.

در سال ۱۹۲۳ میلادی، ادوین هابل، ستاره‌شناس آمریکایی، با استفاده از تلسکوپ ۲٫۵ متری هوکر در رصدخانه‌ی ویلسن، متغیرهای قیفاووسی واقع در چندین سحابی مارپیچی که از آن جمله سحابی آندرومدا بود را مورد بررسی قرار داد. (متغیرهای قیفاووسی نوعی از ستارگان متغیر هستند که می‌توان با دانستن دوره تناوب درخشندگی‌شان، فاصله‌ی آنها تا زمین را محاسبه کرد.) هابل دریافت که این فواصل خیلی بیشتر از آنست که بتوانند درون کهکشان راه شیری باشند. درواقع این کشف، اثباتی بود برای این موضوع که کهکشان ما با تمام شکوهش تنها یکی از کهکشان‌های سرگردان در هستی است.

نمودار سرعت برحسب فاصله. Copyright 1929, The Huntington Library, Art Collections and Botanical Gardens

 

دو سال بعد، وی با کمک داده های اسلیفر، نمودار سرعت بر حسب فاصله‌‌ی کهکشان‌ها را رسم کرد و به نتیجه‌ای شگفت‌انگیز رسید: سرعت با فاصله، رابطه‌ای خطی و مستقیم دارد(قانون هابل)؛ درواقع کهکشان‌ها هرچه دورتر باشند با سرعت بیشتری از ما دور می‌شوند و این یعنی جهان در حال انبساط است!

ضریب تناسبی که در قانون هابل وجود دارد، معروف به ثابت هابل یا به بیانی بهتر، پارامتر هابل است. این کمیت جزو مهم‌ترین پارامترهای کیهان‌شناسی است که برای تعیین نرخ انبساط جهان و ویژگی‌های اساسی تحول کیهان نقش ایفا می‌کند. امروزه نیز دانشمندان به دنبال افزایش دقت آزمایش‌ها برای اندازه‌گیری پارامتر هابل هستند تا بتوانند مدل‌های کیهان‌شناسی را بهتر ارزیابی کنند. به عنوان مثال، در ماه ژانویه‌ی امسال، دانشمندان ناسا و اسا(ESA) اعلام کردند که طبق مشاهدات تلسکوپ فضایی هابل، کیهان با سرعتی ٪۵ تا ۹٪ بیشتر از چیزی که انتظار می‌رفت در حال انبساط است.

در سال ۱۶۸۷ میلادی، آیزاک نیوتن، در کتاب معروف خود موسوم به اصول ریاضی فلسفه طبیعی” برای اولین بار بطور مشخص اصل کیهان‌شناسی را مطرح کرد. طبق این اصل، جهان همگن و همسانگرد است؛ به این معنی که اولا جهان در همه‌ی جهات یکسان است(همسانگرد). ثانیا برای هر نقطه‌ای در جهان این ویژگی صدق می‌کند(همگن). در واقع این اصل مبین دیدگاه جهان‌بینی کوپرنیکی است که ما در عالم، حداقل بطور متوسط، هیچ جایگاه خاصی نداریم. امروزه با استفاده از مشاهدات رصدی، علی‌الخصوص تابش زمینه کیهانی، می‌دانیم که این اصل برای مقیاس‌های به اندازه کافی بزرگ، کاملا صادق است.

توصیف انبساط. نگاره از goo.gl/kPQJSA

شاید قانون هابل به نظر با اصل کیهان‌شناسی در تضاد باشد؛ چرا که همه کهکشان‌ها در حال دور شدن از ما هستند و گویی که ما در مرکز جهان قرار داریم. در پاسخ باید گفت که انبساط کیهان نه تنها برای ما، بلکه برای هر نقطه‌ دیگری در جهان اتفاق می‌افتد. برای روشن شدن موضوع، بادکنکی را در نظر بگیرید که مورچه هایی روی آن در حال حرکت هستند. اگر این بادکنک را باد کنیم، هر کدام از مورچه ها اینطور احساس می‌کند که مابقی مورچه‌ها در حال دور شدن از آن هستند. با بیشتر شدن فاصله‌‌ی مورچه‌ها از یکدیگر، اثر انبساط بادکنک بیشتر شده و با سرعت بیشتری از یکدیگر دور می‌شوند.

در سال ۱۹۸۸ میلادی، دو تیم تحقیقاتی که به‌طور هم‌زمان در حال مطالعه بر روی انتقال به سرخِ ابرنواخترهای نوع Ia بودند، به کشفی بزرگ دست یافتند. (ابرنواخترهای نوع Ia نوع خاصی از ابرنواخترها هستند که برای تعیین فواصل کیهانی تا چند صد مگا پارسک مورد استفاده قرار می‌گیرند). آنها هر یک بطور مستقل دریافتند که کیهان، در حال انبساط شتابدار است. درواقع نه‌تنها عالم در حال منبسط شدن است، بلکه سرعت این انبساط نیز در حال افزایش است. به خاطر این کشف بزرگ، جایزه نوبل فیزیک سال ۲۰۱۱ به‌صورت مشترک به سه نفر از نمایندگان این پروژه، به نام‌های آدام ریس، سل پرلموتر و برایان اشمیت، داده شد.

مدل لامبدا-سی دی ام. نگاره از ویکی‌پدیا

تا قبل از کشف این موضوع، کیهان‌شناسان تصور می‌کردند که انبساط جهان کند شونده بوده و رفته رفته از سرعت انبساط کاسته می‌شود تا سرانجام به سمت صفر میل کند. برای جهانی با انبساط تندشونده در چارچوب نظریه نسبیت عام، می‌توان به وسیله‌ یک مقدار مثبت از ثابت کیهان‌شناسی که معادل با انرژی خلا مثبت یا همان انرژی تاریک است، آن را توصیف کرد. این مدل موسوم به «مدل لاندا سی دی ام» می‌باشد. البته مدل‌های دیگری نیز می‌توان در نظر گرفت. با این وجود، این مدل به‌دلیل هم‌خوانی با داده‌ها، تاکنون با اقبال بیشتری روبرو بوده است.

 

در این مقاله سعی شده است تا با مروری کوتاه بر سیر تاریخی کیهان‌شناسی نوین، گوشه‌ای از تلاش‌های کیهان شناسان و فیزیکدانان، برای ارایه‌ی توصیفی از تحول کیهان، نمایش داده شود.

به یاد آنان که راه را هموار ساختند…

آلبرت آینشتین – نگاره از ویکی‌پدیا

در سال ۱۹۱۵ میلادی، آلبرت انیشتین با ارایه نظریه‌ی نسبیت عام، فصلی تازه در علم کیهان‌شناسی رقم زد و در واقع کیهان‌شناسی مدرن را پایه‌ریزی نمود. در آن زمان انیشتین بر این باور بود که عمر کیهان بی‌نهایت است و جهان در طول زمان تغییری نمی‌کند. این درحالی است که جواب‌های معادلات نسبیت عام، جهانی را توصیف می‌کردند که در حال تحول بود. بدین ترتیب انیشتین در مقاله‌‌اش در سال ۱۹۱۷ میلادی، برای توصیف جهان ایستای خود، با فرض برقراری اصل کیهان‌شناسی، عددی ثابت به نام «ثابت کیهان‌شناسی» را در معادلات خود وارد کرد تا این اثر را خنثی کند. طبق اصل کیهان‌شناسی، جهان در مقیاس‌های به‌اندازه کافی بزرگ، همگن و همسانگرد (در همه جهات یکسان) است. البته بعدها با کشف انبساط کیهان، انیشتین اضافه کردن این ثابت در معادلاتش را بزرگترین اشتباهش خواند.

در همان سال، ویلیام دو سیتر جواب دیگری از معادلات را برای جهانی با فضای غیر تخت و خالی از ماده اما شامل ثابت کیهان‌شناسی، ارایه داد. اگرچه ممکن است این مدل غیر واقعی و بی‌اهمیت به‌نظر بیاید، اما جالب است بدانید که امروزه این مدل در نظریه تورم که مربوط به کیهان آغازین است، نقشی اساسی ایفا می‌کند. در مدل دوسیتر جهان به‌صورت نمایی منبسط می شود.

چگونگی انتقال به سرخ و آبی بسته به (به‌ترتیب) دور یا نزدیک شدن منبع. نگاره از ویکی‌پدیا

الکساندر فریدمان (۱۸۸۸-۱۹۲۵)، ریاضیدان و فیزیکدان روسی، در سال ۱۹۲۲ میلادی، مدل دیگری ارایه داد که در واقع می‌توان آن را حد وسطی از مدل انیشتین و مدل دوسیتر دانست. اگرچه این مدل در آن زمان چندان مورد اقبال واقع نشد، اما پنج سال بعد در حالی‌ که فریدمان از دنیا رفته بود، این جواب ها توسط ژرژ لومتر، کشیش و فیزیکدان بلژیکی، بطور مستقل به‌دست آمدند. وی تلاش کرد تا پیش‌بینی‌های این مدل مبنی بر انبساط کیهان را با نتایج رصدی که به تازگی انجام گرفته بود، مرتبط سازد. این مشاهدات حاکی از آن بود که در طیف کهکشان‌های دوردست، اثری موسوم به «انتقال به سرخ» دیده می‌شود که می‌توان آن‌ را در نتیجه‌ی دور شدن کهکشان‌ها و در واقع انبساط کیهان دانست. البته فردی به نام فریتس تسوئیکی نظر دیگری داشت. وی مدلی موسوم به «نور خسته» را پیشنهاد داد که در آن ادعا می‌شد که نور به دلیل برهم‌کنش با موادی که بر سر راهش هستند، مقداری از انرژی خود را از دست می‌دهد و طول موجش افزایش می‌یابد. بنابراین طیف کهکشان‌های دور دست به سمت طول موج‌های بلندتر منتقل می‌شود. امروزه می‌دانیم که این مدل با داده های رصدی مغایرت داشته و فاقد اعتبار است.

در سال ۱۹۳۱ لومتر مقاله‌ای منتشر کرد که در آن ادعا شده بود که در مدل فریدمان، کیهان باید از یک حالت اولیه تکامل پیدا کرده باشد که شامل مقدار بسیار زیادی از پروتون‌ها، الکترون‌ها و ذرات آلفا بوده است که همگی با چگالی از مرتبه‌ی هسته‌ی اتم در کنار یکدیگر قرار داشته‌اند. وی این حالت را «اتم قدیم: Primaeval Atom» نامید. لومتر را می‌توان در واقع پدر نظریه مه‌بانگ دانست. عبارت «مه‌بانگ» را اولین بار فرد هویل در سال ۱۹۴۹ میلادی، هنگامی‌که در یک برنامه‌ی رادیویی بی‌بی‌سی در مورد این مدل صحبت می‌کرد، به حالت طعنه آمیزی بکار برد. اما این تعبیر خیلی زود رایج شده و مورد استفاده قرار گرفت.

گیرنده‌ای که پنزیاس و ویلسون با آن تابش زمینه کیهانی را کشف کردند. نگاره از ویکی‌پدیا

یکی از مباحث داغی که در سال های ۱۹۴۰ میلادی وجود داشت، موضوع منشأ عناصر شیمیایی بود. در سال ۱۹۴۶ جرج گاموف، فیزیکدان هسته‌ای، با الگوگیری از نظرات لومتر مقاله‌ای منتشر کرد مبنی بر این‌که فازهای اولیه‌ی مدل فریدمان می‌توانند محتمل‌ترین مکان برای هسته‌سازی عناصر شیمیایی باشند. گاموف ادعا کرد که اگر در مدل فریدمان به عقب برگردیم می‌توانیم به نقطه‌ای به اندازه‌ی کافی چگال و پر انرژی برسیم که در آن فرآیندهایی غیر تعادلی مربوط به هسته سازی امکان‌پذیر باشند. در همان سال رالف آلفر،‌ دانشجوی گاموف، نیز به او پیوست تا روی محصولات ناشی از این هسته‌سازی کار کند. دو سال بعد گاموف و آلفر به همراه هانس بیته، مقاله‌ای منتشر کردند و در آن به جزییات موضوع پرداختند. اهمیت این مقاله بر این بود که نشان داد اگر عناصر طبیعی منشأیی کیهانی داشته باشند، نیاز به فازی بسیار داغ و چگال در کیهان اولیه ضروری خواهد بود. در همان سال آلفر و رابرت هرمان محاسبات را دقیق‌تر کرده و این بار تحولات کیهان اولیه‌‌ای که در حال انبساط بود هم در نظر گرفتند و به نتیجه‌ای جالب و مهم رسیدند؛ بقایای سرد شده‌ی فازهای داغ اولیه‌، هنوز هم باید در کیهان امروزی وجود داشته باشند. آنها دمای این بقایا را در حدود پنج کلوین پیش‌بینی کردند. امروزه این بقایا با عنوان «تابش پس زمینه کیهانی» شناخته می‌شوند.

طبق محاسباتی که توسط آلفر و هرمان انجام شد، در دوران هسته‌سازی حدود ۲۵٪ از اتم‌های هیدروژن اولیه به اتم هلیوم تبدیل شده و تنها مقدار بسیار ناچیزی (حدود ۰/۰۰۰۰۱٪ )، تبدیل به اتم‌های عناصر سنگین‌تر شدند. این درحالی بود که مشاهدات نشان می‌دادند که مقدار عناصر سنگین در جهان، خیلی بیشتر از مقدار پیش بینی شده است. بدین ترتیب نظریه مهبانگ با مشکل بزرگی برای توجیه میزان اتم‌های سنگین روبرو بود. (البته چند سال بعد معلوم شد که عناصر سنگینی مانند کربن، اکسیژن و آهن، در دل ستارگان پرجرم و انفجارهای ابرنواختری تولید می‌شوند.) این موضوع موجب شد تا در سال ۱۹۴۸ میلادی، فرد هویل، توماس گلد و هرمان بوندی، «نظریه حالت پایدار» را به‌عنوان جایگزینی برای مدل مهبانگ ارائه دهند. در این نظریه ادعا شده است که جهان، هم در فضا و هم در زمان، همگن و همسانگرد است.(اصل کیهان‌شناسی کامل) در واقع جهان، همواره به همین شکل و شمایل امروزی وجود داشته است.

«به یک معنا، شاید به‌توان گفت که نظریه حالت پایدار در شبی شروع شد که بوندی، گلد و من، مشتری یکی از سینماها در کمبریج شدیم. اگر درست خاطرم باشد، اسم فیلم «مرگ تاریکی» بود؛ فیلم دنباله‌ای از چهار داستان از ارواح بود که همان‌طور که چند تن از شخصیت‌ها در فیلم می‌گفتند، به نظر می‌رسید که ربطی میانشان نباشد اما با یک ویژگی جالب که انتهای داستان چهارم به طرز غیرمنتظره‌ای به ابتدای داستان اول مربوط بود. در نتیجه به‌موجب آن، پتانسیل برای یک چرخه‌ی بی پایان وجود داشت. وقتی آن شب سه نفرمان به اتاق‌های بوندی در دانشگاه ترینیتی برگشتیم، ناگهان گلد گفت: چه می‌شود اگر عالم نیز شبیه این باشد!؟ شاید این‌طور تصور شود که حالت‌های بدون تغییر، لزوما ساکن و راکد هستند. کاری که فیلم داستان ارواح برای ما انجام داد این بود که خیلی سریع این تصور اشتباه را از هر سه نفرمان برطرف کرد. می‌توان حالت‌های بدون تغییری داشت که پویا باشند. مانند یک رودخانه‌ی آرام در حال جریان. عالم باید پویا باشد؛ چرا که قانون انتقال به سرخ هابل این را اثبات می‌کند… از این‌جا می‌توان به سادگی دریافت که نیاز است که خلق پیوسته‌ی ماده وجود داشته باشد.»

هویل نرخ خلق ماده را یک ذره در سانتی متر مکعب در هر ۳۰۰۰۰۰ سال، به‌دست آورد. برخلاف بوندی و گلد که رهیافتی فلسفی به نظریه حالت پایدار داشتند، هویل فرضیه خود را از دیدگاه نظریه‌ی میدان بنا نهاد و میدانی به نام «میدان سی: C-Field» را برای خلق ماده در نظر گرفت. این نظریه در همان سال نخست توانست نظر بسیاری از ستاره‌شناسان و حتی مردم عامه را به خود جلب کند. نظریه حالت پایدار از آنجایی برای ستاره شناسان دارای اهمیت بود که می‌توانست توضیح جایگزینی از منشأ عناصر ارایه دهد.

این نگاره، نمایشی هنری از انبساط متریک فضاست که در آن فضا (که شامل قسمت‌های فرضی غیرقابل مشاهده جهان هم هست) را در هر لحظه از زمان را می‌توان با برشی قرصی از نمودار نمایش داد. توجه کنید که در سمت چپ شکل می‌توانید انبساط دراماتیک فضا در دوره تورمی را ببینید. نگاره از ویکی‌پدیا

تا مدتی، کیهان‌شناسان به دو گروه که هریک طرف‌دار یکی از نظریه‌های حالت پایدار یا مه‌بانگ بودند، تقسیم شده بودند. تا آنکه شواهد رصدی‌ای مانند «شمارش منابع رادیویی: the Counts of Radio Sources»، بر اعتبار نظریه مهبانگ افزود و سرانجام در سال ۱۹۶۵ میلادی هنگامی‌که آرنو پنزیاس و رابرت ویلسون بر روی امواج رادیویی کار می‌کردند، توانستند به طور کاملا اتفاقی، تابش زمینه کیهانی که از پیش بینی‌های مهم نظریه مه‌بانگ بود را کشف کنند. در واقع این کشف، مهر تأییدی بود بر نظریه مه‌بانگ که موجب شد تا این نظریه به عنوان نظریه‌ای مورد توافق همگان در بیاد.

البته نظریه مهبانگ قادر نبود تا به بعضی از سوالات اساسی مانند مسئله‌ی افق یا مسئله‌ی تخت بودن جهان و یا مسئله تک‌قطبی‌های مغناطیسی پاسخ بدهد. به همین خاطر در سال ۱۹۸۱ میلادی، آلن گوت، با معرفی مدلی موسوم به «مدل تورم» توانست پاسخگوی این سوالات باشد. مدل تورم ادعا میکند که کیهان در بازه‌ی زمانی بین۱۰−۳۶ تا حدود ۱۰−۳۲ثانیه بعد از نقطه‌ی تکینگی اولیه، دستخوش انبساطی با نرخ نمایی شده است! امروزه با استفاده از ابزارهای دقیق رصدی می‌توانیم شواهدی دال بر وجود دوران تورم را به ویژه در تابش زمینه‌ی کیهانی مشاهده کنیم.

پیشرفت های رصدی و همچنین پیشرفت‌هایی که از لحاظ نظری در زمینه رشد ساختارهای بزرگ مقیاس در اواخر قرن بیستم میلادی صورت گرفت، منجر به نتایج زیر شد:

  • اولا احتمالا به‌مقدار نسبتا قابل توجهی ماده‌ی تاریک غیر نسبیتی (ماده‌ی تاریک سرد) وجود دارد.
  • ثانیا باید یک ثابت کیهان‌شناسی غیر صفر (لامبدا) وجود داشته باشد.

سرانجام این نتایج موجب شد تا مدل لامبدا سی‌دی‌ام: ΛCDM Model، در سال ۱۹۹۵، توسط جرمی اوستریکر و پائول استینهاردت پیشنهاد شود. چهار سال بعد، با کشف این‌که جهان به صورت شتاب‌دار در حال انبساط است، این مدل به عنوان مدل پیشرو مورد توجه قرار گرفته و خیلی زود توسط مشاهدات دیگر نیز تأیید شد.

در گوشه‌ای از جهان هستی

در قلب توده‌ بزرگی از ماده‌ی تاریک، در نقطه‌ای از کهکشان مارپیچی بزرگمان، بر روی سیاره‌ی خارق‌العاده‌ای که به دور خورشید با شکوهمان می‌چرخد، در ادامه‌ی زنجیره‌ای که هنوز تنها اثری از حیات زنده در کیهانمان است، ما نیز شروع به زندگی کردیم. به عنوان گونه‌ای با قدرت تفکر، همیشه به دنبال زبانی برای برقراری ارتباط با محیط اطرافمان بوده و هستیم. گاه با هدف رفع نیاز، گاه برای رفع حس کنجکاوی سیری ناپذیرمان و حتی گاهی در اثر ترس! اما هدف هرچه بود و هرچه هست، امروز درجای عجیبی از تاریخ علم ایستاده‌ایم و با غرور به جهانی نگاه می‌کنیم که نه آن‌طور که ما دلمان می‌خواهد، بلکه آن گونه که واقعا هست، در برابر ما ایستاده است.

شما اینجا هستید!

ما همیشه می‌خواستیم با طبیعتمان سخن بگوییم، و در طول تاریخ، فیزیک راهی بود که برای این هدف انتخاب کردیم. فیزیک زبان مشترک ما و طبیعت شد. ما مشاهده می‌کردیم، بعدها یاد گرفتیم ثبت کنیم، بر پایه‌ی مشاهداتمان فرضیه سازی کردیم و جلو رفتیم. زمینمان را تخت تصور میکردیم، هر کدام از سیارات و ستاره ها را خدایی می‌پنداشتیم که باید نیایش کنیم، وگرنه بر ما عذاب می‌فرستند. در ذهنمان خدایان ناشناخته‌ای ساختیم که شب و روز را پدید می‌آوردند. خدایانی که غروب خورشید را می‌خوردند و صبح باز او را به دنیا می‌آوردند. خدایانی که صبح از شرق برمی‌خاستند، در طول روز در آسمان سیر می‌کردند و غروب مانند پیرمردان در بستر می‌مردند. رعد و برق، خشم خدایان بود و زلزله خشم مادرمان زمین.

فرضیه ساختیم، خیالبافی کردیم و جلو آمدیم. سفر کردیم، اختراع کردیم، تا آنجا که زمین و آسمان را هر روز بهتر و بهتر شناختیم. فرضیاتمان به مرور حقیقیتر میشدند، از محیطمان به زیباترین وجه استفاده می‌کردیم، ویژگیهایش را میدانستیم، دارو می‌ساختیم، ظروف زیبا، وسایل نقلیه، ساختمان‌های باشکوه ، اما هنوز پیوند عمیقی برقرار نبود. با طبیعتمان به زیبایی زندگی میکردیم اما زبانش را نمیدانستیم. همیشه نگاهمان به آسمان هم معطوف بود. آسمان پر رمز و راز را می‌دیدیم. ستارگانی را که هر شبمان را زیبا می‌ساختند، در صورت‌های فلکی دسته بندی کردیم. علم اخترشناسی را به جود آوردیم و هر شب آسمان را رصد میکردیم. همه چیز را میدیدیم، اما هنوز علت‌ها ناشناخته بود.

نظریه  زمین‌مرکزی بطلمیوس

بطلمیوس که بین سالهای ۹۰ تا ۱۶۸ میلادی زندگی میکرد، معتقد بود زمین در مرکز جهان قرار دارد، و ماه و خورشید و سایر سیارات، به دور آن میچرخند. در این نظریه، سیارات مداری نداشتند و انگار بر روی صفحه‌ای شیشه‌ای به نام فلک چسبیده بودند و فلک به دور زمین در گردش بود. او معتقد بود که ۸ یا ۹ فلک وجود دارد و بر روی فلک آخر، ستاره‌ها چسبیده‌اند.

یک نقاشی قدیمی برآمده از طرز تفکر بطلمیوسی (زمین‌مرکزی) – نگاره از ویکی‌پدیا

پس از این فلک، که به آن فلک الافلاک می‌گفتند، خداوند و فرشتگان زندگی میکردند. این نظریه که به آن زمین مرکزی میگویند شاید یکی از نخستین نظریات جامع و منسجم ما درباره ی کیهانمان بود. این باور نزد ما پذیرفته شده بود. ما در مرکز جهان هستی، بر روی سیاره‌ی زیبایمان نشسته بودیم و همه به دور ما می‌گشتند. کلیسا نیز این فرضیه را بشدت تبلیغ می‌کرد. خیالی خوش و پرغرور اما ناپایدار. تا بالاخره در تاریخمان گالیله پیدا شد. او بود که گفت نه تنها ما مرکز جهان نیستیم، بلکه ما و چند سیاره‌ی دیگر همه و همه به دور خورشید زیبایمان میگردیم. او نگاه ما را به طبیعت و به ویژه علم مکانیک دگرگون کرد، و در یک کلام، او نخستین پیوند میان طبیعت و ریاضیات را در قلب علم حرکت شناسی نشان داد. وقتی به او فکر می‌کنم، و به جهانی که پیش از او می‌شناختیم، تصمیم و کار بزرگش بسیار ترسناک به نظرم میرسد. تصور کنید در خانه‌ای نشسته‌ایم، دیوارهایش را با رنگ‌های بسیار زیبا نقاشی کرده‌ایم و تصور می‌کنیم تمام حقیقت، هرآن چیزی است که در نقاشی‌هایمان کشیده‌ایم. ناگهان مردی از راه می‌رسد، دیوارها را خراب می‌کند،نقاشی‌ها را می‌سوزاند، ما را وسط تاریکی بی‌انتهایی رهایمان می‌کند و تنها مشعلی به دستمان می‌دهد. او نم‌یداند نتیجه‌ی جستجویمان چه خواهد بود، اما باور دارد حقیقت بسیار زیباتر و موثرتر از تمام نقاشیهایمان بر در و دیوار خانهمان است. او به درستی و زیبایی حقیقت باور دارد. ما این مشعل را گرفتیم و جلو آمدیم.

نیوتون و ادامه‌ی راه

مفهوم گرانش را فهمیدیم. حرکت سیارات را توجیه کردیم. مهندسی نوینی بر پایه‌ی معادلاتش بنا کردیم. علم مهندسی هر روز زندگی را ساده‌تر میکرد. اما سوالات ما پایانی نداشت. مطالعه بر روی نور از زمان نیوتون جدی‌تر دنبال می‌شد. تلسکوپ گالیله که یکی از دستاوردهایش کشف چند قمر از اقمار مشتری بود، به وسیله‌ی نیوتون اصلاح شد و کار رصد آسمان را اندکی بهبود بخشید. همچنین مطالعه‌ی ما بر روی الکتریسته و مغناطیس روز به روز بیشتر می‌شد و کسانی ماند لنز، فارادی، آمپر و دیگران ماهیت بار الکتریکی را معرفی کردند. سرانجام دوران طلایی فیزیک فرا رسید. در اواخر قرن نوزدهم، تامسون مدل اتمی‌اش را ارائه کرد. رادرفورد اولین بار مفهوم هسته را معرفی کرد. پروتون‌ها و نوترون‌ها شناخته شدند و سرانجام مدل سیاره‌ای توسط نیلز بور ارائه شد. مدلی که اگر درست بود بنابر نظریه‌ی الکترومغناطیس، به ناپایداری اتمها و نابودی اتم منجر میشد. در این زمان بشر به آزمایش‌هایی دست می‌زد که یکی پس از دیگری ناتوانی فیزیک نیوتونی را در توضیح مسائلی روشن‌تر می‌ساخت. اینطور به نظر میرسید که باز راهمان را گم کردهایم.

اما نه!

ما میدانستیم ماشینهایمان، هواپیماها و تمام علم ساختمان، بر پایه‌ی فیزیک نیوتونی دقیق و زیبا کار می‌کنند و جلو می‌روند. اینجا بود که به اصل بسیار زیبای همخوانی رسیدیم. اصلی که سنگ بنا و شرط اساسی تمام نظریاتمان شد:

اگر نظریه ی جامعی ارائه می‌شود، این نظریه باید در شرایط خاصی که مکانیک نیوتونی برقرار است، معادلات نیوتون را بدست دهد.

برای مثال، اگر به دنبال نظریه‌ی جامعی هستیم که قلب اتم را نیز برایمان توضیح دهد، چنانچه در معادلاتمان باز از اتم به اجسام عادی و سرعت‌های معمولی رسیدیم، باز معادلات باید همان معادلات نیوتون شوند. و این اصل چراغ راهمان شد. تابش جسم سیاه، اثر فوتوالکتریک، اثر کامپتون و … هر یک بیش از پیش ما را به سمت نظریه‌ی شگفت‌انگیز کوانتوم سوق داد.

دوگانگی موج و ذره یکی از مفاهیم عجیب مکانیک کوانتومی- نگاره از ویکی‌پدیا

با مکانیک نیوتونی و درک ماهیت موجی-ذره‌ای در ابعاد کوانتومی، هایزنبرگ ، شرودینگر و دیراک زبانی ساختند بسیار مدرن که ما را به اعماق ماده راه داد. در اوایل قرن بیستم بود که اینیشتین با تئوری زیبای نسبیت خاصش از راه رسید. نظریه‌ای که در پاسخ به مسئله‌ی یکسان بودن سرعت نور نسبت به هر ناظر لخت با هر سرعتی نوشته شده بود. این نظریه نشان داد که در سرعت‌های بالا،  زمان هم از نگاه ناظرهای مختلف متفاوت است و به این صورت، مفاهیم قدیمی فضا و زمان به هم گره خوردند و مفهومی بنیادیتر به نام فضا-زمان شکل گرفت. اما زیبایی بی‌نظیر معادلات نسبیت خاص درآن بود که اگر سرعت متحرک نسبت به سرعت نور کم میبود -مثلا در حد سرعت حرکت ما و وسایل نقلیه‌مان- معادلات باز به همان معادلات آشنای نیوتون میرسید. پس ظاهرا ما همه چیز را می‌دانستیم. در قلب ماده مکانیک کوانتوم جواب سوالاتمان را می‌داد. برایمان هسته و اتم را توضیح داد. اتم شکافتیم. انرژی گرفتیم و با توحشی که هنوز در وجودمان تمامی ندارد بمب ساختیم. در سرعتهای بالا، معادلات نسبیت حلال مشکلاتمان شد و هنگامی که سرعت کم میشد و ابعاد ماده به ابعاد معمولی میرسید، معادلات نیوتون زندگی روزمره‌مان را پاسخگو بود.

نیروی گرانشی چه؟

آیا گرانش همانگونه که نیوتون تصور کرده بود، شکلی از نیرو بود؟ و این باز آلبرت اینیشتین بزرگ پس از حدودا یک دهه از ارائه‌ی نسبیت خاص، نسبیت عام را مطرح کرد و از گرانش نه به عنوان یک نیرو که به عنوان اثری هندسی نام برد. در واقه آنچه به عنوان نیروی گرانشی می‌شناسیم چیزی نیست جز خمیدگی فضا-زمان در اثر وجود ماده. از دل این تئوری ، سیاهچاله‌ها، کرمچاله‌ها و امواج گرانشی سربرآوردند. ترکیب این نظریه با شواهد رصدی مبنی بر انبساط کیهان، معادلات فریدمان در توصیف کیهان را بدست داد. این معادلات ما را به بیگ بنگ رساندند. جایی که احتمالا آغاز فضا-زمان و در نتیجه کیهان زیبای ماست. سرانجام با اضافه کردن نظریه‌ی تورم و همچنین کشف اثرات ماده‌ی تاریک و انرژِی تاریک، به مدل استاندارد کیهانشناسی رسیدیم. مدلی که کیهانی را شرح می‌دهد که از مه‌بانگ آغاز کرده، ناگهان تورم یافته و سپس ذرات در آن شکل گرفته‌اند. ذرات ماده و ضد ماده و همچنین چیزی به نام ماده‌ی تاریک که البته هنوز هویتش را نمی‌دانیم. ماده بر ضد ماده غلبه کرده و همین موجب شکل‌گیری کهکشان‌های زیبا، سیارات و ستاره‌ها شده است. ماده‌ معمولی که میشناسیم که تنها ۵ درصد از کل جهان را تشکیل داده است. این ماده شامل کوارک‌ها که تشکیل دهنده‌ی نوترون و پروتون‌اند، نوترینوها، آنتی نوترینوها و ذرات دیگر است که همه و همه در مدل استاندارد ذرات بنیادی به زیبایی کنار هم نشسته‌اند.

تاریخچه انبساط جهان

پس از موفقیت‌های مکانیک کوانتومی، مثل هر نظریه‌ی دیگری، معایبش هم آشکار شد و یکی از آن عیب‌ها، ناتوانی مکانیک کوانتومی در حل مسائلی بود که طی آنها ذره خلق میشد. این موارد ما را به سمت نظریه‌ی میدان‌های کوانتومی سوق داد، که ریچارد فاینمن آن را پایه ریزی کرد و رسما دید ما به جهان زیر اتمی تکامل زیبایی یافت. در سالهای اخیر با پیشرفت‌های چشم‌گیر تکنولوژی و علوم مهندسی، بالاخره وجود ذره‌ی هیگز تایید شد. تابش زمینه‌ی کیهانی هر روز مطالعه می‌شود. سال گذشته پیشبینی صد ساله‌ی آلبرت اینیشتین تحقق یافت و امواج گرانشی آشکار شدند. پس این طور به نظر میرسد که هر روز بیشتر از روز قبل با طبیعتمان به زبان مشترکی میرسیم. هر روز بیش از قبل زیبایی ریاضیاتمان، و نظریاتی که می‌نویسیم آشکار می‌شود.

 

پرسش‌های پیش‌رو

اما هنوز علامت سوال‌های بزرگی در پیش است. ماده‌ی تاریک واقعا چیست؟ انرژی تاریک چیست؟ این دو روی هم رفته ۹۵ درصد از جهان ما را تشکیل می‌دهند و هنوز برایمان ناشناخته‌اند. نظریات جدیدمان تا چه اندازه کارآمدند؟ تئوری ریسمان، نظریه‌ی ابرتقارن، گرانش تعمیم یافته، کیهان شناسی مدرن و … . هر روز بیش از قبل پیشرفت می‌کنیم و به کشف حقیقت نزدیک می‌شویم.‌ اما واضح است که در پی اینچنین تلاشی به قدمت عمر ما بر روی این کره‌ی خاکی، سوالات زیادی حل نشده باقی مانده‌اند و این چالش بزرگی پیش روی زیباترین وجه ریاضیات، یعنی فیزیک نظریست.

مدتی پیش کتابی میخواندم به نام «درباره‌ی معنی زندگی» از ویل دورانت.

اوبث اشاره می کرد که تلاش ما برای یافتن حقیقت، در واقع تمام اعتماد به نفسمان را از بین برد . چرا که زمانی ما مرکز جهان بودیم و همه چیز معطوف به ما بود. اما دانشمندان نشان دادند که ما گونه‌ای ناتوان در گوشه‌ای از این جهانیم و روزی تنها خورشیدی که میشناسیم نابودمان خواهد کرد و مولکول‌های ما تجزیه خواهد شد و آن روز پایان ماست. این جمله و نگاهش اگرچه از دید یک فیلسوف جالب و قابل تامل است، اما من قویا معتقدم حقیقت، بسیار زیباتر از امنیت ساختگی به وسیله‌ی توهم است. حقیقت هرچه هست، به ذات خود زیباست و این زیبایی دوچندان میشود وقتی به زبان ریاضی بیان میگردد. این جادوی فیزیک است.

همانگونه که زمانی فاینمن گفت:

ریچارد فاینمن، فیزیک‌دان تاثیرگذار قرن گذشته

«شاعران گفته‌اند که علم زیبایی ستاره ها را ضایع میکند، چون که آنها را صرفا کره‌هایی از اتم‌ها و مولکول‌های گاز می‌دانند. اما من هم میتوانم ستاره‌ها را در آسمان شب کویر ببینم و شکوه و زیبایی‌شان را حس کنم. می‌توانم این چرخ فلک را با چشم بزرگ تلسکوپ پالومار تماشا کنم و ببینم که ستاره ها دارند از هم‌دیگر، از نقطه ی آغازی که شاید  زمانی سرچشمه‌ی همگی‌شان بوده است دور می‌شوند. جست‌وجو برای فهمیدن این چیزها گمان نمی‌کنم لطمه‌ای به رمز و راز زیبایی این چرخ فلک بزند. راستی شاعران امروزی چرا حرفی از این چیزها نمی‌زنند؟ چه جور مردمانی هستند این شاعران که اگر ژوپیتر خدایی در هیئت انسان باشد چه شعر ها که برایش نمی‌سرایند اما اگر در قالب کره‌ی عظیم چرخانی از متان و آمونیاک باشد سکوت اختیار میکنند؟»

اگر شما هم به دنبال زیبایی‌های جهان بی‌نظیرمان هستید، به دنیای ریاضیات خوش آمدید.