رفتن به نوشته‌ها

برچسب: سیستم‌های پیچیده

🎬 داستان پیچیدگی: «چرا بیشتر، متفاوت است؟»

در کنفرانس سار، پاییز ۹۷ که ایده‌ش مشابه با کنفرانس‌های TEDx هست در مورد نظریه پیچیدگی حرف زدم. یک سخنرانی عمومی برای مردم!«داستان پیچیدگی: چرا بیشتر، متفاوت است؟»

🎞 دانلود ویدیو 🔊 دانلود صوت 🔖 اسلایدها 🎬 در آپارات

🔗 فایل‌ها در تلگرام

داستان پیچیدگی: «چرا بیشتر، متفاوت است؟» عباس کریمی، کنفرانس سار

آیا فیزیک می‌تواند شبکه‌های اجتماعی مانند فیس‌بوک را تحلیل کند؟!

در همایش پیوند در تابستان گذشته در مورد این حرف زدم که چگونه ایده‌های برگرفته شده از فیزیک می‌تونن درک بهتری از شبکه‌های اجتماعی مثل فیس‌بوک به ما بدن. ویدیو این ارائه رو به همراه اسلایدها و فایل صوتی رو اینجا می‌ذاریم. ما بقیه ارائه‌ها رو هم در قسمت «سخنرانی‌ها، دوره‌های آموزشی و کلاس درس» می‌تونید پیدا کنید!

ویدیو:

سرطان از نگاه پیچیدگی

سرطان به عنوان یکی از بیماری‌های که این روزها نامش بر سرزبان‌ها افتاده است، نامی است که به مجموعه‌ای از بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سرطان عموما به عنوان بیماری ژن‌ها شناخته می‌شود؛ به این معنا که تغییرات ژنتیکی می‌توانند منجر به بروز این عارضه شود. از سوی دیگر، تلاش‌های صورت گرفته پیرامون کنترل و درمان سرطان عمدتا بر اساس شناخت ژن‌های موثر در سرطان‌های مختلف، تاکنون با چالش‌های زیادی همراه بوده است. در نگاه پیچیدگی، حرکت‌های جمعی برآمده از برهمکنش‌های یک سیستم‌ بس‌ذره‌ای (سلول) تنها با مطالعه اجزای آن سیستم (ژن‌ها) قابل توصیف نیست و با دانستن این‌که هر جز (ژن) چگونه کار می‌کند، نمی‌توان درک کاملی از مقیاسی بزرگ‌تر (سلول) با سازمان‌دهی مرتبه‌-بالاتری پیدا کرد. در مورد ژن‌ها می‌دانیم که بیان هر ژن بر بیان سایر ژن‌ها اثر می‌گذارد و وجود این همبستگی‌ها سبب تشکیل یک حرکت جمعی می‌شود که خود باعث اثر گذاشتن روی بیان سایر ژن‌ها می‌‌شود. هدف این مطالعه، نگاهی پدیدارشناسانه به سرطان سینه و مقایسه رفتار جمعی ژن‌ها در نمونه سالم و سرطانی است. با در نظر گرفتن سلول به عنوان یک سیستم پیچیده، می‌خواهیم شبکه پیچیده‌ای که در پس این سیستم نشسته است را مورد مطالعه قرار دهیم به امید این‌ که درک بهتری از سرطان از نگاه پیچیدگی پیدا کنیم.

بدین منظور، با در نظر گرفتن هر ژن به عنوان یک اسپین و برهمکنش ژن با ژن به عنوان ضریب جفت‌شدگی بین دو اسپین متناظر با آن‌ها در یک مدل شیشه-اسپینی (مدل گاوسی چند متغیره)، به دنبال استنباط این ضرایب هستیم. برای این‌ کار با استفاده از اصل بیشینه آنتروپی، ماتریس برهمکنش را برای نمونه سالم و سرطانی یافته و از روی آن شبکه تنظیم ژن را برای دو نمونه بازسازی می‌کنیم. این شبکه‌ها، دارای یال‌هایی با وزن‌های مثبت و منفی هستند، بنابراین می‌توانیم در چارچوب نظریه توازن به این شبکه‌ها انرژی نسبت دهیم و تمایل شبکه‌ها نسبت به تغییر وضعیتشان را مورد بررسی قرار دهیم. نتایج ما نشان می‌دهد که توزیع مثلث‌های ایجاد شده در شبکه از یک الگوی توانی پیروی می‌کند. از نقطه نظر چشم‌انداز انرژی، انرژی شبکه سالم از شبکه سرطانی بیشتر است و این به معنای پویایی بیشتر سلول سالم نسبت به سرطانی است. شبکه سرطانی تمایل کم‌تری نسبت به تغییر وضعیت خود دارد و به همین خاطر دسترسی کم‌تری به وضعیت‌های قابل دسترس خود پیدا می‌کند. از سوی دیگر، در شبکه‌ سرطانی، تعداد یال بیشتری دیده می‌شود. وجود یال بیشتر، به معنای ارتباط بیشتر بین اجزا و تاثیر بر دینامیک سلول است. رهیافت دنبال‌شده در این مطالعه به ما در یافتن درک بهتری از سلول به عنوان یک سیستم پیچیده کمک می‌کند.

 

 

فرکتال‌ها، مفاهیم مقیاسی و بازبهنجارش (۱)

تصمیم گرفتم تا جایی که می‌توانم، مسیر یادگیری سیستم‌های پیچیده را برای علاقمندانی که جرات یادگرفتن و شهامت حرکت کردن بیرون از مرزهای تعریف شده علوم را دارند را هموار کنم. برای شروع قصد دارم چند جلسه کلاس/سمینار در دانشگاه شهید بهشتی (تهران) برگزار کنم. ایده اصلی این جلسات لکچرهایی پیرامون مفاهیم اصلی سیستم‌های پیچیده است بی‌آن‌که وارد جزئیات ریز آن شوم. می‌خواهم طی این جلسات افراد با پیش‌زمینه‌های مختلف با ایده‌های اصلی آشنا شوند.

فیزیک نیوتون و موضوعات مربوط به حساب دیفرانسیل و انتگرال که غالب تفکر علمی سه سده گذشته را تشکیل داده‌اند بر این ایده استوار هستند که هر چه مقیاس فضایی یا زمانی یک سیستم فیزیکی را ریزتر و ریزتر کنیم، با سیستمی ساده‌تر، هموارتر و با جزئیات کمتری روبه‌رو می‌شویم. ملاحظات دقیق‌تری نشان می‌دهد که ساختار ریزمقیاس سیارات، مواد و اتم‌ها بدون جزئیات نیست. با این وجود، برای بسیاری از مسائل، چنین جزئیاتی در مقیاس‌های بزرگ‌تر نامرتبط به حساب می‌آیند. از آن‌جا که این جزئیات مهم نیستند، فرموله کردن نظریه‌ها به شیوه‌ای که اصلا جزئیاتی وجود نداشته باشد منجر به همان نتایجی می‌شود که با در نظر گرفتن توصیف دقیقی از سیستم می‌توان به آن‌ها رسید.

برف دانه کخ – یک فرکتال کاملا خودمتشابه. نگاره از ویکی‌پدیا


می‌دانیم در رویارویی با سیستم‌های پیچیده، هموار کردن پی‌در‌پی سیستم در مقیاس‌های ریزتر معمولا نقطه شروع مناسبی برای مطالعه سیستم به طور ریاضیاتی نیست. درک این موضوع، تغییر چشم‌گیری را در بنیادهای فکری ما به همراه داشته است.

در این سخنرانی ابتدا فرکتال‌ها، به عنوان موجوداتی که در مقیاس‌ ریزتر جزئیاتشان را از دست نمی‌دهند را معرفی می‌کنیم. سپس بی‌آنکه سراغ جعبه ابزار نظریه میدان‌های کوانتومی رویم، ایده بازبهنجارش را به عنوان چارچوب جامع‌تری برای مطالعه رفتار سیستم‌ها در مقیاس‌های مختلف و چگونگی ارتباط این رفتارها مطرح می‌کنیم.

ویدیو:

اسلایدها (کلیک کنید!)

منابع:

یادگیری «سیستم‌های پیچیده» رو از کجا و چه‌طور شروع کنیم؟!

خیلی وقته که از من پرسیده میشه که اگر بخوایم یادگیری سیستم‌های پیچیده رو شروع کنیم باید چیکار کنیم؟! آیا میشه بیرون از دانشگاه این کار رو انجام داد؟ یا اگر من رشته‌م مثلا کیهان‌شناسی، آمار یا ریاضی هست برام مقدوره که یادبگیرم؟ خب جواب اینه: چرا که نه! اما اینکه یک راه خیلی خاص وجود داشته باشه، راستش وجود نداره. در حقیقت آدم‌های مختلفی به این سوال طی سال‌های گذشته جواب‌های متنوعی دادن؛ مثلا  مارک نیومن یک‌بار در مورد موضوعات مطرح و منابع موجود در Complex Systems: A Survey نوشته. با این حال سعی می‌کنم طرحی برای شروع یادگیری سیستم‌های پیچیده در ادامه ترسیم کنم. از هرگونه نظر، انتقاد یا پیشنهاد از صمیم قلب استقبال می‌کنم، به‌ویژه از طرف متخصصان. راستی  قبل‌تر نوشته‌ای با عنوان «چگونه یک‌ فیزیک‌دان نظری خوب شویم؟» از خِراردوس توفت، نوبلیست، ترجمه کرده بودم.

اخیرا کتابی منتشر شده به اسم «مقدمه‌ای بر نظریه سیستم‌های پیچیده» که کتاب بسیار خوبی برای شروع سیستم‌های پیچیده به‌طور حرفه‌ایه!

کتاب مقدمه‌ای بر نظریه سیستم‌های پیچیده

پیش‌فرض این نوشته اینه که خواننده به حساب دیفرانسیل و انتگرال، معادلات دیفرانسیل و فیزیک پایه مسلط هست و علاقه شدیدی به ورود به حوزه بین‌رشته‌ای داره! اصلی‌ترین پیش‌نیاز برای یادگیری سیستم‌های پیچیده شهامت و حوصله کافی برای ورود به دنیایی تازه و هیجان‌انگیزه! اگر به دنبال کتابی هستین که حس کلی از «سیستم‌های پیچیده» به شما بده نگاه کنید به کتاب «سیری در نظریه پیچیدگی» نوشته ملانی میچل با ترجمه رضا امیر رحیمی.  همین‌طور کورس مقدماتی در Complexity Explorer وجود داره برای این که یک آشنایی کلی از سیستم‌های پیچیده پیدا کنید.

لیستی که در ادامه اومده، بسته به هر موضوع، از ابتدایی به پیشرفته مرتب شده و تقریبا سعی کردم ترتیب معنی‌داری برقرار کنم. به این معنی که شما می‌تونید به‌ترتیب موضوعات مطرح شده یادگیری اون‌ها رو شروع کنید و بسته به زمانی که دارین توی هر کدوم عمیق و عمیق‌تر بشین!

۱) جبر خطی و ماتریس‌ها

برای شروع نیاز به مفاهیم‌ و تکنیک‌های جبرخطی دارین. باید بتونید با ماتریس‌ها خوب کار کنید.

  1. کورس جبر خطی Vector and Matrix Algebra by Anthony D. Rhodes
  2. ویدیوهای Essence of linear algebra
  3. کورس و کتاب جبرخطی Gilbert Strang

این کتاب با نگاهی جدید به مکانیک کلاسیک، به موضوعات مورد نیاز برای سیستم‌های پیچیده می‌پردازد.

۲) مکانیک کلاسیک

بخش زیادی از سیستم‌های پیچیده توسط فیزیک‌دانان توسعه داده شده، پس باید با ادبیات ابتدایی فیزیک آشنا بشید!

  1. کورس مکانیک کلاسیک لنرد ساسکیند
  2. کتاب Introduction to Modern Dynamics – Chaos, Networks, Space and Time – David D. Nolte

۳) آمار، احتمال و فرایندهای تصادفی

ایده‌های اصلی آمار و احتمال رو باید بدونید. یعنی هرکسی که در دنیای امروز زندگی می‌‌کنه باید بدونه!

  1. کتاب An Introduction to Random Vibrations, Spectral & Wavelet Analysis by D. E. Newland
  2. کتاب Probability Theory: The Logic of Science by E. T. Jaynes

۴) فرکتال‌ها و مفاهیم مقیاسی

  1. مقدمه‌ای بر هندسه فرکتالی: ویدیو
  2. کتاب Scale: The Universal Laws of Growth, Innovation, Sustainability, and the Pace of Life in Organisms, Cities, Economies, and Companies by Geoffrey West
  3. کورس Fractals and Scaling by David Feldman
  4. این ویدیو رو ببینید:

۵) فیزیک آماری و پدیده‌های بحرانی

مکانیک آماری رو خیلی خوب باید بدونید! از ایده‌های ابتدایی تا مباحث پیشرفته. مدل آیزینگ رو خیلی جدی بگیرین!

  1. کورس مکانیک آماری لنرد ساسکیند
  2. کورس و کتاب فیزیک آماری ذرات، مهران کاردر
  3. کتاب Statistical Mechanics Entropy, Order Parameters, and Complexity by James P. Sethna
  4. کورس کوتاه  Introduction to Renormalization by Simon DeDeo
  5. کتاب Lectures On Phase Transitions And The Renormalization Group by Nigel Goldenfeld
  6. کتاب David Tong: Lectures on Kinetic Theory

    کتاب دینامیک غیرخطی و آشوب استیون استروگتز به همراه ویدیوهای کلاس درسش یکی از بهترین منابع یادگیری دینامیک غیرخطی است.

۶) دینامیک غیرخطی و آشوب

  1. کورس Introduction to Dynamical Systems and Chaos by David Feldman
  2. کورس و کتاب Nonlinear Dynamics and Chaos by Steven H. Strogatz
  3. کورس Nonlinear Dynamics: Mathematical and Computational Approaches by Liz Bradley

۷) شبکه‌ها (علم شبکه)

  1. ویدیو «ظهور علم شبکه»
  2. مقاله مروری The shortest path to complex networks by S. N. Dorogovtsev and J. F. F. Mendes
  3. کتاب علم شبکه باراباشی
  4. کتاب Networks: An Introduction by Mark Newman
  5. این ویدیو رو ببینید:

۸) روش‌ها و تکنیک‌های محاسباتی و شبیه‌سازی

  1. کورس پایتون برای همه
  2. کورس پایتون برای پژوهش
  3. کتاب Monte Carlo Simulation in Statistical Physics: An Introduction by Kurt Binder, Dieter W. Heermann
  4. کتاب Complex Network Analysis in Python by Dmitry Zinoviev
  5. کورس Introduction to Agent-Based Modeling by William Rand

۹)  نظریه اطلاعات و محاسبه

Self-contained, precise. Numerous examples and exercises make it a valuable teaching book
Builds a bridge between physics of glasses and computer science problems

  1. کورس Introduction to Computation Theory by Josh Grochow
  2. مقاله مروری A Mini-Introduction To Information Theory by Edward Witten
  3. کتاب Information, Physics, and Computation by Marc Mézard and Andrea Montanari

۱۰) نظریه بازی‌‌ها

  1. کورس Game Theory I – Static Games by Justin Grana
  2. کورس Game Theory II- Dynamic Games by Justin Grana
  3. کتاب Strategy: An Introduction to Game Theory by Joel Watson

۱۱) یادگیری ماشین

  1. کورس Matrix Methods in Data Analysis, Signal Processing, and Machine Learning – Gilbert Strang
  2. کورس Fundamentals of Machine Learning by Brendan Tracey and Artemy Kolchinsky
  3. مقاله مروری A high-bias, low-variance introduction to Machine Learning for physicists
  4. ویدیو Bayesian Inference by Peter Green

به طور کلی، دوره‌های آموزشی Complexity Explorer رو دنبال کنید. موسسه سن‌تافه (سانتافه!)  یک کورس مقدماتی روی پیچیدگی داره. همین‌طور پیشنهاد می‌کنم عضو کانال Complex Systems Studies در تلگرام بشین. فراموش نکنید که اینترنت پره از منابع خوب برای یادگیری ولی چیزی که کمه، همت! در آخر دیدن این ویدیو رو با زیرنویس فارسی پیشنهاد می‌کنم:

مقدمه‌ای بر هندسه فرکتالی

Examples of ball packing, ball covering, and box covering. @wikipedia

«هندسه‌ی فرکتالی، فقط بخشی از ریاضیات نیست، بلکه موضوعی است که به هرکس کمک می‌کند تا این دنیا را متفاوت ببیند.»  بنوا مندلبرو – پدر هندسه‌ی فرکتالی

خیلی وقت پیش در مورد فرکتال‌ها نوشتم که شما می‌تونید اونا رو بخونید: 

این هفته، در مورد هندسه فرکتالی یک سخنرانی در دانشگاه شهید بهشتی داشتم با موضوع «مقدمه‌ای بر هندسه فرکتالی» می‌تونید ویدیوی این سخنرانی رو ببینید. همین‌طور اسلاید‌ها و فایل صوتی: