ferrimagnetism_-_magnetic_moment_as_a_function_of_temperature

بالاتر از دمای بحرانی (نقطه کوری)، ماده دیگر مغناطیسی نیست.

یه گذار روزمره مثل تغییر فاز آب رو در نظر بگیرید. گاز و مایع به واقع شبیه هم هستن! هر دو از نظر ما بی نظم هستن! حالا یکی یه کم بیشتر یکی یه کم کمتر. اما هیچ کدوم جامد منظم نیستن که همه سرجاشون نشسته باشن. 
مثال دیگه مواد مغناطیسی است. اینا توشون کلی ذره دارن که هر کدوم یک جهتی داره برای خودش- به زبان فنی اسپین. حالا دما خیلی زیاد باشه ماده‌مون که مغناطیسی نیست! یعنی مثلن آهن مذاب در دمای بالا براش سخته منظم باشه، به هم ریخته است. پس اون جهت‌ها همه تصادفی اند و بالطبع متوسط‌شون صفر و ماده مغناطیسی نیست! اما اگر دما پائین بیاد اوضاع عوض میشه، اینا می‌تونن یه جهت خاص رو بگیرن. به این میگن شکست خود به خودی تقارن

مردم با همین میخ و چکش سراغ هر تغییر فازی می‌رفتن و سربلند بیرون می‌اومدن. اما یهو آقای فون‌کیلیتزینگ یه چیز جالب دید: اگر یه مشت الکترون رو به دوبُعد محدود کنید، و بَعد میدان مغناطیسی روشن کنی (این همون روشی است که باهاش فهمیدن حامل بار، بارش منفی است) رسانندگی (همون جریان به ولتاژ با یک مشت ضریب) بهت یک سری عدد میده:۱ و۲ و۳ و … بعدتر عددهای کسری عجیب اما خاصی هم پیدا شدن. اما این طور نیست که شما بگی ۱۷.۳۰۸ بعد ما بهت بگیم آهان، میدان فلان رسانندگی اینه که تو می خوای! اعداد طبیعی یا کسری خاص! هرکی به هرکی نیست!

چند خم بسته با Winding Numberهای متفاوت.

چند خم بسته با Winding Numberهای متفاوت.

خب مردم هی دست به دهان بودن که چه طور میشه وسط این همه خطای آزمایش و کثیفی نمونه و غیره این اعداد این قدر خاص باشن؟! چرا این همه چیز پیوسته عوض میشه اما اینا نه؟!!

خب بالطبع اول سعی کردن که همون میخ و چکش رو استفاده کنن. اما این درب بسته بود. اما جناب تاولز و همکاراش نشون دادن که میشه اون اعداد رو محاسبه کرد. اینکه اون اعداد واقعن در اون مساله که بالا گفتم (اثر کوانتومی هال ) از کجا و چطور به دست میاد، رو کاریش نداریم، اما میشه یه مثال ساده زد؛ یک خم بسته‌ی دلخواه روی صفحه بکشید. بعد ببینید این خم چند بار مبدا رو دور زده؟! فرض کنید حالا یه میله ی بزرگ دارید و این خم شما در واقع یک ریسمان است. شما اون عدد (winding number) ریسمان رو مگر با بُریدن ریسمان نمی تونید تغییر بدید.

از سوی دیگه اون عدد همیشه یک عدد طبیعی است: ۰ و ۱ و غیره. حالا در اون دنیا این ریسمان چیز عجیب غریب تری است!

فازهای مختلف ماده - نگاره از nobelprize.org/

فازهای مختلف ماده – نگاره از nobelprize.org

ولی خب کلیت داستان همین است. یعنی یک عددی هست که اتفاقن در برخی موارد همین تعداد دور زدن‌های یک خم بسته حول مبدا است و جز با بُریدن نمیشه تغییرش داد. این بُریدن‌ها در واقع در دنیای جدید به معنای همون گذار فاز هستن، انگار که مایع می‌شد جامد! اینجا هم وقتی ریسمان مربوطه بُریده شد و دوباره بسته شد عدد می‌تونه تغییر کنه! به زبان فنی‌تر در واقع این عدد تا زمانی که سیستم گاف انرژی داشته باشه نمی‌تونه تغییر کنه، و اگر گاف بسته و دوباره باز بشه(مثلن با تغییر یک کمیت مثل میدان مغناطیسی) عدد مورد نظر ما می‌تونه عوض بشه. به خاطر این خواص خیلی سفت و سختش هست که بهش میگن توپولوژیک!پس مساله ی اول حل شد 🙂 تاولز تونست با همکاراش نشون بده که اون اعداد از کجا میان. البته بگم اعداد کسری هنوز حل نشده هستن! خب این حالتهای ماده و این تغییر اعداد، این تغییر نظم(!!!) با یک سری عدد توصیف میشه و توپولوژی!

حالا یک چییز دیگه: همون اسپین‌ها رو در نظر بگیرید. حالا فرض کنید دو بُعد داریم. میشه حالتی رو تصور کرد که همه‌ی اسپین‌هایی که دورمبدا هستن به سمت خارج هستن! عین خطوط میدان یک بار الکتریکی! اصلن همین مثال خوبه! شما می گید ئه!! همه به سمت بیرون هستن پس باید یه چیزی اونجا باشه! حالا اینجا نمی گیم بار، میگیم گردابه! و به جای مقدار بار همون winding number  . آقای تاولز و کاسترلیتز نشون دادن که در دو بُعد جز اون حالت بی نظم که همه می دونستن باید اونجا باشه میشه حالاتی داشت که مثلن دو تا گردابه داشته باشه! پس دوباره سرو کله ی این اعداد طبیعی و توپولوژی و فازها پیدا شدن! این بار شما می‌تونید چند تا گردابه‌ داشته باشید، مضاف بر اون هرگردابه یک عددبرای خودش داره که شبیه به همون بار است! این گردابه‌ها و این نوع تغییر فاز در ابرشاره‌ی هلیوم دیده شد!

گذار فاز تپولوژیک

گذار فاز تپولوژیک – نگاره از nobelprize.org

اما جناب هالدین! اون گاز الکترونی و میدان مغناطیسی رو که بالا گفتم در نظر بگیرید! اونا مثلن یه ویژگی خیلی جالب که دارن این است که جریان الکتریکی از روی لبه‌ها حرکت میکنه! و خب رسانندگی ش هم اون اعداد خاص رو میده! 
تا مدت ها مردم فکر می کردن که خب میدان مغناطیسی قوی خیلی مهمه!اما هالدین در یکی از کارهاش یک مدل تئوری ساخت که بدون شار مغناطیسی خالص همون خواص رو داشت! این مدل دو سال پیش در آزمایشگاه realize شد! پس همه فهمیدن چیزای مهمتری تا میدان مغناطیسی هست!  در واقع این بنیان کاری است که در سال ۲۰۰۶،  Kane  و Mele روی گرافین کردن و عایق‌های توپولوژیک رو باز کردن. این‌ها موادی هستند که علی‌رغم اینکه نارسانا هستند، یعین در حجم‌شون گاف هست و رسانش نمی‌تونیم داشته باشیم، روی مرز‌هاشون می‌تونن رسانش داشته باشن! برای همین است که میگن عایق توپولوژیک! عایق trivial میشه همون عایق معمولی، نه تو حجم و نه تو سطح رسانش نداره! اما توپولوژیک‌ها روی سطح رسانش دارن!

اما هالدین کارهایی رو هم روی مدل‌های اسپینی کرده که تاثیر گذاشت روی چیزی که الآن بهش میگن symmetry protected topological phase. هالدین مدل‌هایی رو نگاه کرد که مردم پیش از او هم بررسی کرده بودن! همه فکر می‌کردن این مدل‌های اسپینی Gapless هستن، یعنی با کمی انرژی می‌تونید توش برانگیختگی درست کنید! این در واقع برای اسپین ۱/۲ نشون داده بودن و فکر می کردن برای اسپین‌های بالاتر هم درسته! اما هالدین نشون داد که برای اسپین‌های صحیح مثل ۱ باید دقت کرد و چیزهای دیگه‌ای هم هست که باعث میشن سیستم گاف انرژی داشته باشه! این سیستم‌ها و این خواص هم توپولوژیک هستن و به این راحتی از بین نمی‌رن اما همون‌طور که از اسم‌شون برمیاد یک تقارنی رو لازم دارن، مثلن دوران! یعنی اون خواص توپولوژیک هستند مادامی که شما اون تقارن رو حفظ کنی!

گذار کاسترلیتز تاولز رو تو کتاب کاردر خوب توضیح داده. اینا هم یه سری مقاله در مورد کارهای توپولوژیک و اثر هال:

کنث فالکونر (ریاضی دان) در مورد مفهوم فرکتال ها میگوید:

«به مفهوم فرکتال ها باید همان جوری نگریست که یک زیست شناس به مفهوم زندگی می نگرد.»

توی پست قبلی مقدمه‌ی کوتاهی درباره فرکتال ها و اینکه هندسه ی توصیف گر طبیعت یک هندسه‌ی فرکتالی هست یک توضیحاتی دادم.

رعد و برق ـ پدیده ای با هندسه فرکتالی

صرف نظر از فرکتال های ساختگی (فرکتال هایی که ریاضیدان ها معمولا می‌سازند مثل برف‌دانه کخ) به هر طرف که نگاه کنید می‌تونید یک فرکتال طبیعی رو مشاهده کنید. سر سفره «کلم ترشی (یا بروکلی)»، کنار ساحل «خطوط ساحلی»، «برگ درخت»، «شش ها (ریه)»، «رعد و برق» و …خب این فرکتال ها چه ویژگی دارند؟

فرکتال ها ۳تا ویژگی خاص دارند که بهشون اشاره میکنم:

۱) فرکتال ها خودمتشابه هستند!

یک گل‌کلم یا کلم بروکلی رو در نظر بگیرید؛ اگه با یک چاقوی تیز، یکی از گلچه های گل کلم رو ببرید و جداگانه بهش نگاه کنید:

کلم بروکلی، موجودی با ساختار فرکتالی

کلم بروکلی، موجودی با ساختار فرکتالی – نمونه یک موجود  خودمتشابه 🙂

چیزی که به نظر می‌رسه یک گل کلم کامله، اما کوچکتر! اگه باز برش بدید، دوباره، دوباره، دوباره، …، شما گل‌کلم های کوچکتری بدست می آرید. به تجربه دیده شده که بعضی از اشکال این خاصیت عجیب رو دارند، یعنی هر قسمت از شکل مثل کل شکله با این تفاوت که اندازه کوچکتری داره. به این خاصیت خود متشابهی میگند. توی برف‌دانه کخ هم اگر قسمتی از شکل روجدا کنید میبینید که دقیقا مثل کل شکله و این تشابه هیچ وقت قطع نمیشه و همین طور ادامه داره! ممکنه که شما بگید یک خط راست هم اگر تکه تکه بشه باز هم شکل قسمت اول رو داره پس فرکتاله! اولا اشتباه نکنید یک ویژگی شرط لازمه نه کافی! در ثانی معمولا منظور ما از خود متشابه بودن، خود متشابه بودن در یک الگوی غیرعادی و غیربدیهیه! 

۲) فرکتال ها دارای بعد غیرصحیح هستند!

همیشه ما با ابعاد صحیح روبه رو بودیم! مثلا میگیم خط موجودی ۱بعدی، مربع یک شکل ۲ بعدی و مکعب یک شکل ۳بعدیه (ابعاد اقلیدوسی، همه هندسه ای که ما اول یاد میگیریم اقلیدوسی هست) ! حتی فضا-زمان در نسبیت ۴ بعدیه و نه مثلا ۳/۴۵ بعدی! همین طور نظریه هایی مثل ریسمان هم که فراتر از ۳ بعد رفته اند هنوز تعداد بعد توجیه کننده‌شون صحیحه مثلا ۱۱ نه ۱۱/۲۴! ممکنه بپرسید این غیرصحیح بودن بعد فرکتال ها دیگه چه صیغه ایه! پس اجازه بدید که «بعد» رو تعریف‌ کنیم:

مطابق شکل،‌ dفرض کنید که از یک قطعه شکل سمت چپ میخوایم شکل بزرگتر (با بزرگنمایی ۳ برابر) رو درست کنیم؛ برای این کار به چند قطعه‌‌ی هم اندازه با شکل سمت چپ نیاز داریم؟ برای خط معلومه، اگه همون خط قبلی سه برابر بشه (طولش) شکل جدید حاصل میشه، پس به ۳قطعه هم‌اندازه نیاز داریم. برای مربع هم مثل خط می‌مونه با این تفاوت که هم طولش ۳ برابر میشه و هم عرضش (به شکل نگاه کنید) پس ما به ۹ قطعه‌ی هم‌اندازه نیاز داریم. و وقتی هم که مکعب میشه، بزرگنمایی هم برای طول و هم برای عرض و هم برای ارتفاع اتفاق افتاده و این دفعه به ۲۷ مکعب نیاز داریم. (به شکل نگاه کنید!) خب این عددهای به دست اومده رو دوباره نگاه کنیم. من توی یک جدولی می‌نویسمشون؛

فکر کنم رابطه ای که بین این اعداد هست رو فهمیدید: ۳و ۹ و ۲۷! یک رابطه که یک تصاعد هندسی هست رسما!

«تعداد قطعه هم‌اندازه برای ساخت شکل جدید = بزرگنمایی به توان بعد شکل»

از روی این رابطه با استفاده از لگاریتم گیری از طرفین میشه بعد را بدست اورد، یعنی «بعد» میشه:

«بعد = لگاریتم تعداد قطعه هم‌اندازه برای ساخت شکل جدید تقسیم بر لگاریتم بزرگنمایی»  

daum_equation_1405194334641اگر n تعداد قطعات و m بزرگنمایی باشه:

ما در حقیقت یک تعریف از بعد ارائه کردیم. بعد خودمتشابهی! خب با این تعریف بریم سراغ محاسبه‌ی ابعاد فرکتال ها؛ 

فرض کنید یک برف‌دانه به این شکل میسازیم که مثل شکل قبل از یک مربع با (با بزرگنمایی ۳) یک مربع بزرگتر که شامل ۹ مربع هم اندازه با مربع اولیه هست به وجود میاد. حالا مربع های کوچیک

snow

 بالایی، چپی، راستی و پایینی مربع کوچیک مرکز رو مطابق شکل حذف میکنیم. اگر همین روند رو ادامه بدیم یک برف دانه ساخته می‌شه! (n روی شکل منظور مرحله‌ی ساخت شکله با n تعداد قطعات کوچکتر اشتباه نگیرید!)

daum_equation_1405194713785

بعد این برفدانه همین جور که میبینید یک عدد بین ۱ و ۲ هست! و اینجاست که دیگه بعد، یک عدد صحیح به دست نمیاد. مندلبرو اسم این بعد رو «ناهمواری» میذاشت که تعریف جالب‌تریه مخصوصا برای اجسامی که دارای برآمدگی هم باشند! چیزی که الان مطرح میشه اینه: معنی این ۱/۴۶۴۹۷ چیه؟ ما میدونیم که یک موجود دو بعدی یعنی اینکه توی صفحه جا میشه و یک موجود یک بعدی یعنی یک خط! پس این عدد بین ۱ و ۲ یعنی چی؟! این به همون ماجرا برمیگرده که وقتی ساختن این شکل رو تا بینهایت ادامه بدیم با یک شکل پر از لبه رو به رو میشیم. در ضمن یادآوری کنم که این فقط یک عدد هست! هر چند مفهوم قشنگی پشتش هست ولی یک عدده که ناهمواری شکل رو مطرح میکنه! به هر حال کاری که ریاضیدان ها بکنند قرار نیست واقعا واقعی باشه 🙂 یک نکته ی دیگه اینکه هیچ وقت مطرح نمی‌شه که «اندازه‌ی یک فرکتال» یا «متوسط اندازه یک فرکتال» چقدره بلکه همیشه ما با همین عدد که بعد غیرصحیح یا ناهمواری  فرکتال هست کار میکنیم! شما امروز میتونید یه عدد به عنوان ناهمواری به کامپیوتر بدید و اون در کسری از ثانیه یک شکلی با اون ناهمواری رو  براتون تولید کنه یا یک شکل دلخواه رو با اون ناهمواری بازتولید کنه! به همین سادگی! تقریبا هندسه فرکتالی پیشرفت زیادی کرد چون سر و کله کامپیوتر پیدا شد. در مورد این توی قسمت آخر بیشتر توضیح میدم!

خب بریم سراغ یه مثال دیگه؛ مثلث سیرپینسکی فرض کنید یک مثلث (متساوی الاضلاع برای قشنگی بیشتر!) داریم. وسط هر ضلعش رو مشخص میکنیم و بهم وصلشون میکنیم تا ۴ تا مثلث جدیدتر ساخته بشه. مثلث وسط رو دور می‌ریزیم. این کارو تا ابد انجام میدم. الان ما یک فرکتال داریم که بعدش ۱/۵۸ هست:
daum_equation_1405196329871
این عدد بیشتر از عدد قبل هست، فکر کنم شکل خودش نشون میده که ناهمواری مثلث سیرپینسکی از برف دانه ای که ساختیم بیشتره!

۳) بعد خود متشابهی فرکتال‌ها از بعد توپولوژیک اونها بیشتره!

این که بعد توپولوژیک دقیقا چیه، چیزیه که از حوصله‌ی این پست خارجه! شاید جداگونه در موردش بنویسم (البته ترجیح میدم امید بنویسه :)) ولی فعلا به عنوان آشنایی، عرض کنم خدمتون،‌همین جوری که ما بعد خود متشابهی رو به صورت تقسیم دوتا لگاریتم تعریف کردیم میشه یه جور دیگه با ادبیات و شاید بهتره بگم ریاضیات خوشگل تری بعد رو تعریف کرد و اون موقع یک سری عدد جدید به دست میاریم. این اعداد در مورد فرکتال ها جوریه که با مقدار خودمتشابهی شون فرق دارند و کمتر از اونها هستند مثلا بعد توپولوژیکی مثلث سیرپینسکی ۱ و بعد خودمتشابهیش (همین جوری که حساب کردیم) ۱/۵۸۵ هست که ۱/۵۸۵ > ۱!

خب جمع بندی کنیم؛ فرکتال ها دارای سه ویژيگی: ۱) خودمتشابهی ۲) دارای بعدخودمتشابهی غیرصحیح و ۳) بعدتوپولوژیکی کمتر از بعد خودمتشابهی هستند! پیشنهاد میکنم ویدیو زیر رو حتما ببینید؛ سخنرانی مندلبرو (پدر هندسه فرکتالی) در تد هست. درست چندماه بعد از این سخنرانی، مندلبرو، پیرمرد مهربان دنیای فرکتال ها به خاطر سرطان لوزالمعده ای که داشت از دنیا رفت. روحش قرین آرامش باد!