رفتن به نوشته‌ها

سیتپـــــور مطالب

نگاهی بر مسئله تاشدگی پروتئین‌ها

شاید در سال ۱۹۶۲ که ماکس پروتز آلمانی و سر جان کندرو انگلیسی جایزه نوبل شیمی را برای مطالعه در باب پروتئین ها و ساختارکروی‌شان دریافت کردند هرگز تصور نمی‌کردند که دنیای پروتئین‌ها پر از رموز کشف نشده و جذاب باشد. اما اکنون با گذشت بیش از ۵۰ سال از از آن روزها دنیای پروتئین‌ها جذاب تر از چیزی به نظر می‌رسد که دانشمندان بدان فکر می‌کردند. یکی از بحث‌های جالبی که امروز در دنیای علم بسیار هم مورد توجه قرار گرفته‌است، فیزیک پروتئین‌‌هاست به ویژه مساله‌ی تاشدگی پروتئین‌‌ها یا همان پروتئین فولدینگ. تو این پست بنا داریم یکمی بیشتر با اتفاقاتی که توی سلول‌های بدنمون توسط پروتئین‌ها رقم میخوره آشناشویم.

وقتی اسم پروتئین به وسط می‌آید اولین چیزی که به ذهنمان می‌رسد احتمالا گوشت و مرغ و ماهی است. ما گوشت و مرغ مصرف می‌کنیم که پروتئین لازم برای بدن تأمین شود غافل از اینکه مونومر آمینواسیدهای بدنمون قابلیت ساخت بسیاری از پروتئین‌‌ها رودارند. اما یکی از مسائلی که بسیار مورد توجه محققان میان‌رشته‌ای قرار گرفته مساله‌ی پروتئین‌ فولدینگ است. اما چه شد که این مساله مهم شد. اصلاً پروتئین فولدینگ یعنی چه؟ این فرآیند یک فرآیند فیزیکی است که در آن پلیپپتایدها(Polypeptide) که همان پلیمرهایی هستند که از به هم پیوستن آمینواسیدها حاصل می‌شوند، به یک ساختار مشخص سه بعدی می‌رسند. پلیپپتایدها زنجیره‌ای از اسیدهای آمینه هستند و درواقع پروتئین‌ها در آغاز یک ساختار نامشخصی دارند. برای درک بهتر شکل زیر را ببینید که یک پلیپپتاید را قبل و بعد از فرآیند فولدینگ که تبدیل به پروتئین شده است نشان می‌دهد.

https://en.wikipedia.org/wiki/Protein_folding

سه سوال مهم ذهن فیزیک‌دان‌ها رو مشغول کرد و موجب تولد فیزیک پروتئین ها شد.

۱- از نقطه نظر علم فیزیک زنجیره‌ی آمینواسیدها که پروتئین‌ها رو دیکته می‌کنند چه حرفی برای ما دارند، آیا با برهمکنش خاصی روبه‌رو هستیم؟

۲- چطور می‌توان فولدینگ را سرعت بخشید؟

۳- آیا الگوریتم کامپیوتری وجود دارد که بتواند ساختار پروتئین‌ها رو از ترتیب آمینواسیدها پیش‌بینی کند؟

یکی از مهمترین نتایجی که اطلاعات موجودات زنده به ما نشان داده این هست که پروتئین‌ها حرکت‌های گرمایی تصادفی دارند. وقتی صحبت از این حرکت می‌کنیم یعنی مقیاس دیدمون رو کوچک کردیم و میخو‌اهیم ساختار و عملکردی که پروتئین‌ها دارند رو دنبال کنیم. اینجا همون جایی هست که علم بیوفیزیک مولکولی متولد می‌شود. اما براستی پروتئین‌ها چی هستند؟ در علم بیو به ساختار سه بعدی که از هم به پیوستن آمینواسیدهای یک بعدی درست میشه پروتئین می‌گویند. فیزیک مساله کجاست؟ بله درسته رفتار کل سیستم مجموع رفتار اجرا نیست. پس یک سیستم پیچیده روبه‌روی ماست. همه و همه مارو به یک سوال رهنمون می‌کند. چطور می‌توان ساختار پروتئین‌ها رو بر اساس مفاهیم فیزیکی توصیف کرد؟ رمز پاسخ چیزی نیست جز اونی که تو سلول‌های بدنمون داریم. دو ویژگی مهم سلول‌های بدنمون که در پروتئین‌ها هم می‌بینیم. پیچیدگی و عدم تقارن اولین راهنمای ما برای مطالعه‌ی فیزیک پروتئین‌ها هستند. اطلاعات موجود در این زمینه نشان می‌دهد رفتار پروتئین‌ها گاهی بسیار پیچیده‌تراز آن چیزی هست که دانشمندان قبلا پیش‌بینی می‌کردند. نگاهی کوتاه بیندازیم بر نحوه توصیف پروتئین‌ها:

www.eb.mpg.de

همانطور که در شکل می‌بینید ساختار کلی به ۴ دسته تقسیم می‌شود که ساده‌ترین آمینواسیدها هستند و پیچیده‌ترین ساختار چهارتایی که از به هم پیوستن زنجیره‌ی پلیپپتایدها تشکیل می‌شود. اما این جمع شدن چگونه است؟ آیا یک جمع ساده یا یک حرکت جمعی پیچیده؟

امامیخواهیم برگردیم به سه سوالی که در بالا پرسیدیم:

۱– چه ارتباطی بین فیزیکی که ما آموختیم و تاشدگی پروتئین ها وجود دارد؟ بهتره این سوال رو طوردیگری بپرسم. چه مکانیزمی یا فرآیندی وجود دارد که بتواند هدایتگر عمل فولدینگ باشد؟ حالا میتوانیم سوالمون روکمی فیزیکی‌تر کنیم. چه نیرو یا نیروهایی می‌توانند موجب تاشدگی و ایجاد ساختار سه بعدی پروتئین‌ها شوند. شاید شگفت‌انگیز به نظر بیاید که بانک اطلاعاتی پروتئین‌ها امروزه وجود حدود ۸۰۰۰۰ هزار ساختار پروتئینی رو اعلام می‌کند که این بسیار شگفت‌انگیزاست. ساختار پروتئین‌های آلفا و بتا در بین خودشون پیوند هیدروژنی دارند و این پیوند وظیفه حفظ ساختار سه بعدی رو دارد.

همچنین در ساختار برخی پروتئین‌ها برهمکنش واندروالسی وجود دارد. جالبه که بدونید پروتئین‌های تاشده به شدت در هم‌پکیده هستند و به نوعی ساختار تنگ‌پکیده‌ای که از فیزیک حالت جامد میشناسیم رو تداعی می‌کنند. مانند بسیاری دیگر از پلیمرها در انتخاب همسایه‌هاشون ترجیح فضایی دارند. این یعنی هر مونومر آمینواسیدی ممکن است متصل شدن به یک مونومر خاص رو به مونومری دیگر برای تشکیل ساختار پروتئینی رو ترجیح بدهد. پس می‌توانیم بگوییم با یک شبکه روبه‌رو هستیم. بسیاری از آمینواسیدها قابلیت جذب و دقع همدیگر را دارند و این به خاطر برهمکنش الکتروستاتیکی هست که در بین آن‌ها وجود دارد. مجموعه‌ای از این نیروها و بسیاری عوامل خارجی دیگر رو تحت عنوان نیروهای میدانی در فیزیک پروتئین‌ها یاد می‌کنند که این اجازه رو به ما می‌دهند تا برهمکنش، دینامیک، نحوه اتصالات و در کل اتفاقاتی که بین پروتئین‌ها جاری است را با مفاهیم فیزیکی توصیف کنیم. نکته جالب اینکه شناخت بسیاری از خواص آماری و ترمودینامیکی پروتئین‌ها هنوز جزئی از مسائل باز فیزیک هستند.

۲- در سال ۱۹۶۸ این سوال پیش آمد که آمینواسیدها علی رغم انتخاب‌های بسیاری که دارند چرا در کسری از میکروثانیه زنجیره خود را پیدا می‌کنند و هیچگاه دنبال یافتن و کاوش بیشتر سایر زنجیره‌های دیگر نیستند. این سوال منجر به انجام آزمایش‌های بسیاری بر روی حرکت‌شناسی پروتئین‌ها شد به طوری که در این آزمایشات اعلام شد می‌توان مسیر فولدینگ پروتيئین‌ها رو پیدا کرد. اما دشواری‌های بسیاری پیش روبود. اینکه در ابعاد مولکلول باید دربازه‌های زمانی میکروثانیه از حرکت پروتئین‌ها عکس گرفت. پس طبعا به ابزار قدرتمند آزمایشگاهی برای این کار نیاز داریم. اما دنبال چه چیزی هستیم. آیا جز اینکه میخواهیم به یک سری خواص این پلیمرها پی ببریم. بله ترمودینامیک آماری پلیمرها در اینجا متولد شد. مطالعه‌ی آنتروپی در زنجیره‌ی مونومرها و چشم انداز وضعیت انرژی آمینواسیدها ابزار کلیدی ما در شناخت خواص این دسته مواد هستند. اما آیا با همه‌ی این تفاسیر مکانیزم تاشدگی را شناخته‌ایم. اصولا منطورمان از مکانیزم چیست؟ ما به دنبال تحول زمانی آمینواسیدها هستیم تا زمانی که تبدیل به پروتئین‌های حلال می‌شوند. اتفاقات بسیاری ممکن است در این مسیر بیفتد، عوض شدن اتصالات آمینواسیدها، افزایش و کاهش پایداری ساختارها، تغییر مسیر برخی مونومرها با اعمال قیدهایی مثل دمای محیط واینکه در زنجیره‌ی تشکیل ممکن است برخی مسیرها پرجمعیت تر باشند، پس نمودی از شبکه را بازهم می توانیم احساس کنیم. در کل میخواهم بگویم با یک سیستم کاملا غیرتعادلی روبه‌رو هستیم. اما راه حل چیست؟ بله حدس شما درست است. آزمایشگاه، دریافت اطلاعات و پردازش اطلاعات با استفاده از کامپیوتر.

۳- اما شاید بزرگترین چالش طراحی کد کامپیوتری جهت پیش‌بینی ساختار سه بعدی پروتئین باشد. برای این کار جدای از شناخت نسبی کار با کامپیوتر و اطلاعات پروتئین‌ها باید مکانیزم بیولوژیکی آن‌ها رو هم درک کنیم. برای مثال باید درک دقیقی از برهمکنش بین آمینواسیدها داشته باشیم تا بتوانیم آن‌ها رو به بهترین شکل مدل کنیم. خوشبختانه در این زمینه پیشرفت‌های بسیاری انجام شده و مهمترین منبعی که میتواند اطلاعات مفیدی در اختیار ما قرار بدهد وبسایت ncbi هست. یکی از مهمترین اتفاقاتی که بعد از سال 1972 افتاد این بود که متخصصان متوجه شدند که ویروس‌ها و باکتری‌های حامل آلودگی فقط در بین DNA و RNA گذار نمی‌کنند. بلکه عامل شیوع برخی بیماری‌ها می‌تواند پروتئین‌های فولد نشده باشند مثل دیابت نوع دو و همچنین آلزایمر و پارکینسون. با توجه به شبیه‌سازی های اخیر در مورد مدل کردن بیماری‌ها می‌توان گفت این نوع دیتا و مدل‌سازی می‌تواند موضوع جالبی برای تحقیق و پژوهش باشد. در نهایت میتوانیم بگوییم، هدف پیش‌بینی ساختار نهایی از زنجیره‌های اولیه مونومر هاست. از موضوعات دیگر دینامیک پروتئین‌ها، رفتار جمعی به خصوص در پروتئین‌های نامنظم و همچنین تحلیل شبکه‌های مختلف که از برهمکنش پروتئین‌ها و آمینواسیدها می‌باشند هستند.

مسائل حل نشده:

مسائل بسیار زیادی در این زمینه و به خصوص بیوفیزیک مولکولی هست که هنوز باز هستند و قابلیت پرداخته شدن دارند. بنا داریم به چندتایی از اونها اینجا اشاره کنیم.

– چشم انداز تجربی هنوز از وضعیت تبادل انرژی بین پروتئین‌ها وجود ندارد.

– هنوز مدل دقیقی برای پیش‌بینی رفتار پروتئین‌ها ارائه نشده است که دقت بالایی داشته باشد.

– هنوز به طور ریاضی فهمی از رفتار میکروسکوپی آمینواسیدها به طور دقیق حاصل نشده است.

– پیش‌بینی برای انبوه‌شدگی پروتئین‌ها که در ایجاد برخی بیماری‌ها مهم است هنوز ارائه نشده است.

– هیچ الگوریتمی هنوز نمی‌تواند به صورت دقیق وابستگی و همبستگی بین مولکول‌‌های کوچک دارو‌ها رو با پروتئین‌ها تبیین کند.

-به طور سیستماتیک هنوز شبکه‌ای از رفتارآمینواسیدها و پروتئین‌ها تدوین نشده است.

– رفتار جمعی پروتئین‌ها در مقیاس‌های مختلف می‌تواند نتایج متفاوتی داشته باشد که هنوز به طور دقیق بررسی نشده است.

این ایده ‌ها و بسیاری ایده‌های دیگر همواره می‌توانند فرصتی خوب را برای انجام پروژه‌های علمی مختلف فراهم کنند که البته با توجه به بعد آزمایشگاهی کار برای شروع هر پروژه باید بودجه کافی و متناسب با آن فراهم بشود.

برای آشنایی بیشتر می‌توانید به دو مقاله زیر رجوع کنید که البته پایه‌ی اصلی این نوشته نیز می‌باشند.

منابع:

همچنین در صورتی که خیلی علاقمند به این موضوعات هستید و علاقه دارید یک درس خیلی خوب رو در اینترنت دنبال کنید می‌توانید به درس بیوفیزیک مولکولی دانشگاه ایلینوی رجوع نمایید.

آیا فیزیک می‌تواند شبکه‌های اجتماعی مانند فیس‌بوک را تحلیل کند؟!

در همایش پیوند در تابستان گذشته در مورد این حرف زدم که چگونه ایده‌های برگرفته شده از فیزیک می‌تونن درک بهتری از شبکه‌های اجتماعی مثل فیس‌بوک به ما بدن. ویدیو این ارائه رو به همراه اسلایدها و فایل صوتی رو اینجا می‌ذاریم. ما بقیه ارائه‌ها رو هم در قسمت «سخنرانی‌ها، دوره‌های آموزشی و کلاس درس» می‌تونید پیدا کنید!

ویدیو:

یلدا از جنس انقلابی زمستانی!

شب یلدا رو همه به عنوان طولانی‌تر شب سال می‌شناسیم. توی این پست شب یلدا (انقلاب زمستانی) رو از نظر نجومی بررسی می‌کنیم و درمورد علت به‌وجود اومدن فصل‌ها و تغییر طول روز و شب بحث می‌کنیم. امیدوارم شب یلدا بهتون خوش بگذره و آغاز زمستونی پر برکت برای همه باشه :))

چرا فصل‌های مختلفی رو تجربه می‌کنیم؟

مدار زمین به شکل بیضی هست و خورشید توی یکی از کانون‌های این بیضی قرار داره. درواقع زمین طی حرکت سالینه خودش نسبت به خورشید فاصله‌اش تغییر میکنه. اما مقدار اون در مقابل فاصله متوسط زمین تا خورشید خیلی ناچیز هست؛ زمین در حضیض مداری خودش حدود ١۴٧ میلیون کیلومتر، و در اوج مداری حدود١۵٢ میلیون کیلومتر از خورشید فاصله داره. یعنی حدودا ٢ درصد اختلاف از فاصله میانگین. به بیان دقیق‌تر، خروج از مرکز مدار بیضوی زمین ٠.٠١٧ هست؛ این به معنی اینه که مدار زمین خیلی شبیه یک دایره هست.

موقعیت مداری زمین و خورشید در فصل‌های مختلف. نگاره از time and date

بنابراین این تصور که فصل‌ها به دلیل دور و نزدیک شدن زمین به خورشید اتفاق میفتن، اشتباهه (اتفاقا زمین در ١٣ تیرماه به نقطه اوج، و در ١۴ بهمن به نقطه حضیض مداریش میرسه). دلیل اصلی ایجاد فصل‌ها، انحراف محور چرخش زمین نسبت به حالت عمود بر صفحه منظومه شمسی هست. همون‌طور که توی شکل می‌بینید، زمانی‌که خورشید به صورت مایل‌تر به نیم‌کره شمالی زمین می‌تابه، فصل زمستان و وقتی تابش به صورت عمودتر هست، فصل تابستان رو تجربه می‌کنیم. این درحالیه که توی نیم‌کره جنوبی، بالعکس، به ترتیب، فصل تابستان و زمستان رو داریم.

 

کجی محور زمین

قبل از این‌که وارد بحث حرکت ظاهری خورشید و تغییر طول روزهای سال بشیم، توی این قسمت می‌خوام به‌طور خلاصه، کمی درمورد مسأله کجی محور زمین بحث بشه. اصولاً اینکه چرا سیارات حول محوری به دور خودشون می‌گردن، برمی‌گرده به دوران شکل‌گیری منظومه شمسی. وقتی که توده گرد و غبار پیش ستاره‌ای خورشید در حال چرخیدن و شکل‌گیری بود، بعضی از مناطق بیرونی‌تر هم که دورتر قرارگرفته بودن، موفق شدن مقداری از مواد اطرافشون رو از طریق گرانش جذب کنن و گویچه‌هایی رو به‌وجود بیارن که به‌تدریج هسته اولیه سیارات رو تشکیل دادن. این فرایند جذب یا انباشت مواد توسط سیارات، همراه با چرخش بوده. و بعد از این‌که هم‌جوشی هسته‌ای در مرکز خورشید اتفاق افتاده و اصطلاحا خورشید شعله‌ور شده، این چرخش (یا به بیان دقیق‌تر تکانه زاویه‌ای)، همراه سیارات باقی مونده (اصل بقای تکانه زاویه‌ای).

حرکت تقدیمی و ناوشی محور زمین. نگاره از world-mysteries

به‌همین خاطر، سیارات علاوه بر حرکت مداری به دور خورشید، یک چرخش وضعی به دور خودشون هم دارن. حالا این‌که چرا محور چرخش به دور خودشون، کمی نسبت به عمودِ صفحه‌ی منظومه شمسی انحراف داره، احتمالا به دلیل برخوردهای شدیدی بوده که در دوران شکل‌گیری منظومه شمسی اتفاق میفتاده و سیارات، تحت بمباران شدید، توسط تکه سنگ‌های غول‌پیکر سرگردان بودن ( بعد از اینکه خورشید شعله‌ور شد، به علت بادهای شدید خورشیدی که در ابتدا گسیل می‌شد، دقیقا شبیه به یه سشوار پر قدرت، خیلی از این تکه سنگ‌ها به فاصله‌های دورتر فرستاده شدن، که امروز به شکل کمربند کوییپر و ابر اورت، در لبه‌های منظومه شمسی قرار دارن). این برخوردها می‌تونستن باعث بشن که محور چرخش کمی جابجا بشه. محور زمین به‌طور میانگین حدود ٢٣.۵ درجه از حالت قائم انحراف داره. به علت پخ بودن کره زمین در قطبین، نیروهای گرانشی که خورشید و ماه به زمین وارد می‌کنن، باعث حرکت تقدیمی زمین میشن؛ درواقع محور زمین با حفظ زاویه انحراف خودش، حول محور عمود هم می‌چرخه. شبیه چیزی که توی فرفره می‌بینیم. البته یک دور گردش بر اثر حرکت تقدیمی، حدودا ٢۵٧٧٢ سال طول می‌کشه. شاید این رقم خیلی بزرگی به‌نظر برسه، ولی دست کم باعث شده ستاره قطبی که درست بالای قطب شمال کره زمین قرار داره و با استفاده از اون می‌تونیم جهت شمال رو پیدا کنیم، تغییر کنه؛ الان ستاره‌ای که به‌عنوان ستاره قطبی می‌شناسیمش، ستاره آلفای صورت فلکی دب اصغر هست، درحالی‌که حدود سه هزار سال قبل از میلاد، ستاره ثعبان در صورت فلکی اژدها راهنمای جهت شمال بود.
اگه دقت کرده باشید، گفتیم کجی محور زمین «به‌طور میانگین»، حدود ٢٣.۵ درجه هست. چون صفحه مداری ماه نسبت به صفحه مداری زمین به دور خورشید، حدود ۵ دقیقه انحراف داره، این موضوع باعث میشه کمی مقدار انحراف محور زمین تغییر کنه و با دوره تناوب حدود ١٨.۶ سال، بین بازه ٢٢.١ تا ٢۴.۵ درجه، متغیر باشه. در حال حاضر، مقدار کجی محور زمین ٢٣.٢۶ درجه هست. به این رقص محوری زمین، حرکت ناوشی یا ترقصی گفته میشه.

حرکت ظاهری سالیانه خورشید

اگه ما در قسمت‌های مختلف مدار زمین به خورشید نگاه کنیم، می‌بینیم که انگار موقعیت خورشید در طول سال نسبت به ستاره‌های پس‌زمینه (با فرض اینکه بتونیم ستاره‌ها رو در طول روز هم ببینیم)، تغییر می‌کنه؛ فرض کنید محور زمین رو دایروی در نظر بگیریم، در نتیجه خورشید هر روز کمی کمتر از ١ درجه نسبت به ستاره‌های پس‌زمینه آسمون، به سمت شرق جابجا میشه ( تعداد روزهای سال ٣۶۵ روز و یک دایره کامل ٣۶٠ درجه هست). به مسیر حرکت ظاهری سالیانه خورشید، دایره البروج میگن. به همین خاطر هست که انگار خورشید در ماه‌های مختلف، توی برج‌ها یا صورت فلکی‌های مختلفی قرار داره.

نقاط اعتدالین و انقلابین و حرکت ظاهری سالیانه خورشید روی کره سماوی. نگاره از stars.astro.illinois.edu

داخل پرانتز: البته که طالع‌بینی اساس علمی نداره و خرافاته، ولی از اون‌جایی که متأسفانه توی قرن ٢١اُم هم هنوز عده زیادی به این خزعبلات اعتقاد دارن، جا داره این نکته رو عنوان کنم: تاریخ طالع‌بینی حدودا به ٣٠٠٠ سال پیش برمی‌گرده. برج‌هایی که مربوط به ماه تولد هستن از اون زمان تا الان، به‌خاطر حرکت تقدیمی زمین، تغییر کردن. مثلا اگه شما فروردین ماهی و توی ادبیات طالع بینی برج حمل هستید، به این معنیه که خورشید در ماه فروردین، توی صورت فلکی حمل قرار داره. این درحالیه که الان دیگه خورشید توی این برج قرار نداره. بلکه در فروردین ماه توی صورت فلکی حوت هست. بنابراین زیاد توجهی به این اراجیف ماه تولد نکنید لطفاً! :))

به‌خاطر کجی محور زمین، دایره البروج از استوای سماوی، ٢٣.۵ درجه انحراف داره (اگر استوای کره زمین رو ادامه بدید تا کره سماوی رو قطع بکنه، بهش استوای سماوی میگن). به محل تلاقی این دو دایره، اعتدالین گفته میشه. برای نیم‌کره شمالی، اگه خورشید در مسیر حرکت به سمت بالای استوای سماوی باشه، این نقطه اعتدال بهاری(آغاز فصل بهار)، و اگه در مسیر حرکت به سمت پایین استوای سماوی باشه، این نقطه اعتدال پاییزی(آغاز فصل پاییز) هست. هم‌چنین وقتی که خورشید در بالاترین نقطه دایره البروج نسبت به استوای سماوی قرار داره، انقلاب تابستانی (آغاز فصل تابستان) و هنگامی‌که در پایین‌ترین نقطه دایره البروج نسبت به استوای سماوی هست، انقلاب زمستانی(آغاز فصل زمستان) بهش گفته میشه.

محل طلوع و غروب خورشید در طول سال چطور تغییر می‌کنه؟

موقع اعتدال بهاری و پاییزی، خورشید دقیقا از سمت شرق، طلوع و از سمت غرب، غروب می‌کنه؛ بنابراین دو بار در طول سال، این امکان وجود داره که بتونید جهت‌های جغرافیایی‌تون رو، به‌وسیله خورشید چک بکنید (البته در واقعیت، چون نقاط اعتدالین تنها در یک لحظه اتفاق میفتن، که لزوما هم در لحظه طلوع یا غروب خورشید نیست، بنابراین مکان طلوع و غروب خورشید از محل دقیق شرق و غرب، مقدار ناچیزی اختلاف داره که میشه ازش صرف‌ نظر کرد).
اما همین‌طور که از نقاط اعتدالین فاصله می‌گیریم، محل طلوع و غروب خورشید هم از شرق و غرب فاصله میگیره و به سمت شمال یا جنوب متمایل میشه؛ اگه شما روی استوای زمین قرار داشته باشید، در انقلاب تابستانی، خورشید از ٢٣.۵ درجه‌ای شمال شرق، طلوع و در ٢٣.۵ درجه‌ای شمال غرب، غروب می‌کنه. برعکس، در انقلاب زمستانی، طلوع خورشید در ٢٣.۵ درجه‌ای جنوب شرق، و غروبش در ٢٣.۵ درجه‌ای جنوب غرب هست. بنابراین روی استوا، حداکثر انحراف محل طلوع یا غروب خورشید از شرق یا غرب، ٢٣.۵ درجه هست که در انقلاب تابستانی و انقلاب زمستانی رخ میده. اما فرض کنید که شما بالاتر از استوا زندگی می‌کنید. در این‌صورت، برای محاسبه مقدار زاویه انحراف محل طلوع و غروب خورشید از شرق و غرب جغرافیایی، باید یک فاکتور (عرض جغرافیایی)sec هم ضرب کنید (عرض جغرافیایی، زاویه مختصاتی هست که مکان شمالی/جنوبی یک نقطه روی سطح زمین رو نشون میده و از صفر درجه در استوا، تا نود درجه شمالی/جنوبی در قطب‌ شمال/جنوب، متغیره). مثلا شهر تهران در عرض جغرافیایی ٣۵ درجه شمالی قرار داره. بنابراین حداکثر میزان انحراف، 23.5 * (35)sec ، حدودا ٢٨.۶٨ درجه هست. هرچند که این یه فرمول تخمینیه، اما تا عرض‌های جغرافیایی ۵٠ درجه صادقه (اگه علاقه‌مند به محاسبات کامل با استفاده از هندسه کروی هستید، به اینجا مراجعه کنید).

طول روز یا شب در طول سال چطور تغییر می‌کنه؟

خب، فکر می‌کنم تا الان تقریبا به این سوال جواب داده شده باشه که چرا شب یلدا که معادل با انقلاب زمستانی هست، طولانی‌ترین شب ساله؟ با توجه به توضیحاتی که درمورد حرکت ظاهری سالیانه خورشید داده شد، حداکثر ارتفاع خورشید نسبت به افق در طول سال تغییر می‌کنه و زمان انقلاب زمستانی به حداقل، و زمان انقلاب تابستانی به حداکثر مقدار خودش می‌رسه. بنابراین در انقلاب زمستانی، خورشید مسیر کوتاه‌‌تری (دایره عظیمه کوچکتر) رو باید توی آسمون طی بکنه و در انقلاب تابستانی، روی مسیر بلندتری (دایره عظیمه بزرگ‌تری) حرکت می‌کنه. هنگام اعتدال بهاری و پاییزی که حد وسط انقلابین هستن، طول روز و شب در همه جای دنیا برابر هست. یعنی تقریبا ١٢ ساعت روز و تقریبا ١٢ ساعت شبه. البته، به دو علت، طول روز، یک مقداری بلندتر از طول شب هست. اول اینکه؛ در زمان اعتدالین، مرکز هندسی خورشید ١٢ ساعت بالای افق هست، در حالی‌که طلوع خورشید، طبق تعریف، لحظه‌ای هست که لبه‌ی بالایی قرص خورشید از افق پیدا میشه (و نه مرکز خورشید)، و غروب خورشید هم به همین صورت، لحظه‌ایه که لبه بالایی قرص خورشید میره زیر افق و دیگه دیده نمیشه. بنابر این تعریف، طول روز مقداری بیشتر از ١٢ ساعت هست. علت دوم اینکه؛ به علت شکسته شدن نور خورشید توی جو زمین، ما موقع طلوع خورشید، لبه بالایی قرصش رو زودتر می‌بینیم، و موقع غروب، لبه‌ی بالایی رو حتی بعد از اینکه خورشید غروب کرده هم مشاهده می‌کنیم. این پدیده، باعث میشه، طول روز، حدود ۶ دقیقه (بسته به اینکه دما و فشار هوا بصورت موضعی چقدر توی ارتفاعات مختلف تغییر می‌کنه) بیشتر از زمانی باشه که اثر شکست نور توی جو وجود نداره. به‌خاطر این دو دلیلی که ذکر شد، زمان اعتدال بهاری و پاییزی، طول روز چند دقیقه بلندتر از طول شب هست.

آنالما

تصویری که می‌بینید، حرکت ظاهری خورشید در طول ساله که معروف به آنالمای خورشیدی هست (اگه کسی معادل فارسی عبارت آنالما رو می‌دونه بگه! ://)

تصویر آنالما. نگاره از visualphotos

داستان از این قراره که اگه توی یک ساعت خاصی از روز، مثلا ١٢ ظهر، در طول سال از خورشید عکس برداری بکنید، می‌بینید که شبیه عدد هشت انگلیسی میشه. اگه امکانات عکس‌برداری براتون مقدور نیست، می‌تونید یک میله شاخص نصب کنید و انتهای سایه‌ی اون رو در یک ساعت خاص، در طول سال علامت‌گذاری کنید. دقت کنید که اگه ساعت رسمی کشور عقب یا جلو رفت، شما طبق همون ساعت قدیم خودتون عمل کنید. در نهایت، شکل آنالما به‌دست میاد.
اگر به تصویر دقت کنید، می‌بینید که خورشید هم به سمت بالا و پایین، و هم به سمت راست و چپ حرکت کرده. علت این‌که خورشید در طول سال ارتفاعش تغییر میکنه رو قبلا بررسی کردیم. ولی به نظرتون چرا باید خورشید به سمت راست و چپ هم حرکت بکنه؟ درواقع علتش اینه که مدار زمین به دور خورشید بیضوی هست و نه دایروی. بنابراین در تصویر آنالمای خورشیدی یک کشیدگی به سمت شرق و غرب هم دیده میشه.

دوست دارم در پایان، این بیت از غزلی رو که از دوست خوبم مرتضی استاد عظیم هست، تقدیمتون کنم:

کمی آرام شو دیگر، تو ای شب زنده‌دار عشق!
که یلدا هم سحر دارد و آخر سر به سر آید…

تلاش برای توصیف جهان از زاویه‌ی گرانش

داستان معروف سیبی که از درخت افتاد و به سبب اون نیوتون کشف کرد که زمین جاذبه داره رو همه از بریم. این داستان چندان واقعی نیست نیوتون سالها توی اتاقش داشت با انواع و اقسام روابط سر و کله میزد تا بالاخره تونست که فیزیک جدیدی رو پایه‌گذاری کنه و واقعا با یک سیب نبود که نظریه‌ای متولد شد.

اگه گرانش رو به زبان خیلی ساده بخوام بگم، میشه فرمول‌بندی نیوتون از حرکات سیاره‌ها. قبل‌تر از نیوتون فردی به نام کپلر سه قانون رو در مورد حرکات سیاره‌ها پیدا کرده بود.کپلر معتقد بود که سیاره‌ها دارن در مدارهایی بیضوی به دور خورشید میچرخند که خورشید در یکی از کانون‌های بیضی قرار گرفته.. زمانی که سیاره به خورشید نزدیکتره با سرعت بیشتری حرکت میکنه نسبت به زمانی که از خورشید دورتره و رابطه ی بین فاصله سیارات از خورشید و پریود حرکتشون هم به دست آورده بود.

بعدتر از کپلر، نیوتون حرکات سیارات رو با صورت بندی گرانش ارائه کرد. نیوتون میگفت گرانش یک نیروی بلندبرده و بین اجرام مختلف برقراره. اگر دو تا جرم مختلف به نحوی بتونن همدیگه رو مشاهده کنن،شروع میکنن به جذب کردن همدیگه. شدت نیرویی هم که حس میکنن متناسب با حاصل ضرب جرمشون تقسیم بر مجذور فاصله دو تا جرم از همدیگه است.

این تا اوایل قرن نوزده بهترین تصویر ما از جهان بوده. اینکه اجرام به شکلی پراکنده‌اند در جهان و طبق گرانش نیوتونی رفتار میکنن. اما از اونجایی که علم همواره در حال تحوله و تصویر ما از جهان ثابت نمی‌مونه، شواهدی پیدا شدن که باعث شد دانشمندان درباره ی این نظریه به تردید بیفتند.اوایل قرن نوزدهم اینشتین با ارائه نظریه نسبیت عام تصویر جدیدی از جهان رو ارائه کرد.در این نظریه گرانش نه یک نیرو که یک ویژگی از فضا- زمان درنظر گرفته میشه.تغییرات در فضا-زمان هم به دلیل پراکندگی اجرام در فضا به وجود میاد.یک مثال آشنا از این اجرام میتونه سیاهچاله ها باشند. سیاهچاله ها در واقع بخشی از فضا زمان هستند که حتی نور هم امکان گریختن از افق رویداد سیاهچاله ها رو نداره. معادله‌ی میدان در نسبیت عام با رابطه‌ی زیر نشون داده میشه.

معادله ی میدان اینشتین

سمت چپ این معادله تانسور انیشتین رو میبینید. این تانسور درواقع حامی تمام اطلاعات هندسه‌ی فضا- زمان هست.سمت راست معادله هم تانسور انرژی- تکانه‌ رو میبینید. که درواقع حاوی تمام اطلاعات یک جرم گرانشی یا بهتر بگم یک ماده است.این جرم گرانشی میتونه زمین باشه، ستاره نوترونی باشه، یا حتی یک سیال باشه.

نسبیت عام موفقیت‌های چشم‌گیری تا به امروز داشته. پیش‍بینی ام‍واج گرانشی، توصیف سیاهچاله‌ها، سفر در زمان و… همگی از دستاوردهای نسبیت عام هستند.اما نسبیت عام در اواسط قرن بیستم و بعدتر با چالش‌های جدی مواجه شد. همین اتفاق باعث شد که دریچه‌ی جدیدی به سوی گرانش باز بشه و نظریات جدید گرانشی متولد بشن.

اینشتین وقتی معادله‌ی میدان گرانشی در نسبیت عام رو نوشت با یک سوال مواجه شد. چرا جهان تحت گرانش خودش فرو نمیریزه؟ نیوتون برمبنای بی‌نهایت بودن و همسانگردی جهان مطمئن بود که جهان تحت گرانش خودش فرو نمیریزه. نیوتون بر مبنای این فرضیات معتقد بود که هر نقطه از جهان نیروی برابری رو حس میکنه، بنابراین جهان هرگز تحت گرانش فرونمیریزه. انیشتین برای رفع این مسئله جمله‌ای رو دستی وارد معادلاتش می‌کنه. این جمله به صورت یک نیروی دافعه‌ی کیهانی، که به عنوان ثابت کیهان‌شناسی معرفی شده، وارد این معادلات میشه. جالبه بدونید اینشتین بعدها از این کارش به عنوان یک اشتباه بزرگ یاد میکنه.

بعد از وارد شدن جمله ی ثابت کیهان شناسی معادله‌ی میدان اینشتین به فرم زیر در میاد.

معادله‌ی میدان اینشتین در حضور ثابت کیهان‌شناسی

با فرض عدم وجود ماده، یعنی در حالتی که مقدار تانسور انرژی- تکانه در این معادله صفر باشه، میتونیم به جمله‌ی ثابت کیهان‌شناسی انرژی خلا رو نسبت بدیم. در این حالت لمبدا رو معادل چگالی انرژی خلا میدونیم.

اما مشکلی که تا به امروز هنوز حل نشده چی بود؟

ما باید بدونیم مقدار این ثابت کیهان شناسی چقدره و از چه مرتبه‌ایه. نظریه‌ی میدان‌های کوانتومی مقداری رو که برای انرژی خلا پیش‌بینی می‌کنه بسیار بسیار بیشتر از عددی است که از رصدها بدست میاد. چیزی در حدود شصت تا صد و بیست مرتبه‌ی بزرگی بزرگتر. همین اختلاف مقدار در نظریه و رصد باعث شد نظریات جدید گرانشی‌ای متولد بشن تا شاید این مشکل رو حل کنند.

مشکل بعدی‌ای که نسبیت عام نتونست از پسش بربیاد مسئله‌ی ماده تاریک بود. اگه بخوام مختصرا بگم ماجرای ماده تاریک از کجا جدی شد، باید برگردیم به رصدهایی که انجام شده و مهم‌ترین شاهد حضور ماده تاریک نمودارهای سرعت چرخش ستاره‌ها و کهکشان‌ها بودند.ما از گرانش نیوتونی میدونیم که سرعت حرکت دایره‌ای یک ستاره از رابطه‌ی زیر بدست میاد.

معادله سرعت چرخش کهکشان‌ها

در این رابطه G ثابت جهانی گرانش، M جرم محصور و r فاصله شعاعی است. برای فواصل بیشتر از دیسک کهکشانی قانون گاوس بیان می‌کند که با فرض اینکه تمام جرم در مرکز محصور شده در فواصل دور مقدار جرم ثابته و سرعت باید با r-1/2  کاهش پیداکنه. اما آن چیزی که رصدها نشون میده چنین نیست. رصد ها میگه از فاصله ای به بعد سرعت حرکت به مقدار ثابتی میل میکنه. انگار که برخلاف اون چیزی که از قانون گاوس میدونیم، جرم اینجا متغیره و داره با فاصله تغییر میکنه. در واقع  تغییرات جرم متناسب با تغییرات فاصله است. این جرم اضافی از کجا میاد؟ به نظر میاد این وسط ماده‌ای فراتر از ماده‌ی مرئی وجود داره که بهش میخوایم بگیم ماده‌ی تاریک. ماده‌ی مرموزی که خیلی خوب نمیشناسیمش. وجود داره ولی مشاهده نمیکنیمش. برهمکنش نمیکنه و هرجایی خودش رو نشون نمیده، اما این وسط داره تو معادلاتمون و در کیهان‌شناسی نقش مهمی بازی میکنه.

نمودار سرعت چرخش کهکشان‌ها

نظریات گرانشیِ بعد از نسبیت عام  تلاش هایی برای توصیف ماده تاریک هم داشته اند. البته عده‌ای از فیزیکدانان انرژی‌های بالا معتقدند که ماده تاریک واقعا به صورت ذراتی وجود داره. و تلاش‌های زیادی چه از بابت نظری و چه عملی برای توصیف و آشکارسازی ذرات ماده تاریک کرده‌اند.

نظریات جدید گرانشی که عمدتا ازشون به عنوان گرانش تعمیم یافته یاد میشه، اضافه کردن درجات آزادی به نظریه‌ی نسبیت عام هست. در واقع ماجرا از این قراره که فیزیکدانان تلاش میکنن با اضافه کردن درجات آزادی به کنش نسبیت عام راهی پیدا کنند که بتونن سوالاتی که نسبیت عام نمیتونه بهشون پاسخ بده رو پاسخ بدن. این درجات آزادی در ساده‌ترین حالت میتونه اضافه کردن یک میدان اسکالر باشه. یا عده‌ای هم دوست دارن بردار، تانسور یا میدان‌های با رنک بالاتر اضافه کنند به این کنش. هر مدلی از گرانش که ساخته میشه باید تست‌پذیر باشه. یعنی نتایجی که پیش‌بینی میکنه با نتایج آزمایش و رصد سازگار باشه. و اساسا قابلیت در معرض آزمایش قرارگرفتن رو داشته باشه.

از دل این تلاش‌ها مدل‌های زیادی برای توصیف جهان ساخته شده اند، که اینجا مختصرا اشاره میکنم و در پست‌های بعدی بهشون می‌پردازم.نظریه‌های اسکالر-تانسور، دینامیک تعمیم یافته نیوتونی، نظریه‌ی انیشتین- اِتِر، نظریه‌های بایمتریک، نظریه‌های f(R )، گرانش غیر موضعی و گرانش ابعاد بالا مشهورترین نظریه‌های گرانشی اند.

سرنوشت نظریات گرانشی به کجا رسیده؟

هنوز فیزیکدانان در حال تلاش‌اند تا بتونن برای سوالاتی که مطرح شده نظریه‌ای بسازند که پاسخ سوالاتشان رو بده. برای محقق شدن این امر نیاز به ایده‌های بهتر و داده‌های رصدی و آزمایشگاهی بیشتر دارن.

پی نوشت:

  1. برای تعریف  تانسور به این آدرس سر بزنید.
  2. برای اینکه مختصری درباره‌ی درجه‌ی آزادی در فیزیک بدونید به این آدرس مراجعه کنید. البته درجه‌ی آزادی در متن بالا کمی متفاوت از چیزیه که در متن پیوست شده مشاهده میکنید.

سرطان از نگاه پیچیدگی

سرطان به عنوان یکی از بیماری‌های که این روزها نامش بر سرزبان‌ها افتاده است، نامی است که به مجموعه‌ای از بیماری‌هایی اطلاق می‌شود که از تکثیر مهارنشده سلول‌ها پدید می‌آیند. سرطان عموما به عنوان بیماری ژن‌ها شناخته می‌شود؛ به این معنا که تغییرات ژنتیکی می‌توانند منجر به بروز این عارضه شود. از سوی دیگر، تلاش‌های صورت گرفته پیرامون کنترل و درمان سرطان عمدتا بر اساس شناخت ژن‌های موثر در سرطان‌های مختلف، تاکنون با چالش‌های زیادی همراه بوده است. در نگاه پیچیدگی، حرکت‌های جمعی برآمده از برهمکنش‌های یک سیستم‌ بس‌ذره‌ای (سلول) تنها با مطالعه اجزای آن سیستم (ژن‌ها) قابل توصیف نیست و با دانستن این‌که هر جز (ژن) چگونه کار می‌کند، نمی‌توان درک کاملی از مقیاسی بزرگ‌تر (سلول) با سازمان‌دهی مرتبه‌-بالاتری پیدا کرد. در مورد ژن‌ها می‌دانیم که بیان هر ژن بر بیان سایر ژن‌ها اثر می‌گذارد و وجود این همبستگی‌ها سبب تشکیل یک حرکت جمعی می‌شود که خود باعث اثر گذاشتن روی بیان سایر ژن‌ها می‌‌شود. هدف این مطالعه، نگاهی پدیدارشناسانه به سرطان سینه و مقایسه رفتار جمعی ژن‌ها در نمونه سالم و سرطانی است. با در نظر گرفتن سلول به عنوان یک سیستم پیچیده، می‌خواهیم شبکه پیچیده‌ای که در پس این سیستم نشسته است را مورد مطالعه قرار دهیم به امید این‌ که درک بهتری از سرطان از نگاه پیچیدگی پیدا کنیم.

بدین منظور، با در نظر گرفتن هر ژن به عنوان یک اسپین و برهمکنش ژن با ژن به عنوان ضریب جفت‌شدگی بین دو اسپین متناظر با آن‌ها در یک مدل شیشه-اسپینی (مدل گاوسی چند متغیره)، به دنبال استنباط این ضرایب هستیم. برای این‌ کار با استفاده از اصل بیشینه آنتروپی، ماتریس برهمکنش را برای نمونه سالم و سرطانی یافته و از روی آن شبکه تنظیم ژن را برای دو نمونه بازسازی می‌کنیم. این شبکه‌ها، دارای یال‌هایی با وزن‌های مثبت و منفی هستند، بنابراین می‌توانیم در چارچوب نظریه توازن به این شبکه‌ها انرژی نسبت دهیم و تمایل شبکه‌ها نسبت به تغییر وضعیتشان را مورد بررسی قرار دهیم. نتایج ما نشان می‌دهد که توزیع مثلث‌های ایجاد شده در شبکه از یک الگوی توانی پیروی می‌کند. از نقطه نظر چشم‌انداز انرژی، انرژی شبکه سالم از شبکه سرطانی بیشتر است و این به معنای پویایی بیشتر سلول سالم نسبت به سرطانی است. شبکه سرطانی تمایل کم‌تری نسبت به تغییر وضعیت خود دارد و به همین خاطر دسترسی کم‌تری به وضعیت‌های قابل دسترس خود پیدا می‌کند. از سوی دیگر، در شبکه‌ سرطانی، تعداد یال بیشتری دیده می‌شود. وجود یال بیشتر، به معنای ارتباط بیشتر بین اجزا و تاثیر بر دینامیک سلول است. رهیافت دنبال‌شده در این مطالعه به ما در یافتن درک بهتری از سلول به عنوان یک سیستم پیچیده کمک می‌کند.

 

 

فرکتال‌ها، مفاهیم مقیاسی و بازبهنجارش (۱)

تصمیم گرفتم تا جایی که می‌توانم، مسیر یادگیری سیستم‌های پیچیده را برای علاقمندانی که جرات یادگرفتن و شهامت حرکت کردن بیرون از مرزهای تعریف شده علوم را دارند را هموار کنم. برای شروع قصد دارم چند جلسه کلاس/سمینار در دانشگاه شهید بهشتی (تهران) برگزار کنم. ایده اصلی این جلسات لکچرهایی پیرامون مفاهیم اصلی سیستم‌های پیچیده است بی‌آن‌که وارد جزئیات ریز آن شوم. می‌خواهم طی این جلسات افراد با پیش‌زمینه‌های مختلف با ایده‌های اصلی آشنا شوند.

فیزیک نیوتون و موضوعات مربوط به حساب دیفرانسیل و انتگرال که غالب تفکر علمی سه سده گذشته را تشکیل داده‌اند بر این ایده استوار هستند که هر چه مقیاس فضایی یا زمانی یک سیستم فیزیکی را ریزتر و ریزتر کنیم، با سیستمی ساده‌تر، هموارتر و با جزئیات کمتری روبه‌رو می‌شویم. ملاحظات دقیق‌تری نشان می‌دهد که ساختار ریزمقیاس سیارات، مواد و اتم‌ها بدون جزئیات نیست. با این وجود، برای بسیاری از مسائل، چنین جزئیاتی در مقیاس‌های بزرگ‌تر نامرتبط به حساب می‌آیند. از آن‌جا که این جزئیات مهم نیستند، فرموله کردن نظریه‌ها به شیوه‌ای که اصلا جزئیاتی وجود نداشته باشد منجر به همان نتایجی می‌شود که با در نظر گرفتن توصیف دقیقی از سیستم می‌توان به آن‌ها رسید.

برف دانه کخ – یک فرکتال کاملا خودمتشابه. نگاره از ویکی‌پدیا


می‌دانیم در رویارویی با سیستم‌های پیچیده، هموار کردن پی‌در‌پی سیستم در مقیاس‌های ریزتر معمولا نقطه شروع مناسبی برای مطالعه سیستم به طور ریاضیاتی نیست. درک این موضوع، تغییر چشم‌گیری را در بنیادهای فکری ما به همراه داشته است.

در این سخنرانی ابتدا فرکتال‌ها، به عنوان موجوداتی که در مقیاس‌ ریزتر جزئیاتشان را از دست نمی‌دهند را معرفی می‌کنیم. سپس بی‌آنکه سراغ جعبه ابزار نظریه میدان‌های کوانتومی رویم، ایده بازبهنجارش را به عنوان چارچوب جامع‌تری برای مطالعه رفتار سیستم‌ها در مقیاس‌های مختلف و چگونگی ارتباط این رفتارها مطرح می‌کنیم.

ویدیو:

اسلایدها (کلیک کنید!)

منابع:

«بیست سال علم شبکه»

این نوشته ترجمه‌ای تقریبا وفادار از مقاله منتشر شده در Nature News and Views توسط Alessandro Vespignani به مناسبت تولد ۲۰ سالگی شبکه‌های جهان-کوچک است.
این نوشته اشاره‌ی مستقیمی دارد به مقاله منتشر شده در Nature News and Views توسط Alessandro Vespignani به مناسبت تولد ۲۰ سالگی شبکه‌های جهان-کوچک است.


 

«این ایده که هرکس در دنیا به هرکس دیگری تنها با ۶ درجه جدایی متصل است، ۲۰ سال پیش توسط مدل شبکه‌ «جهان کوچک» توضیح داده شد. چیزی که به نظر می‌رسید کاربرد خاصی داشته باشد تبدیل به یافته‌ای با نتایج فراوان شد.» الساندرو وسپینانی

ماجرا از این‌جا شروع شد که اواخر بهار سال ۱۹۹۸، واتس و استروگتز مقاله‌ای منتشر کردن به اسم «دینامیک جمعی شبکه‌های جهان-کوچک» که در اون مقاله مدلی معرفی شد که «خوشگی» و «فاصله کوتاه بین رئوس» شبکه‌هایی که در زندگی واقعی پیدا میشن رو توصیف می‌کرد. خب، اون اوایل این مدل یه جوری جالب به‌نظر می‌رسید. ولی صرفا به عنوان یک خروجی یا تعمیمی از شبکه‌های منظمی که فیزیک‌دونای آماری و ماده‌چگالی‌ها بهشون عادت داشتن. [در حقیقت تا ۲۰ سال پیش، منظور ما از شبکه توی فیزیک، گراف‌های منظم توری شکلی بودن که بهشون lattice می‌گفتیم و نه network.] اما با گذر زمان، هر چی که دانشمندان رشته‌های مختلفی از این مدل استفاده کردند، پیامد‌های عمیق این مدل بیشتر آشکار شد. به این معنی که درک ما از رفتارهای دینامیکی و گذار فازهایی که توی پدیده‌های روزمره‌ مشاهده می‌کردیم به طور جدی بهتر شد. از فرایندهای واگیری گرفته تا انتشار اطلاعات! به زودی مشخص شد که این مقاله دوران جدیدی از پژوهش رو ایجاد کرده که نهایتا منجر به شکل‌گیری «علم شبکه» به عنوان یک رشته «چندرشته‌ای» شد!

در حقیقت قبل از این‌که واتس و استروگتز مقاله‌شون رو منتشر کنند، الگوریتم‌هایی که برای ایجاد شبکه‌ها استفاده می‌شد به دنبال این بودن که یک شبکه تصادفی ایجاد کنند. مثل مدل اردوش-رینی. ایده اساسی این الگوریتم‌ها این بود که ما نمی‌دونیم چه‌طور هر دو راس در شبکه باید بهم متصل بشن برای همین فرض می‌کنیم که شیوه اتصال هر دو تا راس در شبکه بر اساس یک احتمال از پیش مشخص شده هست. ویژگی مشترک شبکه‌های تصادفی، اینه که هر چقد اندازه شبکه (تعداد رئوس) بزرگ بشه، میانگین طول کوتاه‌ترین مسیر بین هر دو تا راس به صورت لگاریتم تعداد رئوس رشد می‌کنه. منظور از طول (کوتاه‌ترین) مسیر بین دو راس، کمترین تعداد یال (پیوند) برای رسیدن از این راس به اون یکی هست. بنابراین اگر یک شبکه تصادفی N تا راس داشته باشه، میانگین طول مسیر بین هر دو راس که به تصادف انتخاب بشن این شکلی تغییر می‌کنه:

این رفتار لگاریتمی به معنی جهان‌-کوچک بودن هست. همون ایده‌ای که در دنیا هر نفر حداکثر با ۶ تا واسطه به هرکس دیگه‌ای می‌تونه برسه. یعنی آهنگ بزرگ شدن فاصله بین هر دو راس در یک شبکه تصادفی کمتر از آهنگ بزرگ شدن اندازه اون شبکه است. (این رابطه خطی نیست، با دو برابر کردن L ،N دو برابر نمیشه!).

پروفایل چگونگی تغییر متوسط طول کوتاه‌ترین مسیرین بین دو راس در شبکه‌هایی با تپولوژی متفاوت. نگاره از کتاب علم شبکه باراباشی.

با این وجود، مدل‌های شبکه‌‌های تصادفی، وجود گروهک‌هایی (Cliques) که در شبکه‌‌های واقعی دیده شده رو توصیف نمی‌کنند. برای اندازه گیری گروهک‌‌دار بودن یک شبکه باید ضریب خوشگی هر راس رو حساب کنیم. برای این‌کار، به‌ازای هر راس، تعداد پیوندهای بین همسایه‌هاش رو می‌شماریم و  تقسیم می‌کنیم بر تعداد کل پیوندهای ممکن بین همسایه‌های راس مورد نظر. در حقیقت ضریب خوشگی معیاری از اینه که چقدر همسایه‌ها به هم متصل هستند. یک شبکه اجتماعی رو در نظر بگیرین، معمولا دوستِ دوستِ شما، دوست شما هم هست! یعنی مثلث‌هایی از روابط توی شبکه‌های واقعی دیده میشه و این درست چیزیه که شبکه‌های تصادفی فاقدش هستن. به عبارت دیگه، احتمال اینکه سه نفر در یک شبکه اجتماعی دوست هم باشن به مراتب بیشتر از چیزیه که شبکه‌ای که طی یک فرایند ساده تصادفی ایجاد شده پیش‌بینی کنه!

سازوکار ایجاد یک شبکه جهان کوچک در مدل واتس-استروگتز با اضافه کردن بی‌نظمی به یک شبکه منظم. نگاره برگرفته از مقاله اصلی ۱۹۹۸.

می‌دونیم که شبکه‌های منظم، دارای ضریب خوشگی بالایی هستن و شبکه‌های تصادفی دارای خاصیت نزدیک بودن اعضا به هم! چیزی که یک شبکه جهان-کوچک واقعی نیاز داره هر دوی این ویژگی‌هاست! واتس و استروگتز برای این‌که این دوگانگی رو برطرف کنند پیشنهاد مدلی رو دادن که ابتدا یک شبکه منظم با ضریب خوشگی بالا رو ایجاد کنه و بعد از اون، با احتمال p، یال‌ها رو بین رئوس اصطلاحا بُر بزنه! یعنی برای این‌ کار، از یک شبکه منظم، هر یال رو با احتمال p انتخاب می‌کنید و دو سرش رو به رئوس متفاوتی وصل می‌کنید! به این کار اصطلاحا سیم‌بندی گفته می‌شه و اگر این سیم‌بندی به طور تصادفی انجام بشه، اصطلاحا گفته میشه که یال‌های شبکه رو بُر می‌زنیم! بنابراین با تغییر مقدار می‌تونیم شبکه رو از حالت منظم  (p → 0) به حالت تصادفی (p → 1) تبدیل کنیم.

برای مقادیر بسیار کوچک p شبکه حاصل، یک شبکه منظمه با ضریب خوشگی بالا. اما برای مقادیر کوچک p میان‌برهایی که بین نقاط دور شبکه ایجاد میشه، میانگین طول کوتاه‌ترین مسیر رو کاهش می‌ده. واتس و استروگتز نشون دادن که برای طیف وسیعی از مقادیر p، بسته به تعداد رئوس، میشه شبکه‌های با ضریب خوشگی بالا و میانگین فاصله کمی بین رئوس ساخت. برای همین با این روش میشه پدیده جهان-کوچکی به همراه گروهک‌داربودن رو ایجاد کرد!

وجود میان‌برهای قرمز، به یک شبکه با ضریب‌خوشگی بالا، خاصیت جهان کوچکی می‌بخشد. نگاره از nature

مدل واتس و استروگتز ابتدا به عنوانی مدلی که «شش درجه جدایی» رو توصیف می‌کرد، در نظر گرفته می‌شد. اما در حقیقت مهم‌ترین تاثیرش هموار کردن مسیر مطالعه اثرات ساختار شبکه روی طیف وسیعی از پدیده‌های دینامیکی بود. یک سال پس از انتشار مقاله شبکه‌های جهان-کوچک، آلبرت باراباشی و رِکا آلبرت در مقاله‌ای با عنوان «برآمدگی اثر مقیاسی در شبکه‌های تصادفی» مدلی معروف به مدل شبکه «اتصال ترجیحی‌» رو منتشر کردن که نقش بسیار کلیدی در توسعه پژوهش در نظریه شبکه‌های پیچیده ایفا کرد. در نظریه گراف یا علم شبکه، به تعداد یال‌های متصل به هر راس، درجه اون راس گفته می‌شه و برای شبکه تصادفی، توزیع درجات رئوس، پواسونی هست. ایده مدل باراباشی-آلبرت این بود که توزیع درجات شبکه‌های واقعی، پواسونی نیست بلکه یک توزیع دم‌کلفت (توانی) هست. برای همین باراباشی و آلبرت سازوکاری رو معرفی کردن که به کمکش بشه شبکه‌هایی با توزیع درجات توانی داشت. این که درجات یک شبکه از توزیعی توانی میاد، به معنای وجود پدیده‌هایی نادر ولی مهمه! مثلا تعداد کسانی که توی اینستاگرام بالای ۱۰۰میلیون دنبال‌کننده دارن ۱۰ نفر هست ولی این‌ها افراد سرشناسی هستن! یا مثلا وقتی گفته میشه که در امریکا ۹۹٪ ثروت دست ۱٪ افراد جامعه است، درسته که این ۱٪ تعداد کمی از افراد جامعه امریکا رو تشکیل می‌دن ولی افراد بسیار تاثیرگذاری هستن! از اونجایی که در شبکه‌های جهان-کوچک و شبکه‌هایی که توزیع درجات ناهمگنی دارن طیف وسیعی از گذارفازها و رفتارهای برآمده رو میشه مشاهده کرد، رفته‌رفته دانشمندان زیادی از رشته‌های مختلف به این موضوع علاقمند شدن.

یک شبکه رندم (شبکه جاده‌های امریکا) در برابر یک شبکه باراباشی-آلبرت (شبکه خطوط هوایی امریکا). در شبکه خطوط هوایی، راس‌هایی (فرودگاه‌‌ها) با درجه بسیار بالا وجود دارد در صورتی که در شبکه جاده‌ای این‌گونه نیست. نگاره از کتاب علم شبکه باراباشی.
یک شبکه تصادفی (شبکه جاده‌های امریکا) در برابر یک شبکه باراباشی-آلبرت (شبکه خطوط هوایی امریکا). در شبکه خطوط هوایی، راس‌هایی (فرودگاه‌‌ها) با درجه بسیار بالا وجود دارد در صورتی که در شبکه جاده‌ای این‌گونه نیست. نگاره از کتاب علم شبکه باراباشی.

نکته مهمی که به مرور خیلی جلب توجه کرد، اصطلاحا تپولوژی شبکه‌ها بود، به این معنا که طی سلسله‌ای از پژوهش‌ها متوجه شدیم که چگونگی ارتباطات عناصر در یک شبکه می‌تونه چه تبعات جالبی به همراه داشته باشه. کم‌کم اتفاقات بزرگی رقم خورد. ما تونستیم مقاومت شبکه‌های مختلف رو بررسی کنیم، گسترش‌ بیماری‌های همه‌گیر رو کنترل کنیم، درک عمیق‌تری از انتشار اطلاعات پیدا کنیم و همین‌طور بفهمیم که  همگاه‌سازی رفتارهای‌ برآمده چه‌طور روی شبکه‌ها شکل می‌گیره. به عنوان مثال، با استفاده از مفهوم شبکه‌های جهان-کوچک موفق شدیم که ساختار وب (WWW) رو درک کنیم یا اینکه بفهمیم چه‌طور قسمت‌های آناتومیک و کارکردی مغز با همدیگه ارتباط برقرار می‌کنند. ویژگی‌های ساختاری دیگه‌ای هم کم‌کم مورد مطالعه قرار گرفت، مثل پیمانه‌ای بودن یا مفهوم موتیف‌های شبکه. همه این یافته‌ها در نهایت سبب شد که دانشمندان، معماری شبکه‌های موجودات زنده و مصنوعی رو شناسایی و درک کنند، از شبکه‌های زیرسلولی گرفته تا زیست‌بوم‌ها و اینترنت!

استیون استروگتز.

به لطف توان محاسباتی بی‌سابقه، مجموعه داده‌های بزرگ و تکنیک‌های مدلسازی محاسباتی موجود، پژوهش‌های روز این حوزه موفق شدن که پلی بین دینامیک تک‌تک راس‌ها  و ویژگی‌های برآمده بزرگ‌مقیاس شبکه‌ها برقرار کنن. با این وجود، سادگی و دم‌دست بودن مدل‌های جهان‌-کوچک و اتصال ترجیحی هنوز پایه‌ی فهم ما از تپولوژی شبکه‌ها رو تشکیل می‌دن و از صدقه‌سر ارتباط این مدل‌ها با شاخه‌های مختلف علم، امروز رسما با یک حوزه بین‌رشته‌ای به اسم «علم شبکه» روبه‌رو هستیم!

نکته‌ای که حتما باید بهش اشاره کنیم اینه که جمع‌آوری دانش و روش از رشته‌های کاملا مختلفی مثل علوم اجتماعی، ریاضیات کاربردی، فیزیک، زیست‌شناسی و علوم کامپیوتر واقعا کار آسونی نبوده! سال‌ها جنگ و جدل به خاطر توافق بر سر تعاریف و مفاهیم بوده و واقعا انرژی زیادی صرف شده تا رهیافت‌هایی که مردم در رشته‌های مختلف به کار بردن برای بقیه هم واضح بشه! ولی ما این کار رو انجام دادیم! طی ۲۰ سال گذشته، یک جامعه پرجوش و خروشی از علم شبکه ایجاد شده که برای خودش مجلات معتبر، موسسات تحقیقاتی و کنفرانس‌هایی با هزاران دانشمند داره!

در ۲۰امین سالگرد انتشار مقاله واتس و استروگتز، بیتشر از ۱۸۰۰۰ مقاله به این مدل که یکی از نمادهای تپولوژی شبکه‌ است ارجاع دادن. واتس و استروگتز مقاله‌شون رو با این جمله تموم می‌کنن که «امیدواریم که کار ما انگیزه‌بخش مطالعات بیشتر شبکه‌های جهان-کوچک بشه!» شاید در بستر تاریخ، هیچ گزاره‌ای اینقدر پیشگویانه نبوده باشه!

 

این ویدیو در مورد ظهور علم شبکه است: