رفتن به نوشته‌ها

سیتپـــــور مطالب

دینامیک: نیرو، حرکت و زمان

به تازگی کامنتی دریافت کردم که چندتا سوال ازم پرسیده بود. در این نوشته می‌خوام به این پرسش‌ها جواب بدم!

۱) زمان بر نیروی وزن اثر داره ؟ منظورم اینه وقتی زمان رو ثابت یکنیم یعنی اینکه تمام قوانین فیزیک رو با استفاده از زمان ثابت کنیم باز هم جسمی مثل لیوان به زمین برخورد میکنه اونم بر اثر نیروی گرانش یا نه؟(مثلا اگر تندی زمان رو زیاد کنیم جسمی مثل لیوان با تندی زیاد به زمین میرسه)
۲) چرا بعضی از پدیده ها در حال حرکت هستند؟ (مثل نور که وقتی لامپ رو روشن میکنیم بدون اینکه کاری بکنیم پرتوی نور خود به خود حرکت میکنه)
۳) آیا واقعا نور به دام سیاهچاله میفته ؟تا جایی که من میدونم انسان برای دیدن پدیده ها و اجسام ها به نور نیاز داره پس اگه نور از سیاهچله نمیتونه فرار کنه چطور دیدیمش؟(منظورم
عکسی که از سیاهچاله توی سال ۹۸ پارسال گرفتن)
۴) آیا نور تنها پدیده ایی هستش که سرعتی بسیار زیاد داره یا نه ؟
۵) نور ثابته ؟

۱) رابطه نیرو و زمان

قوانین نیوتون به ما میگه که اگه جسمی در حال حرکت باشه، تا زمانی که به اون جسم در کل نیرویی وارد نشه، جسم به حرکت خودش ادامه میده. اگر هم جسم از اول در حال حرکت نباشه، قاعدتا همون‌جایی که هست می‌مونه. مثل توپی که یه گوشه افتاده و تا زمانی که کسی بهش لگ نزنه از جاش تکون نمی‌خوره. منظور از «حرکت» هم تغییر موقعیت جسم با گذشت زمانه. یعنی هر بار که عقربه ساعت روی دست من تیک بزنه جسم از جایی به جای دیگه بره.

مسیر حرکت یک جسم در فضای ۳بعدی. هر نقطه از این مسیر را می‌توان با زمان نشانه‌گذاری کرد. به این معنی که بردار مکان $r$ در هر لحظه با مشخص کردن زمان به صورت یکتا مشخص خواهد شد.

در فیزیک نیوتونی اختیار تند و کند کردن گذر زمان دست ما نیست. یعنی ما نمی‌تونیم کاری کنیم که زمان سریع‌تر بگذره یا کندتر بگذره یا اینکه متوقف بشه! ولی می‌تونیم این ایده رو شبیه‌سازی کنیم. مثل زمانی که از چیزی فیلم گرفته باشیم و با سرعت‌های مختلف اونو پخش کنیم. می‌تونیم تندتند بزنیم جلو ببینم آخرش چی میشه یا اصلا متوقفش کنیم. برای همین، اگه بتونیم که زمان رو متوقف کنیم، اون موقع اتفاقی که می‌افته اینه که آخرین تصویری که از هر چیزی داریم، همون باقی می‌مونه. پس اگه سیبی در حال سقوط به زمینه، با متوقف کردن زمان بین زمین و آسمون می‌مونه. این به این معنی نیست که نیرویی وجود نداره! بلکه به این معنی هست که در یک لحظه خاص، ما فقط یک فریم از یک فیلم رو انتخاب کردیم و داریم اونو می‌بینیم و با راه انداختن دوباره زمان، می‌بینیم که سیب به سقوطش ادامه میده. یا اگه فرض کنیم که گذر زمان رو سریع‌تر کنیم اون موقع می‌بینیم که سیب زودتر به زمین می‌خوره. یا اگه زمان رو به عقب برگردونیم می‌بینم که سیب به جای زمین خوردن، هوا میره 🙂

توضیح‌ فنی‌تر:

اگر دینامیک توصیف‌کننده یک سیستم، توسط معادلات تعینی داده بشه،اون موقع خروجی مسئله، یک «مسیر» می‌تونه باشه. مسیر، یک «خم» در فضای مکانه که توسط زمان نشانه‌گذاری شده. با داشتن مسیر، می‌تونیم بدونیم که سرشت نهایی سیستم چیه. به عنوان مثال با حل مسئله گرانش عمومی نیوتون برای دو جسم، به یک مسیر بسته بیضی شکل برای یکی از اون دو جسم می‌رسیم. با تغییر زمان، از نقطه‌ای به نقطه‌ی دیگه‌ از اون مدار (مسیر بسته) هدایت میشیم.

قانون دوم نیوتون، $F=ma$ یا معادله اویلر-لاگرانژ $\frac{\partial L(x,\dot{x}; t)}{\partial x } = \frac{d}{dt}\frac{\partial L(x,\dot{x}; t)}{\partial \dot{x} }$ هر دو منجر به دسته‌ای از معادلات دیفرانسیل معروف به معادلات حرکت میشن. در این روش مدل‌سازی، حرکت سیستم شما تعینی هست و شما با دونستن اطلاعات در مورد حال، دقیقا می‌تونید بگید که چه اتفاقی در آینده می‌افته.

گاهی دینامیک توصیف کننده شما توسط معادلات غیر تعینی داده میشه، مثل زمانی که حرکت یک ولگرد (قدم زن تصادفی) یا یک فرایند تصادفی رو مدل می‌کنید. اون موقع برای شروع مسئله، با معادله «مادر» یا معادله فوکر-پلانک می‌تونید پیش‌ برید. در این حالت، مسئله شما دیگه تعینی نیست و پیش‌بینی آینده یا پیش‌بینی مسیر، با عدم قطعیت (یا به عبارتی خطا) همراه خواهد بود. مثلا برای یک ولگرد نمی‌تونید با قطعیت کامل بگید که در فلان لحظه کجاست!

۲) علت حرکت چیزها

چیزها حرکت می‌کنند چون که بهشون نیرو وارد میشه! زمین دور خورشید می‌چرخه چون از طرف خورشید بهش نیرو وارد میشه یا توپ فوتبال حرکت می‌کنه چون یکی بهش ضربه می‌زنه! در مورد نور لامپ هم این جوری نیست که ما «کاری نمی‌کنیم»! در حقیقت با زدن کلید برق، جریان الکتریکی به لامپ میرسه و توی لامپ انرژی الکتریکی تبدیل به انرژی روشنایی میشه. یعنی همون‌جور که فوتبالیست به توپ ضربه می‌زنه و توپ حرکت می‌کنه، رسیدن جریان الکتریکی به لامپ‌ هم سبب ضربه زدن به نور میشه که به مسیرهای مختلف حرکت کنه. به این پدیده در فیزیک، تابش الکترومغناطیسی گفته میشه. به عبارت فنی‌تر، میدان الکتریکی اعمال شده توسط جریان خارجی (برق) سبب برانگیختگی ماده‌ای مثل تنگستن یا گاز خاصی مثل نئون میشه. برانگیختگی یعنی الکترون‌های که توی اتم‌های تشکیل دهنده اون مواد هستند از یک سطح انرژی به سطح بالاتری می‌رن (مثل وقتی که از پله‌های سرسره بالا میرین). اون موقع وقتی الکترون‌ها از یک سطح با انرژی بالاتر به سطی با انرژی پایین‌تر میان (مثل وقتی از سرسره پایین میاین)، اندازه اختلاف انرژی این دو سطح، از خودشون موج الکترومغناطیس یا ذرات نور منتشر می‌کنند!

این ویدیو رو ببینید:

۳) نور به دام سیاه‌چاله می‌افته؟

در مورد داستان سیاه‌چاله‌ها و اینکه چه‌طور از یک سیاه‌چاله میشه تصویر برداری کرد مفصل نوشتیم قبلا! این نوشته رو بخونید: قیام علیه سیاهی! به طور خلاصه، سیاه‌چاله‌ها اجسام بسیار بسیار سنگینی هستند که حتی بر حرکت نور هم اثر می‌ذارن. در مورد تصاویر منسوب به سیاه‌چاله‌ها هم، در حقیقت نوری که توی تصویر می‌بینیم دقیقا خود سیاهچاله نیست! یه سری موادی هستند که توی یه دیسک (شبیه حلقه‌های زحل) اطراف سیاهچاله دارن میچرخن و چون خیلی داغ هستن از خودشون نور تابش می‌کنن (درست شبیه به همون لامپ!). درواقع ما نور این موادی که در اطراف سیاهچاله وجود دارند و تونستن قسر دربرن و به چشم ما برسن رو می‌بینیم. تصویر ثبت شده، به خاطر اون نورها هست!

کمی توضیح فنی‌تر: ناحیه‌ای هست به‌اسم کره فوتونی که نزدیکترین مدار به افق رویداد که فوتون‌ها می‌تونن توی یه مدار پایدار دور سیاهچاله بچرخن. نزدیک‌تر از اون دیگه تقریبا فوتون شانسی برای برگشت نداره!

نمودار شماتیک از یک سیاه‌چاله شوارتزشیلد. نگاه کنید به نوشته «قیام علیه سیاهی»

۴) آیا نور فقط سرعتش زیاده؟

نه! هر چیزی می‌تونه خیلی سریع حرکت کنه. محدودیتی در اصول نداریم. مثلا در آزمایش‌های مختلف فیزیکی، نوترون‌ها، الکترون‌ها یا پروتون‌ها رو با سرعت‌های خیلی زیاد به حرکت در میارن. یکی از جاهایی که مثلا پروتون‌ها رو تا سرعت‌های نزدیک به سرعت نور به حرکت در میارن آزمایشگاه سرن هست.

۵) آیا نور ثابته؟!

سوال رو درست متوجه نشدم! اگر منظور سرعت حرکت نوره، بله سرعت حرکت نور در هر محیط ثابته ولی موقعی که از محیطی به محیط دیگه میره تغییر میکنه. مثلا سرعت نور در هوا یک چیزه و در آب یک چیز دیگه‌ است. طبق نسبیت اینشتین، نور بیشترین سرعت در حرکت رو داره.

فوتونیک چیه؟ فوتونیک کجاست؟

راستش نور همیشه برای من جذاب‌ترین قسمت فیزیک و آزمایش‌هاش بوده اما در مورد رشته فوتونیک تا قبل از شروع لیسانس هیچ چیز نمی‌دونستم. می‌خوام در طول این متن برای بچه‌هایی بنویسم که لیسانسشون رو به اتمامه و میخوان برای کنکور ارشد آماده بشن یا حتی برای دوستان دبیرستانی که به نور علاقه دارن و می‌خوان مستقیماً برن دنبالش و از دنیای پرهیاهوی فیزیک و درس‌های به ظاهر طاقت‌فرسای نظری سریعتر بگذرن. (همین‌جا بگم تا یادم نرفته که این‌کار به نظر جذاب‌تره ولی اصلاً توصیه‌ش نمی‌کنم. در ادامه توضیحش می‌دم!)

فوتونیک چیه؟

فوتونیک رو چند مدل تعریف می‌کنن. ساده‌ترینش اینه که فوتونیک، علمی است که در آن به نور می‌پردازند! همین‌قدر کلی! یا یکم کامل‌ترش اینه که فوتونیک، علمی است که در آن به تولید و کنترل و آشکارسازی امواج نوری و فوتون‌ها می‌پردازیم. حتی کمی دقیق‌تر بخواییم نگاه کنیم می‌تونیم بگیم فوتونیک علم و تکنولوژی‌ای است که در آن به تولید و استفاده از نور و دیگر انرژی‌های تابشی مشغولیم که واحد کوانتومیشون فوتونه (که با تقریب خوبی بیشتر طیف الکترومغناطیسی رو شامل میشه به جز امواج رادیویی و ریزموج‌ها که معمولاً تو حیطه برق مخابرات و اینا باهاشون کار می‌کنیم). گذشته از این تعاریف، یادمه که استاد درس فوتونیک۱ هم تعریف جالبی ارائه داد. ایشون می‌گفت فوتونیک علم و فناوری تولید، انتقال، دستکاری و دریافت اطلاعات به وسیله نور هست. من این تعریف رو بشخصه بسیار می‌پسندم. حالا چرا اسم فوتونیک گذاشتن روی این زمینه علمی؟ خب انگار اون زمان (یعنی سال ۷۰–۱۹۶۰ میلادی) از الکترونیک تقلید کردن! الکترونیک علم استفاده از جریان الکترون‌هاست و حالا که سیلی از فوتون‌ها داریم، خب اسمشو میذاریم فوتونیک. ☺

مردم تو فوتونیک دارن چیکار می‌کنن؟ فوتونیک کجاهاست؟

تقریباً همه دانشگاه‌های دنیا به نحوی مشغول تحقیق در زمینه فوتونیک هستن. اکثراً در دانشکده فیزیک و دانشکده برق یا گاهی به صورت یک مؤسسه یا مرکز تحقیقات جدا، مشغول کار بر روی حوزه‌های مختلف فوتونیک هستند. همون‌طور که در ادامه می‌بینید به دلیل تنوع موضوعات، این که در دانشکده‌های مختلف بهش بپردازند، اصلاً چیز عجیبی نیست. حالا که از اسم و تعریفش گفتم، قبل از این که بگم تو دنیا متخصصان فوتونیک مشغول چه مدل کارهایی هستن، می‌خوام چندتا از حوزه‌های کلی علمیش رو براتون بگم. اولیش که اینقدر معروفه که خیلی جاها اصلاً علم فوتونیک رو به اون می‌شناسن رو قطعاً حدس زدین تا الان: لیزرها! البته علم فوتونیک بسیار بسیار وسیع‌تر از این حرف‌هاست و انواع لیزرها فقط یه بخشی از اون هستن. در ادامه ما فیبر نوری، اپتیک غیر خطی، الکترواپتیک (یعنی موادی که وقتی نور بهشون می‌خوره خواص الکتریکیشون عوض میشه)، فتوولتائیک (فناوری استفاده شده در ساخت سلول‌های خورشیدی)، LEDها، طیف‌سنجی، مدارات مجتمع، دانش و فناوری امواج تراهرتز، اپتیک کوانتومی، اپتیک نیمه‌رساناها و البته خود اپتیک (نورشناسی)! بله.اپتیک به عنوان شاخه‌ای از فیزیک رو هم میشه در واقع زیرشاخه‌ای از فوتونیک طبقه‌بندی کرد. زیرشاخه‌ای بسیار وسیع که مطالعه خود اون یک رشته تخصصی است و سال‌ها وقت می‌خواد.

نمایی از یک چیدمان اپتیکی در دانشگاه نبراسکا که برای شتاب‌دهی الکترون به کار می‌رود.

خب ازین موارد هم بگذریم. می‌خوام توضیح بدم تو دنیا فوتونیک رو برای چه چیزهایی استفاده می‌کنند و این شاخه‌هایی که گفتیم کجاها تو زندگی به دردمون خوردن و قراره بخورن. قبل از هر چیزی این رو بگم که یکی از مهم‌ترین وظایف علم فوتونیک، پر کردن خلأهاییه که الکترونیک در زندگی ما قادر به پر کردنشون نیست. نیازهایی که با پیشرفت الکترونیک و مخابرات ایجاد شدن و حالا دیگه ما به این حدی که داریم قانع نیستیم یا نیاز مارو نمی‌تونن برطرف کنن. مثل افزایش سرعت اینترنت یا افزایش پهنای باند برای انتقال داده‌ها یا امثالهم که با فیبرها و موج‌برهای نوری سعی در بهبودشون داریم چون می‌دونیم سرعت نور تقریباً ۱۰ برابر سرعت برقه (جریان الکترونی) پس می‌تونه تا حد زیادی سرعت انتقال اطلاعات و همچنین پهنای باند را زیاد کنه و همچنین موج نور بر خلاف الکترون‌ها در مدهای خاص و قابل تنظیم حرکت می‌کنه که با هم تداخل نمی‌کنند پس امکانش هست که حتی مثلاً سه میلیون مکالمه همزمان تلفنی را توسط تنها یک فیبر نوری منتقل کنیم! پس در کل باید قطعاتی بسازیم و استفاده کنیم که به جای الکترون از فوتون استفاده کنن که این میشه بخشی از فوتونیک که به مدارات مجتمع می‌شناسنش؛ همون چیزی که در بالا هم ازش اسم برده بودم.

اگر بخوام ادامه بدم می‌تونم به کاربرد نور (لیزرها) در بریدن و جوش دادن و سوراخ‌کاری تقریباً هرچیزی یعنی از فلزها تا پارچه و پوست انسان بگم، میشه از کاربردهای فوق‌العاده طیف‌سنجی نوری در انواع و اقسام بخش‌ها از نجوم و دریافت و تحلیل داده‌های آسمانی تا مواد و نمونه‌های مختلف اطرافمون که به تشخیص مواد سازنده اونا نیاز داریم، گفت، یا از دانش نسبتاً جدید تراهرتز گفت که به دلیل ویژگی‌های منحصر به فرد خودش (مثلا جذب بسیار زیاد در آب یا بازتاب بسیار زیاد از سطح فلزها یا عبور با جذب بسیار پایین از موادی مثل پارچه یا پلاستیک) بسیار محبوب شده‌است، در صنایع نظامی لیزرها و ادوات اپتیکی مثل دوربین‌ها یا آشکارسازها بسیار کمک کننده هستند، در حیطه تشخیص و درمان پزشکی، استفاده از نور، تجربه بسیار موفقی بوده‌است؛ برای مثال در عمل‌های جراحی داخلی یا پوست و مخصوصاً چشم که بسیار حساس است، لیزرهای توان‌پایین بدون آسیب زدن به بافت کلی چشم می‌توانند آن را به خوبی بشکافند، در صنایع کشاورزی برای کنترل کیفیت رشد و همچنین داشتن تصاویر بزرگ مقیاس و با کیفیت از نحوه حاصل‌دهی محصول از فتونیک استفاده میشه. موارد دیگه از استفاده شامل تولید انرژی پاک و استفاده از قطعات فتوولتائیک (سلول‌های خورشیدی) برای تولید انرژیه. کاربردهای بسیار جالب و متنوع دیگری هم در صنایع هوافضا و نانوتکنولوژی و مهندسی اطلاعات و امنیت و تولید و فناوری زیستی داره که به خودتون میسپرمش.

نمونه‌ای از لیزر تراپی که برای خون‌رسانی و درمان بافت از آن استفاده می‌شود.

فوتونیک در ایران

در وهله اول باید بدونین فوتونیک یک علم تجربیه که برای پیشرفت کردن در اکثر زمینه‌های اون، نیاز به تجهیزات و آزمایشگاه‌های پیشرفته و دقیقی هست. وضعیت کشور ما رو هم که می‌دونید در این زمینه‌ها. پس صادقانه بهتون بگم که توقعتون رو بیارین پایین از همین الان! ☹

از بهترین دانشگاه‌هایی که در مقطع لیسانس، رشته اپتیک و لیزر رو دارن میشه به دانشگاه مالک اشتر (وابسته به وزارت دفاع) یا دانشگاه شهید باهنر کرمان یا دانشگاه بناب و دانشگاه صنعتی ارومیه اشاره کرد. البته همونطور که در ابتدای متن هم گفتم توصیه شخصی من این هست که حتی اگر می‌خوایین در رشته فوتونیک وارد شین و فعالیت کنین در مقطع لیسانس سعی کنین فیزیک بخونین و در یک دانشگاه خوب هم بخونین؛ دلیلم البته هم تجربه‌ایه که با دیدن دوستان و اطرافیان تو دوران کارشناسی ارشد به دست آوردم. از طرف دیگه، یک دانشجوی خوب فیزیک، مجبوره سخت‌کوش و با دانش وسیع‌تری بار بیاد. وقتی شما لیسانس فیزیک می‌گیرید باید علی‌الاصول دید خوبی به مباحثی مثل مکانیک کوانتومی و فیزیک حالت جامد و مکانیک آماری داشته باشید که تا جایی که من خبر دارم در رشته اپتیک و لیزر بسیار سطحی این مباحث رو تدریس می‌کنن (حداقل نسبت به دانشکده‌های فیزیک) در حالی که بسیار بسیار دونستن این مفاهیم در درک شاخه‌های مختلف فوتونیک راه‌گشاست.

در تحصیلات تکمیلی هم مهم‌ترین مرکزی که در کشور این رشته رو داره، پژوهشکده لیزر و پلاسما دانشگاه شهید بهشتیه. همچنین دانشگاه علم و صنعت، دانشگاه خوارزمی، دانشگاه تحصیلات تکمیلی در علوم پایه زنجان، دانشگاه تبریز، دانشگاه زنجان، دانشگاه زاهدان، دانشگاه شهرکرد، دانشگاه صنعتی شیراز، دانشگاه کاشان، دانشگاه سنندج، دانشگاه رشت، دانشگاه ملایر، دانشگاه بابلسر و دانشگاه رفسنجان هم از طریق کنکور کارشناسی ارشد فوتونیک پذیرش دانشجو دارند؛ البته همون‌طور که گفتم باید بسیار زیاد به این نکته توجه کنین که این رشته یک علم تجربیه و تجهیزات و آزمایشگاه‌ها حرف بسیار زیادی رو در اون می‌زنن پس برای انتخاب دانشگاه به این نکته بسیار دقت کنید که بعداً پشیمون نشین.

اگر بخوام در حد یک بند توضیح بدم که این‌جا در ایران، مهم‌ترین و بیشترین مباحثی که استادها و دانشجوهاشون دارن کار می‌کنن روش چه چیزهایی هستن، میتونم به موضوعاتی مثل ساخت انواع لیزر، ساخت انواع حسگر به کمک فیبر نوری، فوتونیک مواد آلی و پلیمری، دانش و فناوری تراهرتز (فعلا به صورت شبیه‌سازی)، انواع مختلف میکروسکوپی و تصویربرداری از جمله عکس‌برداری از بافت‌های زیستی، بایوفوتونیک، تحقیق بر روی انبرک‌های نوری، پلاسمونیک (محلی برای توضیح این مبحث بسیار جذاب در این متن نبود ولی توصیه می‌کنیم حتماً یه سرچی بکنید در موردش)، اپتیک کوانتومی، تحقیق و توسعه سلول‌های خورشیدی، حسگرهای نیمه‌رسانا، انواع طیف‌سنجی، نانو فوتونیک اشاره کنم.

البته مباحث دیگری هم شاید باشند که احتمالاً نسبت به موارد ذکر شده اهمیت کمتری دارند. به هر حال، تلاش بر این بوده که مهم‌ترین و برجسته‌ترین موضوعاتی که در دانشگاه‌های داخل کشور به آن‌ها پرداخته می‌شه ر مطرح کنم. باز هم تأکید می‌کنم که مثلاً وقتی گفته میشه در داخل کشور برخی آزمایشگاه‌ها به کار بایوفوتونیک مشغول هستند، اصلاً و به هیچ عنوان نمیشه کار شون رو با آزمایشگاه‌های بسیار مجهز و اساتید خارج از ایران مقایسه کرد. تفاوت‌ها گاهی ناامید کننده هستند.

در پایان و به عنوان سخن آخر

تحصیل در رشته فوتونیک همواره سختی‌ها و مشقات خاص خودش مثل کار کردن با ادوات آزمایشگاهی قدیمی یا نبود امکانات آزمایشگاهی، کمی عقب بودن از باقی دنیا به دلیل تحریم و … رو به همراه داره. اما برای عاشقان سینه‌چاک نور، این موضوعات محدودیت نیست و قطعاً موضوعات بسیار جالب و چالش‌برانگیزی رو می‌شه پیدا کرد که هم دست اول باشند و هم با همین امکانات هم به پژوهش در موردشون پرداخت. مهم، دید علمی و درست به دنیا و به اطرافتون هست!

نظریه گراف و علم شبکه

نزدیک به ۲۰ ساله که چیزی به اسم نظریه شبکه‌ یا علم شبکه در ادبیات علمی پیدا شده. شاید نزدیک‌ترین یا نام‌آشناترین نظریه به علم شبکه، نظریه گراف در ریاضیات باشه. چیزی که از زمان اویلر (۱۷۳۶) شکل گرفته و در چند قرن اخیر هم همیشه حوزه‌ی پژوهشی برای ریاضیدون‌ها بوده. اما این فقط ظاهر کاره! نگاهی به جامعه‌ی علمی این دو شاخه از معرفت بشری، تصویری از دو گروه از متخصصین رو نشون می‌ده که چندان هم کارشون شبیه به هم نیست! به عبارتی، با این‌که نظریه شبکه بسیار وام‌دار نظریه گراف هست، اما چیزی که در عمل در حال اتفاق افتادنه اینه که مسائلی که گراف‌کارها مشغول مطالعه‌شون هستند اصلا شبیه به مسائل شبکه‌کارها (دانشمندان شبکه!) نیست. با تقریب خوبی البته!

علت این اتفاق هم بیشتر به این برمیگرده که برای یک ریاضیدان، گراف یک موجود انتزاعی/مجرد و خوش‌تعریف ریاضی به همراه یک عقبه محکم و استوار ریاضی و تعداد زیادی لم، قضیه و حدسه، در حالی که برای دانشمندان شبکه، شبکه یک موجود کاربردی و پدیدارشناسانه‌ هست که نه تعریف چندان صریحی داره و نه عقبه کاملا مشخصی! علم شبکه یا نظریه شبکه، علمی جدید، پدیداره از علوم و دانش‌های مختلفه که حدودا ۲۰ ساله شکل گرفته و بیشتر از هر چیزی تحت تاثیر داده‌های بزرگ و کامپیوترها بوده تا کاغذ و قلم و حل‌های بسته (تحلیلی)!

نگاره از QuantaMagazine

در نظریه گراف تلاش عمدتا بر شناسایی و مطالعه ساختارهاییه که بتونیم اون‌ها رو به صورت تحلیلی دنبال کنیم. برای همین، گراف‌کارها (نظریه‌پردازان گراف!) معمولا به سراغ گراف‌های تصادفی، گراف‌های کامل و مسائلی مثل رنگ آمیزی و کاور کردن میرن. اما در علم شبکه، مردم بیشتر به دنبال مسائل کاربردی‌تر و مدل‌هایی هستند که بیشتر مسائل دنیای واقعی (فیزیکی، شیمیایی، زیستی، اجتماعی و اقتصادی) رو توجیه‌ کنند! برای همین لزوما از لحاظ ساختاری این شبکه‌ها، گراف‌هایی نه کاملا تصادفی و نه کامل، بلکه گراف‌هایی تنک با توزیع درجه‌‌های دم‌کلفت هستند!

علم شبکه، امروز یک ساختار پدیدارشناسانه از دنیای بس‌ذره‌ای و پیچیده بیرونه! یک مقایسه زمانی با فیزیک، میشه گفت که علم شبکه در زمان ما، بسیار شبیه به ترمودینامیک زمان کارنو هست و نه ترمودینامیک در زمان بولتزمان، مکسول و فون‌نویمان! انتظار بر اینه که تلاش‌های جدی صورت بگیره تا ریاضیات لازم برای علم شبکه به قدری توسعه پیدا کنه که علم شبکه به بلوغی برسه که ترمودینامیک بعد از بولتزمن رسید.

چیزی که خوندید، در حقیقت مقدمه‌ای بود برای دعوت به مطالعه این نوشته:

Iñiguez, G., Battiston, F. & Karsai, M. Bridging the gap between graphs and networks. Commun Phys 3, 88 (2020). https://doi.org/10.1038/s42005-020-0359-6

Bridging the gap between graphs and networks
arXiv:2004.01467 [physics.soc-ph] DOWNLOAD

مستقل از این‌که این نوشته دید خوبی می‌ده از تفاوت نگاه دو جامعه علمی متفاوت به یک مسئله و مسائل مختلف حوزه پژوهش در هر کدوم از اون جوامع، این نوشته دارای منابع گلچین شده‌ای هست که هر کسی که کارش مربوط به شبکه است خوبه که حتما اون‌ها رو بخونه!

برای همین اگر دانشجوی سیستم‌های پیچیده یا یکی از سه رشته فیزیک، ریاضی و علوم کامپیوتر هستید و علاقه‌مند به موضوع شبکه‌ها، این نوشته رو به شما توصیه می‌کنم تا بدونید که:

  • علم شبکه، نظریه گراف نیست و بالعکس!
  • تفاوت مسائل روز پژوهشی که ریاضیدون‌ها و شبکه‌کارها بهشون می‌پردازن چی هست.
  • آینده این علوم چه شکلی ممکنه داشته باشه؟!
  • اگر ریاضی خوندید و علاقه‌مند به شبکه هستید، مسیری که در پیش دارید چه‌طوری می‌تونه باشه!
  • اگه فکر می‌کنید علم شبکه چندان پشتوانه ریاضی قوی نداره، اون موقع باید چه‌طور نگاهتون رو اصلاح کنید!

پدیده‌های بحرانی ۱۵۰ سال پس از چارلز دلاتور

پیش‌تر نوشته‌ای تخصصی‌تر در مورد گذار فاز و پدیده‌های بحرانی نوشته بودم. این نوشته که ترجمه‌ای از یک مقاله است، بیشتر جنبه تاریخی دارد و برای مخاطب علاقه‌مند آشنا با پدیده‌های بحرانی می‌تواند جالب باشد!

پدیده‌های بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، مفهوم و تاریخ اولیهٔ کشف او را بررسی کرده‌ایم و سپس با طرح مختصر تاریخ پدیده‌های بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال می‌کنیم.


[arXiv:0905.1886 [physics.hist-ph

پدیده های بحرانی که امروزه یکی از مهمترین روش ها در بررسی گذار فازها در سیستم های پیچیده، فیزیک ذرات بنیادی و بسیاری دیگر از شاخه های علم فیزیک است به مجموعه‌ای از اتفاقات که در نقاط بحرانی رخ می‌دهند گفته می‌شود. پدیده های بحرانی اولین بار در بررسی گذار فازهای مواد دیده شدند. ساده ترین گذار فاز را می توان در تبخیر آب مایع و یا یخ زدن آب و گذار از فاز مایع به جامد و برعکس مشاهده کرد. در مورد آب گرمای ویژه و چگالی آب از متغیرهای قابل بررسی هستند که برای هر کدام می توان یک نمای بحرانی هم پیدا کرد و با استفاده از نظریه مقیاس و گروه های بازبهنجارش و یا نظریه ی میدان میانگین این نماهای بحرانی استخراج می‌شوند و برای هر پدیده یک کلاس جهان شمولی یافت می‌شود.

پدیده‌های بحرانی ۱۵۰ سال قبل توسط چارلز کاگنیارد دلاتور در ۱۸۲۲ کشف شدند. به سبب این سالگرد، در مقاله ی زیر به قلم برتراند برکه، مالته هنکل و رالف کنا، مفهوم و تاریخ اولیه‌ی کشف او را بررسی کرده‌ایم و سپس با طرح مختصر تاریخ پدیده‌های بحرانی مسیر رشد و توسعه آن تا به امروز را دنبال می‌کنیم.

paper-1

خم‌شدن نور در میدان گرانشی

تا حالا از خودتون پرسیدید که آیا گرانش می‌تونه روی مسیر حرکت نور هم تاثیر بذاره و اون رو از خط مستقیم منحرف کنه یا نه؟ با من باشید. می‌خوایم درباره‌ی این موضوع با هم صحبت کنیم. دو تا دیدگاه رایج نسبت به پدیده‌ی گرانش وجود داره؛دیدگاه نیوتونی و دیدگاه نسبیت عام. توصیف نیوتونی گرانش منجر به پیش‌بینی‌هایی شده بود که بعدها با اومدن نسبیت عام، این پیش‌بینی‌ها دقیق‌تر شد. یکی از این پیش‌بینی‌ها خم شدن نور در میدان گرانشیه.

نیوتون معتقد بود همونطور که ذرات مادی از مسیر خودشون به واسطه‌ی میدان گرانشی منحرف می‌شوند، نور هم این قابلیت رو داره. نیوتون این دیدگاه رو در کتاب اپتیک خودش منتشر کرد، و موفق شده بود مقداری برای انحراف نور ستارگان توسط میدان گرانشی خورشید محاسبه کنه.

مسئله‌ی خم‌شدگی نور در اطراف میدان گرانشی سال‌ها قبل از تدوین نسبیت عام ذهن آینشتین رو به خودش مشغول کرده بود.در سال ۱۹۱۱ تلاش‌هایی کرد که بتونه مقداری برای انحراف نور ستارگان در میدان گرانشی خورشید محاسبه کنه. اولین قدمی که برداشت این بود که از فرمالیزم نیوتونی استفاده کرد و به نتیجه‌ای نرسید. چون جرم فوتون صفره و طبق قانون گرانش نیوتون باید مقدار برهمکنش بین فوتون و خورشید صفر بشه. اما این‌طوری نبود و آینشتین هم کوتاه نیومد.آینشتین می‌دونست که ذرات فوتون از انرژی تشکیل شدن. معتقد بود انرژی گاهی رفتار جرم‌مانند داره. به این ترتیب موفق شد انحراف نور ستارگان در حضور میدان گرانشی خورشید رو محاسبه کنه. آینشتین در محاسبات خود عدد ۰/۸۷ ثانیه‌ی قوسی رو به دست آورده بود که این عدد با عددی که نیوتون به دست آورده بود برابر بود. بعد از ظهور نسبیت عام این محاسبات تصحیح شد و مقدار دقیق دو برابر مقداری بود که نیوتون به دست آورده بود.

بعد از ظهور نسبیت عام، آینشتین متوجه شد که در محاسبات قبلی خودش دچار اشتباه شده.در فضا-زمان تخت هر تغییر کوچکی در هندسه‌ی چهاربعدی با رابطه‌ی زیر نشون داده میشه.
$$ds^{2}=c^{2}dt^{2}-dl^{2}$$ که c سرعت نور، dt تغییرات زمان و dl تغییرات طوله. نور مسیری رو طی می‌کنه که $ds^{2}=0$ باشه. در نسبیت عام، فضا-زمان تخت نیست. پس نور هم مسیر مستقیم‌الخط رو طی نمی‌کنه.در حد میدان گرانشی ضعیف، هندسه‌ی فضا-زمان با رابطه‌ی زیر توصیف میشه.
$$ds^{2}=(1+ \frac{2GM}{r c^{2}}) c^{2} dt^{2} – (1-\frac{2GM}{rc^{2}}) dl^{2}$$
از آنجایی که تصحیحات در مرتبه‌ی $\frac{GM}{rc^{2}}$ کوچکه ، آینشتاین در محاسبات قبلی خودش از جملات مرتبه‌ی بالاتر صرف‌نظر کرده بود. محاسبات آینشتاین تا تقریب مرتبه‌ی اول منتهی به نتایج نیوتون می‌شد؛ اما بعد از اینکه تصحیحات مرتبه‌ی بالاتر رو وارد محاسباتش کرد به مقداری دو برابر مقدار قبلی برای میزان انحراف نور ستارگان در میدان گرانشی خورشید دست پیدا کرد.

خم شدن نور در حضور جسم سنگین

تا این‌جای کار فقط محاسبات روی کاغذه. باید دید که پیش‌بینی آینشتاین درست بوده یا نه. آیا واقعا نور در میدان گرانشی منحرف میشه؟ آیا مقداری که برای انحراف نور ستارگان به دست اومده، با آزمایش تطبیق داره؟
آرتور ادینگتون، منجم انگلیسی، در سال ۱۹۱۵ توسط ویلیام دوسیته از ظهور نسبیت عام باخبر میشه.ادینگتون بسیار به نسبیت عام علاقمند شده بود، و خیلی سریع به جنبه‌های تجربی نسبیت عام پرداخته بود. خورشیدگرفتگی ۲۹ می سال ۱۹۱۹ زمان مناسبی بود که ادینگتون و همکارانش درستی پیش‌بینی انحراف نور در میدان گرانشی رو بررسی کنند.دایسون و ادینگتون به همراه تیم رصدی خودشون به نقاط مختلف سفر کردند. دایسون و همکارانش به شمال برزیل، و ادینگتون و همکارانش به جزیره‌ای در غرب آفریقا سفر کردند.در این رصد ادینگتون در حین خورشیدگرفتگی از ستارگان زمینه‌ی آسمان تصویربرداری کرد. و بعد تصاویر دیگه‌ای از ستارگان در آسمان شب گرفت. با مقایسه‌ی این تصاویر متوجه شد که موقعیت ستارگان در آسمان حین کسوف و شب با همدیگه فرق داره. واقعا نور ستارگان تحت تاثیر میدان گرانشی خورشید خم شده و جایگاه ستارگان متفاوت از حالت شب به نظر می‌رسد.

عدسی‌های گرانشی

خم‌شدن نور در میدان گرانشی، منجر به پدیده‌ی همگرایی میشه. یک عدسی رو تصور کنید که وقتی پرتو نور رو از چشمه‌ای دریافت می‌کنه، نور رو در نقطه‌ی دیگری همگرا می‌کنه. در کیهان خوشه‌ها، کهکشانها، و سایر اجرام پرجرم می‌تونن رفتاری شبیه عدسی داشته باشند. درواقع وقتی نور از ستاره‌ای پشت این اجرام به چشم ما روی زمین میرسه، این نور در میدان گرانشی حاصل از اون جرم خم شده و از مسیرهای مختلف به چشم ما می‌رسه. گاهی این نوری که از مسیرهای مختلف به چشم ما می‌رسه، یک حلقه‌ی نورانی برای ما تشکیل میده. پدیده‌ی همگرایی گرانشی منجر به این می‌شه که پژوهشگران بتونن اطلاعاتی درباره‌ی جرمی که باعث همگرایی شده به دست بیارن. امروز برای مطالعه‌ی ماده تاریک از همین پدیده‌ی همگرایی گرانشی استفاده می‌کنند.

نسبیت عام پیش‌بینی‌های زیادی داره. و همون‌طور که در سال‌های گذشته دیدید با پیشرفت ابزارهای آزمایشگاهی و رصدی پژوهشگران موفق به تایید این پیش‌بینی‌ها شدند. سال ۲۰۰۸ فیلمی ساخته شد به نام آینشتاین و ادینگتون . این فیلم درباره‌ی تلاش‌های ادینگتون برای تایید درستی خم‌شدن نور در میدان گرانشی‌ه. من بیشتر از این درباره‌ی این موضوع حرف نمی‌زنم. شما رو دعوت می‌کنم که در این روزهایی که در خانه‌هاتون نشستید و در آستانه‌ی سال نو، این فیلم دوست‌داشتنی و تاریخی رو ببینید.

اینشتین و ادینگتون (به انگلیسی: Einstein and Eddington) فیلمی به کاگردانی فیلیپ مارتین و نویسندگی پیتر موفات که در ۲۲ نوامبر ۲۰۰۸ به نمایش درآمد. این فیلم نگاهی به تکامل نظریهٔ نسبیت آلبرت اینشتین و رابطهٔ او با دانشمند بریتانیایی سر آرتور ادینگتون، اولین فیزیکدانی که ایده‌های او را درک کرد می‌اندازد. ویکی‌پدیا

یادی از آینشتین در میان مشکلات زندگی این‌ روزها

آلبرت آینشتین یک غول است! یک روایتگر بی‌نظیر در علم! بدون تعارف او برای همیشه نماد فیزیک معاصر خواهد ماند. آینشتین قهرمان دنیای نوجوانی بسیاری از کسانی است که امروز فیزیکدان شده‌اند یا قرار است فردا فیزیکدان شوند. همیشه در اعماق قلبم برای آینشتین جایگاه خاصی قائل هستم. دبیرستانی که بودم برایم هیجان‌انگیزترین چیز این بود که نسبیت آینشتین را بفهمم! بگذریم. غیرممکن است که شخصی در فیزیک معاصر جستاری داشته باشد و ردپایی از او پیدا نکند. عوام او را به خاطر نسبیتش و فرمول $E = mc^2$ می‌شناسند و صدالبته به خاطر ژولیدگی او! از نگاه من اما، آینشتین نماد واقعی یک فیزیکدان است! نماد کسی که فیزیک را بدون هر گونه دسته‌بندی به‌خوبی می‌شناسد و در توسعه هر قسمت آن مشارکت جدی داشته است. در این روزها که برخی از دوستان آینشتین را به نفع فیزیک نظری ثبت و ضبط می‌کنند و قهرمان دنیای کیهان‌شناسی و نسبیت می‌دانندش، دوست دارم به شخصیت‌ او از دریچه‌های مختلف نگاه کنم. برای من بیش از هر چیزی، او استاد بزرگ تمام فیزیک است، کسی که از اشتباهاتش هم درس‌های فراوان گرفته تاریخ! در این نوشته به چند گفتاورد که دوستشان دارم اشاره می‌کنم.

کم نیستند کسانی که از یک ملاقات نیم‌ساعته‌شان با آینشتین به عنوان یک اتفاق مهم در زندگیشان یاد نکرده باشند. نقل است که ریچارد فاینمن در اولین دیدارش در سمیناری با این پرسش از طرف آینشتین روبه‌رو شده که «شما می‌دانید چای کجاست؟» و فاینمن جوان از این که پاسخ پرسش آینشتین را می‌دانسته کیفش کوک شده! بعدها، فاینمن در مورد ژرفا و گستره نگاه آینشتین در شاخه‌های مختلف فیزیک گفت:

آینشتین یک غول بود؛ سرش در میان ابرها بود ولی پاهایش به روی زمین! اما از میان ما، آنان که قامتشان به آن بلندی نیست، بهتر است که انتخاب کنند!

Carver Mead – Collective Electrodynamics: Quantum Foundations of Electromagnetism (2002), p. xix

در این روزها که بلا و سختی از هر دریچه‌ای بیرون زده، از زمین و زمان برایمان می‌بارد، دانشگاه‌هایمان تبدیل به بنگاه‌های معاملاتی و محل برگزاری یک سری مراسم‌ تشریفاتی شده‌اند شاید بد نباشد که به زندگی کسانی که عمری قهرمانشان دانسته‌ایم زیرچشمی نگاهی داشته باشیم و ببینیم که در نهایت، با خودمان چندچندیم!

«هر عمل آدمی تابعی است از اراده‌ی خود او یا اراده‌ی کسی دیگر. اگر این همه آدم اراده‌ی خود را تابع اراده‌ی نازی‌ها نکرده بودند، چیزی به نام اردوگاه‌های مرگ به وجود نمی‌آمد.» (هرمان، ۱۳۹۰: ۱۰۰؛ به نقل از آلبرت آینشتین)

ـ هرمان، ویلیام؛ اینشتین و شاعر؛ ترجمه‌ی ناصر موفقیان؛ تهران: انتشارات علمی و فرهنگی، (۱۳۹۰) چاپ چهارم.

در قرنطینه خانگی مانده‌ایم، سختمان است؟ تجربه تحریم و گرانی و بیچارگی داشته‌ایم؟! دچار درد مهاجرت و غربت هستیم؟ قبول! شرایط سخت است. اما می‌شود این گونه هم نگاه کرد که قهرمان‌هایی که عمری ستایششان کرده‌ایم در دوران سختی درخشیده‌اند، آن‌گاه روحیه می‌گیریم! معروف است که نیوتون، قانون گرانش عمومی را زمانی کشف کرد که به خاطر طاعون مجبور شده بود از کمبریج به لینکلن‌شر (خانه مادری) برود. همین‌طور ویلیام شکسپیر، «لیر شاه» را در زمان طاعون نوشت! کتاب «جز و کل» هایزنبرگ را بخوانیم و ببینیم که در آن بحبحه جنگ و بگیر و ببند این عزیزان چگونه هم به علم می‌پرداختند، هم به سیاست و هم به شرافت! در کتاب «حتما شوخی می‌کنید آقای فاینمن!» ببینیم که زندگی چگونه بر فاینمن سخت گذشت و هنگامه جنگ چگونه آن‌ها را مجبور به کارهایی کرد که دوست نمی‌داشتند! برگردیم به آینشتین، نشنال جئوگرافیک در مجموعه سریال‌های «نابغه» ، سریالکی ساخته در مورد او که دیدنش خالی از لطف نیست. در زندگی آلبرت آینشتین چیزی که کم نیست، درد است و رنج:

«در زوریخ من اغلب گرسنه بودم. هیچکس نمی‌داند که هر روز چندتا در را برای پیدا کردن کار می‌کوبیدم.» (هرمان، ۱۳۹۰: ۸۴؛ به نقل از آلبرت آینشتین)

ـ هرمان، ویلیام؛ اینشتین و شاعر؛ ترجمه‌ی ناصر موفقیان؛ تهران: انتشارات علمی و فرهنگی، (۱۳۹۰) چاپ چهارم.

آثار آینشتین را در اینجا می‌توانید ببینید. این نوشته را فقط به این خاطر منتشر کردم که در این شرایط که همه چیز سیاه است بد نیست که به چیزهای بهتری هم فکر کنیم. امید داشته باشیم به آینده و عزم داشته باشیم به یادگیری. در دنیایی که علم و پژوهش تبدیل به دکان شده، یاد کردن از این گونه انسان‌ها خاطرمان را آسوده می‌کند.

این‌ روزها در میان گفتاوردهای آینشتین، این جمله را هر روز با خود زمزمه می‌کنم:

هر احمقی می‌تواند بداند، نکته فهمیدن است!

Any fool can know. The point is to understand
Albert Einstein
تصویری از آینشتین به همراه والتر مایر (ریاضیدان و دستیار آینشتین) در پاسادینا، کالیفرنیا، اوایل ۱۹۳۱. والتر مایر به ماشین حساب آینشتین معروف بود!

اهمیت آموزش ریاضیات در بستر تاریخ ریاضیات و سایر علوم

به گفته‌ی مورخان، ریاضیات ابتدایی بخشی از نظام آموزشی جوامع باستانی را تشکیل می‌داده و یونان، روم و مصر باستان جوامعی بوده‌اند که در آن‌ها ریاضیات آموزش داده می‌شده است. در آن دوران، آموزش ریاضیات کاری مردانه تلقی می‌شده و فقط دانش‌آموزان پسر از آن بهره‌ می‌بردند. این تبعیض در آموزش ریاضیات تا سالیان سال ادامه داشته و هنوزم که هنوز است که برای برخی ریاضی چیزی است که بیشتر مناسب مردها است! در نگاه به زندگی امی نوتر -مادر جبر نوین- در آلمان قرن ۱۹ میلادی، ردپاهای جدی چنین تبعیضی به شدت مشخص است. البته این نکته قابل ذکر است که بنا بر آنچه که مورخین گزارش می‌کنند فیثاغورس در زمان خود به آموزش ریاضیات می‌پرداخته و برخلاف سنت گذشتگان، معاصران و آیندگان خود به دختران نیز آموزش ریاضیات می‌داده است. اولین کتاب آموزش ریاضیات در قرن شانزدهم میلادی توسط رابرت ریکورد به زبان انگلیسی و فرانسه نوشته شده است. همزمان با انقلاب صنعتی نیاز مردم در جامعه به ریاضیات بیشتر احساس شد. شمردن، نحوه‌ی خواندن ساعت، شمارش پول و… همه از نیازهایی بود که مردم برای زندگی روزانه در یک جامعه‌ی شهری احتیاج داشتند. به همین منظور ریاضیات بخش مهمی از نظام آموزش عمومی را تشکیل داد. با آغاز قرن بیستم میلادی ریاضیات به عنوان یکی از پایه‌های آموزش عمومی در تمام کشورهای توسعه‌یافته شناخته شد.

در ایران نیز تا پیش از تاسیس دارالفنون آموزش ریاضیات ابتدایی در مدارس دینی رواج داشت. دوران صفویه و زندیه در مقایسه با دوران‌های پیش از خود از جهت حضور ریاضی‌دانان برجسته‌ای چون غیاث‌الدین جمشید کاشانی دورانی کم‌فروغ به شمار می‌آمده است اما به علت وجود حوزه‌های علمیه و لزوم دانستن محاسبات شرعی طلاب و علمای دینی ریاضیات ابتدایی را در حوزه‌های علمیه می‌آموختند. روی کار آمدن سلسله‌ی قاجار همزمان شد با پیشرفت‌های چشمگیر و تحولات سریع اروپا. پس از جنگ‌های ایران و روسیه و شکست نظامیان ایران عباس میرزا در پی اصلاحات اساسی برآمد که یکی از ثمرات این اصلاحات تاسیس مدرسه‌ی دارالفنون بود. با گسترش دارالفنون ریاضیات اروپایی در قالب آموزش، چاپ کتب آموزشی، و ترجمه‌ی آثار ریاضی‌دانان وارد ایران شد.پس از دارالفنون مدرسه‌ی دیگری به همین نام این‌بار در تبریز تاسیس شد. پس از آن میرزاحسن رشدیه با تلاش‌های خود موفق شد مدرسه‌ی دیگری برای آموزش نوین راه‌اندازی کند. با گسترش مدارس نیاز به معلمان دانش‌آموخته بیش از پیش احساس می‌شد و همین امر منجر به تاسیس دارالمعلمین عالی و پس از آن دانش‌سراهای عالی شد. دانش‌سرای عالی و روش علمی و آموزشی آن بعدها اثرات چشمگیری در گسترش ریاضیات در ایران داشت.

آموزش ریاضیات یکی از مهم‌ترین چالش‌های نظام‌های آموزشی در طی سالیان گذشته و اکنون در جهان به شمار می‌آید تا جایی که سالیانه پژوهش‌های زیادی درباره‌ی چگونگی آموزش ریاضی صورت می‌گیرد. ریاضیات از قدیمی‌ترین تلاش‌های بشر برای شناخت و توصیف جهان به شمار می‌رود. پیشرفت‌های چشمگیر سایر علوم نظیر فیزیک، شیمی و زیست‌شناسی نیز مرهون ریاضیات است. ریاضیات مانند سایر علوم پدیده‌ای اجتماعی است و شناخت و یادگیری آن نیز در بستر شناختن تاریخ و اجتماع و پدیده‌هایی که شهود انسان را می‌سازند بهتر اتفاق می‌افتد.

دلایل متعددی برای آموزش ریاضیات به همراه تاریخ آن وجود دارد؛ اگر ریاضیات را مستقل از تاریخ آن به دانش‌آموز آموزش داده شود، دانش‌آموز با روابطی مواجه می‌شود که احتمالا آنها را انتزاعی می‌پندارد و برای خود سهمی در گسترش آن روابط قائل نخواهد بود. دانستن تاریخ ریاضیات چشم‌انداز گسترده‌ای از تحول و حل مسائل ریاضی به دانش‌آموز می‌دهد و این امکان را فراهم می‌کند که مشکلات را شناسایی کنند و برای حل آنها دست به تعمیم و اثبات فرضیات علمی بزند. تاریخ ریاضیات بخشی از تاریخ کل جامعه‌ی بشری است که در آن به ما می‌گوید بشر چگونه ریاضیات را توسعه داده و از نتایج آن برای بهبود زندگی خود استفاده کرده است. بنابر نتایج تحقیقات به نظر می‌رسد که دانستن تاریخ علوم در فرآیند یادگیری دانش‌آموزان تاثیر به‌سزایی دارد.

ولادیمیر ایگورویچ آرنولد، ۱۹۳۷ در شوروی– ۲۰۱۰ در پاریس، فرانسه) – نگاره از ویکی‌پدیا

اما دانستن تاریخ ریاضیات فقط بخشی از آن است. همان‌طور که سایر علوم پیشرفت خود را مرهون ریاضیات‌اند، ریاضیات نیز بسیاری از ایده‌های خود را از سایر علوم گرفته است. برای فهمیدن ایده‌های مختلف ریاضیات لازم است که به سایر علوم نیز نظر بیفکنیم.

آرنولد، ریاضی‌دان روس، در سال ۱۹۹۷ در یک سخنرانی انتقادات شدیدی به نظام آموزش ریاضی وقت فرانسه وارد کرد. متن ترجمه شده‌ی این سخنرانی را می‌توانید از اینجا بخوانید. آنچه در سخنان آرنولد جالب توجه است انتقاد به جدا کردن ریاضیات از فیزیک و هندسه بود. در آن دوران آموزش ریاضی در فرانسه با تحولات عجیبی روبرو شده بود. ریاضیات به صورت کاملا مجرد و مجزا از سایر علوم آموزش داده می‌شد. زمانی از یک دانش‌آموز دبستانی پرسیدند ۲+۳ چه عددی می‌شود و او در پاسخ گفته بود ۲+۳=۳+۲ زیرا جمع خاصیت جابجایی دارد!

ریاضیات بخشی از فیزیک است. فیزیک علمی است تجربی، بخشی از علوم طبیعی. ریاضیات بخشی از فیزیک است که در آن آزمایش ارزان است. … از آنجا که ریاضیات اسکولاستیک جداشده از فیزیک، نه به کار آموزش می‌آید و نه به کار کاربرد در دیگر علوم، نتیجه چیزی نبود جز نفرت همگانی از ریاضیات – هم از طرف بچه مدرسه‌ای‌های بینوا (که برخی از آنها در همین حین وزیر و وکیل شدند) و هم از طرف کاربران.

ولادیمیر آرنولد، درباره آموزش ریاضیات
On teaching mathematics by V.I. Arnold

مثال‌هایی از این قبیل در آن زمان و در آن نظام آموزشی به‌وفور یافت می‌شده است. امروزه بنابر نتایج پژوهش‌ها به نظر می‌آید برای آموزش تاثیرگذار ریاضیات در کلاس درس باید به جنبه‌های تاریخی و فرهنگی ریاضیات و ارتباط ریاضی با سایر علوم توجه ویژه کرد. حین نوشتن این مطلب کمی به کتاب‌های تألیفی آموزش و پرورش ایران در ریاضیات نگاه کردم. پس از حدود یک دهه که از مدرسه خارج شده‌ام و به تحصیل فیزیک و ریاضی در دانشگاه پرداختم تازه متوجه شدم که چرا در مدرسه‌ی راهنمایی هم‌کلاسی‌هایم علاقه‌ی چندانی به ریاضیات نداشتند و در یادگیری آن ضعیف عمل می‌کردند. کتاب‌های درسی‌مان تقریبا خالی از هر داستان تاریخی و خالی از هر پیوندی بین ریاضیات و زندگی بودند. آموزش ریاضیات به بخشی از آموزش‌های کشورهای توسعه‌یافته در قرن بیستم بدل شد چرا که انسان شهری نیازمند مهارت‌های ریاضی برای زندگی خود بود. به نظر می‌رسد آموزش زمانی مفید و موثر است که پیوند تنگاتنگ ریاضیات و سایر جنبه‌های علم و زندگی به خوبی به دانش‌آموزان نشان داده شود. این یکی از حلقه‌های مفقوده‌ی آموزش ریاضیات است.

اگر معلم هستید و این نوشته را می‌خوانید، این بار قبل از شروع درس در کلاس‌تان برای دانش‌آموزان قصه‌ای از تاریخ علم بگویید و اجازه دهید ارتباط بین آنچه می‌آموزند و زندگی روزانه‌شان را کشف کنند. نتیجه‌ی خوب آن را تا پایان سال تحصیلی مشاهده خواهید کرد.

پی‌نوشت: درباره‌ی مقاله‌ی آرنولد توضیحات بیشتری توسط سیاوش شهشهانی استاد ریاضی دانشگاه شریف نوشته شده است که می‌توانید اینجا مطالعه کنید.

gamma_no_07_pp_11-18